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Abstract: The nondestructive inspection of concrete structures is indispensable for ensuring the
safety and reliability of aging infrastructures. Ultrasonic waves having a frequency of tens of kHz are
frequently used to reduce the scattering attenuation due to coarse aggregates. Such low frequencies
enable the measurement of the thickness of concrete structures and detection of layer-type defects,
such as delamination, whereas it causes a lack of sensitivity to crack-type defects. In this paper, to
realize the ultrasonic phased array (PA) imaging of crack-type defects, we fabricated a low-frequency
(LF) array transducer with a center frequency of hundreds of kHz. To avoid the crosstalk between
piezoelectric elements and dampen the vibration of each element, we adopted soft lead zirconate
titanate (soft PZT) with a low mechanical quality factor. Subsequently, we optimized the geometry of
each piezoelectric element using a finite element method to generate a short pulse. After validating
the design in a fundamental experiment using a single-element transducer, we fabricated a 32-element
array transducer with a center frequency of 350 kHz. To show the imaging capability of the LF array
transducer, we applied it to a concrete specimen with a delamination. As a result, the PA with the
LF array transducer clearly visualized the delamination, which could not be visualized using the
PA with a 2.5 MHz array transducer. Furthermore, we applied it to a more challenging defect, a
slit, which is sometimes used to simulate crack-type defects. As a result, the PA with the LF array
transducer clearly visualized a slit of 1 mm width and 40 mm height in a concrete specimen. Thus,
we demonstrated the usefulness of the LF array transducer for inspecting crack-type defects.

Keywords: low-frequency phased array; ultrasonic imaging; concrete; crack-type defect; delamination

1. Introduction

The aging of concrete infrastructures, such as bridges, highways, and tunnels, is a
vital problem worldwide. Nondestructive testing (NDT) is a key technology for ensuring
safety and reliability. One of the most widely used NDT methods for concrete structures
is visual testing (VT). VT is a technique for inspecting surfaces. Another common NDT
technique is the hammering test [1,2]. Layer-type defects, such as delaminations, in the
vicinity of concrete surfaces can be detected from the sound reverberation following an
impact of a hammer on concrete structures. These approaches are mainly employed to
qualitatively inspect concrete subsurfaces.

Ultrasonic testing (UT) [3] is a promising approach for inspecting the interior of
concrete structures. In UT, typically, a pulse-echo method using a transducer and/or a
pitch-catch method with a pair of transducers are employed. Various ultrasonic wave prop-
agation characteristics, such as velocity, amplitude, attenuation, and frequency, can be used
to measure the thickness and detect the damage of concrete structures [3,4]. Nevertheless,
such UT suffers insufficient accuracy in the quantitative measurement of internal defects in
concrete structures.

Ultrasonic phased arrays (PAs) [5,6] are powerful tools for visualizing solids. PAs
were originally developed for medical diagnosis [7] and have also been widely adopted
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to visualize the internal defects of metals for industrial applications. The recent progress
in PAs for the inspection of metals is noteworthy [8–14]. PAs typically use a linear array
transducer composed of multiple rectangular piezoelectric elements that can act as both
transmitters and receivers. PAs detect and locate defects from B-scan images obtained by
exciting the array elements under a delay law so that the wavefront injected into a sample
has the desired characteristics, such as beam steering and focusing, in arbitrary regions.
Note that the sensitivity and resolution of PA imaging can theoretically become higher
when using a higher frequency. However, one needs to consider the effect of attenuation.
Hence, frequency on the order of MHz has mainly been used to inspect metals. On the other
hand, such a frequency range cannot be used to inspect concrete structures since concrete is
much more attenuative than metals. Hence, an array transducer with a sub-MHz frequency
is indispensable for the PA imaging of concrete structures.

As one of the candidates for ultrasonic imaging of concrete structures, a low-frequency
(LF) PA system, MIRA, using a dry-point-contact (DPC) array transducer is commercially
available [15–17]. The DPC array transducer generates and receives shear-horizontal
(SH) waves at a very low frequency of 55 kHz, which can successfully reduce the effect
of the high attenuation of concrete structures. Its use for thickness measurement and
delamination detections has been demonstrated [15–17]. However, the sensitivity of MIRA
to vertical crack-type defects may be insufficient owing to the very low frequency (i.e., long
wavelength). Given that the sensitivity can be improved by increasing the frequency, a PA
using an LF array transducer with a center frequency of hundreds of kHz can be suitable
for the inspection of crack-type defects in concrete structures.

The fabrication of an LF array transducer with a center frequency of hundreds of kHz
can encounter two difficulties if the LF array transducer has the conventional structure illus-
trated in Figure 1. The first difficulty is the crosstalk between piezoelectric elements [18,19].
This crosstalk is caused by the insufficient mechanical and electrical isolation between ele-
ments. For LF array transducers, the transmission of vibration modes to adjacent elements
can be a dominant factor of the crosstalk owing to insufficient mechanical isolation. As
shown in Figure 1, adjacent piezoelectric elements are physically connected via filling ma-
terials such as plastic resin. The excitation of piezoelectric elements of an array transducer
generates not only thickness vibration but also lateral vibration. The former generates an
ultrasonic wave in a sample and is used for PA imaging. The latter causes an ultrasonic
wave that laterally propagates through filling materials to the adjacent elements in the
array transducer. Note that LF ultrasonic waves are less attenuative than those with MHz
frequencies. Therefore, the crosstalk due to the insufficient mechanical isolation between
the elements can cause severe noise and reduce the capability to control the beam direction
in transmission and reception [18]. The second difficulty is how to generate a short pulse,
which is required for a high temporal resolution. A backing layer bonded on piezoelectric
elements plays a vital role in dampening the MHz frequency vibration of the piezoelectric
elements after their excitation [3]. This results in improved axial resolution and a broad-
ened frequency bandwidth [20]. The backing layer also dissipates the backward energy
to prevent the unwanted backward energy from returning to the piezoelectric materials.
However, dampening the LF vibrations of piezoelectric elements is intrinsically difficult.
Additionally, the attenuative materials, e.g., materials composed of rubber and heavy
metallic particles, adequate for MHz frequencies [21] may be ineffective in suppressing the
LF vibration that can reverberate in a backing layer. Such multiple reflections [22] in the
backing layer can cause additional, long-standing noise. Thus, the structure (Figure 1) of a
conventional array transducer with center frequencies on the order of MHz is unsuitable
for an LF array transducer.
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Figure 1. Structure of conventional array transducer with filling material and backing layer.

In this study, we propose a novel structure that can avoid the crosstalk between array
elements and dampen the LF vibration of each element to achieve an LF array transducer
with a center frequency of hundreds of kHz. We also optimize the geometry of piezoelectric
elements using a finite element (FE) analysis to generate a short pulse. After validating
the design in a fundamental experiment using a single-element transducer, we fabricated
a 32-element LF array transducer. We demonstrate the imaging capability in concrete
specimens with a delamination and slit. We also discuss possible future applications of the
LF array transducer.

2. Development of LF Array Transducer

The use of a high frequency can enhance the resolution of PA images and the sensitivity
to defects, whereas the effect of the attenuation increases with increasing the frequency.
Given a balance between the attenuation and the resolution and sensitivity, the inspection
of metals is carried out using ultrasound with a MHz frequency. On the other hand, the
attenuation of concrete structures is much higher than that of metals. To inspect such
highly attenuative materials, the use of a lower frequency is indispensable.

To realize an LF array transducer having a center frequency of hundreds of kHz, it is
essential to avoid the crosstalk between piezoelectric elements and dampen the vibration
of each element, as they can lead to the generation of a short pulse and a decrease of the
dead zone that appears from the top surface to a certain depth in PA images. As illustrated
in Figure 1, the piezoelectric elements are physically connected via filling materials, which
can increase the breakdown voltage and mechanical stability. However, the filling material
creates physical connections between adjacent piezoelectric elements in the lateral direction,
causing severe crosstalk. The backing layer dampens the vibration of each piezoelectric
element after their excitation, which can result in a short pulse [3,21,22]. However, the
backing layer may not contribute to the generation of a short LF pulse since LF vibrations
are less attenuative than high-frequency ones. This may also cause additional noise owing
to the long-standing reverberation in the backing layer [22].

To overcome the difficulties, we propose a structure without filling materials or a
backing layer for LF array transducers. Figure 2 illustrates the structure proposed. By
removing the filling materials and backing layer, the ultrasonic waves generated by firing
piezoelectric elements propagate only in a contacted specimen since they cannot propagate
in the array transducer because of a significant acoustic impedance mismatch between the
piezoelectric elements and air. Note that the electrical isolation and mechanical stability
of piezoelectric elements can also be guaranteed because the size of LF piezoelectric
elements is larger than that of MHz array transducers. Thus, the problems of crosstalk and
reverberation are simultaneously avoidable.
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Figure 2. Proposed structure without filling materials or backing layer for LF array transducer.

On the other hand, the lack of a backing layer can cause a low temporal resolution
for transmitted and received signals, resulting in a deteriorated axial resolution and a
narrower frequency bandwidth. To solve this problem, we adopted soft lead zirconate
titanate (soft PZT) (C9, Fuji Ceramics, Fujinomiya, Japan) with a low mechanical quality
factor Qm. Table 1 shows the characteristics of the soft PZT C9 and lead titanate (PT)
(M6, Fuji Ceramics, Japan). Note that the PT was produced to selectively utilize thickness
resonance. A low Qm material has the characteristic of dampening the vibration by itself.
In addition, such a material has a high longitudinal piezoelectric coefficient d33, resulting
in a large-displacement incident wave. Nevertheless, such a soft PZT was not expected to
be effective as a piezoelectric material of ultrasonic transducers for two reasons.

Table 1. Properties of piezoelectric materials.

Piezoelectric
Material ε33/ε0

d33
(×10−12 m/V)

d31
(×10−12 m/V) Qm

PT (M6) 215 71 −3.7 850
Soft PZT (C9) 6640 718 −354 25

The first reason is the difficulty of exciting the soft PZT with typical 50 W pulsers. Soft
PZT has high relative permittivity e33/e0, where e33 and e0 are the soft PZT and vacuum
permittivities, respectively. The electrical impedance of the transducer made of the soft PZT
tends to be low. Hence, a special high-current pulser would be required to effectively excite
a MHz-frequency monolithic transducer [23,24]. On the other hand, the low frequency and
small size of array elements would have a higher electrical impedance. This enables us to
excite the soft PZT piezoelectric elements with the pulsers of standard PA systems.

The second reason is the strong lateral vibration due to the high transverse piezoelec-
tric coefficient d31. When using the thickness resonance of piezoelectric materials, d33 is
the most important property. The d33 of soft PZT is approximately 10 times as high as that
of PT, whereas the d31 of soft PZT is approximately 100 times as high as that of PT. The
fundamental resonance frequency of the lateral mode is typically lower than that of the
longitudinal (thickness) mode. However, some of the higher-order resonance frequencies
can exist around the fundamental resonance frequency of the thickness mode. Note that
standard PA systems have pulsers that can generate a short pulse or one-cycle square wave
as an excitation voltage. Such input voltages have a broad bandwidth and, therefore, can
simultaneously excite multiple resonance modes. The superposition of the multiple lateral
modes and fundamental thickness mode can significantly lower the temporal resolution of
transmitted and received signals.

To generate a short pulse using the soft PZT, we propose utilizing a coupled resonance
between the thickness and lateral vibrations. The lateral and thickness resonance frequen-
cies are determined by the geometry of the soft PZT element. When the fundamental
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resonance frequency of the thickness mode is sufficiently far from that of the fundamental
lateral mode, they exist as independent resonance modes. When the resonance frequencies
become close to each other for a certain geometry of the soft PZT element, they are not inde-
pendent and are complexly coupled. It can be expected that utilizing appropriate coupled
resonance modes leads to a high temporal resolution for transmitted and received signals.

To optimize the geometry of the soft PZT elements, we performed a 2D FE simulation
using the software PZFlex [25,26] based on the coupled piezoelectric–vibration analysis.
The parameters of the soft PZT C9 used in the FE simulation are presented in Table 2. We
varied the element width as 8, 6, 4, 3, and 2 mm for a fixed thickness of 4 mm, where the
Courant number was 0.9. When the element width was much larger than the thickness of
4 mm, the thickness resonance frequency was 500 kHz.

Table 2. Parameters of soft PZT C9 used for 2D FE simulation.

Parameter Value Parameter Value

Geometry
Thickness (mm)

Width (mm)
4

8, 6, 4, 3, 2

Density (kg/m3) 7750

Piezoelectric constants
d33 (×10−12 m/V)
d31 (×10−12 m/V)
d15 (×10−12 m/V)

718
−354
827

Elastic constants
C11 (GPa)
C33 (GPa)
C55 (GPa)

65
64
26

Figure 3 shows the electrical impedance calculated by the 2D FE simulation. At the
element width of 8 mm (Figure 3a), multiple resonance peaks were observed. The thickness
resonance appeared to be approximately 500 kHz, as expected. The other lower resonance
peaks correspond to the fundamental and higher-order modes of the lateral resonances.
This shows that each resonance mode existed independently at the element width of 8 mm.
On the other hand, as the element width decreased from 6 mm to 3 mm, the resonance
modes were complexly coupled, as shown in Figure 3b–d. At the element width of 2 mm, a
single resonance mode appeared at approximately 350 kHz. The utilization of the single
resonance mode can improve the axial resolution and broaden the frequency bandwidth.
Although it can be expected that a smaller element width also shows a single resonance
peak, the footprint of each piezoelectric element should be large to maximize the energy of
the incident waves. Therefore, we selected the cross-section of the piezoelectric elements
having the aspect ratio of 2 (i.e., 4 mm thickness and 2 mm width).
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Figure 3. Electrical impedance calculated by 2D FE analysis with various element widths and a fixed
thickness of 4 mm. Element width: (a) 8 mm, (b) 6 mm, (c) 4 mm, (d) 3 mm, and (e) 2 mm.

To validate the FE analysis, we fabricated a transducer composed of a single element
(soft PZT C9), adopting the design obtained by 2D FE simulation, as shown in Figure 4a,b.
Here, the length of the piezoelectric element was 40 mm to make it a rectangular shape for a
linear array transducer. We measured the electrical impedance of the fabricated transducer
with an impedance meter. As a result, the resonance spectrum was found to be in good
agreement with the prediction by the FE analysis, as shown in Figure 4c.

Furthermore, we experimentally examined the usefulness of the fabricated transducer
with a single resonance frequency. As illustrated in Figure 5a, the transmitted wave was
measured at the bottom of an aluminum-alloy specimen with 100 mm thickness using
a laser Doppler vibrometer (Polytec, OFV-505). For comparison, we also fabricated the
transducer composed of a single element with 4 mm thickness and 9 mm width. The
excitation voltage was a square wave with 100 V. For the 9 mm wide transducer, the
multiple frequency components were observed in the lower waveform of Figure 5b, as
expected from the results of the 2D FE simulation. The transmitted wave is unsuitable
for PA imaging because of a considerably low temporal resolution of the transmitted
wave. In contrast, for the 2 mm wide transducer, a single pulse was observed in the upper
waveform of Figure 5b, which is suitable for PA imaging because of its excellent temporal
resolution. This shows that the soft PZT transducer without a backing layer is useful for
dampening the LF vibration of the piezoelectric element. Thus, we validated the geometry
(4 mm × 2 mm × 40 mm) of the soft PZT elements for an LF array transducer.
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On the basis of the design of the soft PZT C9 element with 4 mm × 2 mm × 40 mm,
we fabricated a 32-element LF array transducer. Figure 6a shows the structure of the LF
array transducer. We adopted the structure without a backing layer or filling materials.
We sliced the soft PZT (C9) plate (4 mm × 40 mm × 40 mm) into a rectangular shape
(4 mm × 2 mm × 40 mm) using a dicing machine. The element pitch was selected to be
3 mm to avoid generating grating lobes. After bonding the 32 piezoelectric rectangles on the
front plate made of 0.1 mm thick aluminum foil, we wired each element to a coaxial cable.
The aluminum case was also bonded on the front plate. Figure 6b shows the fabricated LF
array transducer.
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To confirm the uniformity of the 32 elements of the fabricated LF array transducer, we
measured the electrical impedance of all elements. Figure 7 shows the electrical impedance
spectra measured with an impedance meter. All electrical impedances were in excellent
agreement with the FE simulation results (Figure 3e). This shows the high precision of the
fabrication process.
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3. Experiments of Imaging Concrete Specimens
3.1. Concrete Specimen with a Delamination

To demonstrate the effectiveness of the LF array transducer, we made a concrete
specimen with a size of 200 mm × 200 mm × 135 mm and a delamination (Figure 8).
Delamination in concrete structures is generated because of corrosive environments and re-
peated loadings. However, it may not be easy for us to make a delamination by simulating
such conditions in a laboratory. On the other hand, the delamination can be regarded as a
defect with a thin air layer, which causes ultrasonic reflection and scattering because of
the acoustic impedance mismatching between concrete and air [3]. Note that the acoustic
impedance of a Styrofoam plate is much lower than that of concrete and can be approx-
imated to air. Hence, a delamination can be simulated by embedding a Styrofoam plate
in concrete structures [27,28]. Here, we made an artificial delamination with a Styrofoam
plate of 2 mm thickness and 80 mm width inserted at a depth of 100 mm. The longitudinal
wave speed of the concrete specimen was measured to be 3200 m/s.
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Figure 9a shows the experimental setup for imaging the concrete specimen with
a delamination. We operated the LF array transducer using a PA controller (Hitachi,
ES3500). The focal points were set between −30◦ and 30◦ with 1◦ steps at a fixed depth
of 100 mm. As illustrated in Figure 9a, we mechanically scanned the LF array transducer
on the top surface to visualize the whole delamination. For comparison, we also used a
32-element array transducer with a center frequency of 2.5 MHz and an element pitch of
1 mm (Figure 9b), which is commercially available as an array transducer with a relatively
low center frequency for the inspection of metal.
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Figure 9c,d are the PA imaging results obtained with the LF and 2.5 MHz array
transducers, respectively, where we merged three images obtained at three measurement
positions. When using the LF array transducer, the delamination was visualized with a high
signal-to-noise ratio (SNR) in Figure 9c, from which the size and depth of the delamination
can be accurately measured. The merged PA image has two local weak regions of the
delamination response at the connecting area of the three PA images. Given that the PA
imaging was performed in real time, a smoother delamination response can be obtained
by selecting a smaller scan pitch. In contrast, the PA image (Figure 9d) obtained with the
2.5 MHz array transducer did not visualize the delamination. This can be explained by the
much higher scattering attenuation of concrete structures than that of metals. Given that
the scattering attenuation is strongly dependent on the ultrasonic frequency, it is reasonable
that the delamination was invisible when using a frequency of 2.5 MHz. This implies that
the commercial array transducer having a frequency in the MHz range is inapplicable to
the inspection of concrete structures. Thus, the LF array transducer fabricated in this study
successfully reduced the effect of the scattering attenuation due to aggregates.
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3.2. Concrete Specimen with Crack-Type Defect (i.e., a Slit)

As a more challenging target, we prepared a concrete specimen with a crack-type de-
fect (i.e., a slit), as shown in Figure 10. The specimen size was 200 mm × 200 mm × 800 mm.
We machined a slit of 1 mm width and 40 mm height from the bottom. The longitudinal
wave speed was measured to be 5000 m/s.
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Figure 10. Concrete specimen with a slit (1 mm width, 40 mm height).

Figure 11a,b show the experimental configurations for the LF and 2.5 MHz array
transducers, respectively. We used the same PA equipment as that described in Section 3.1.
The focal points were set to be from −20◦ to 20◦ with 0.5◦ steps in terms of angle and from
120 mm to 200 mm with 40 mm steps in terms of depth.

Figure 11c,d are the PA imaging results obtained with the LF and 2.5 MHz array
transducers, respectively. When using the LF array transducer, a large dead zone appeared
near the top surface. The dead zone is due to the ringing time of the electrically excited
transducer and is regarded as an uninspectable region [3]. Despite of the same LF array
transducer being used to obtain Figures 9c and 11c, the dead zone in Figure 11c was much
larger than that in Figure 9c. This is because of the difference in the receiver gain. Since
the response of the slit was much weaker than that of the delamination, we increased the
receiver gain by 10 dB. At the same time, this also amplified the dead zone, as shown in
Figure 11c. Nevertheless, the slit was visualized below the dead zone with a high SNR,
as shown in Figure 11c. The slit depth obtained from Figure 11c was in agreement with
the actual depth of 40 mm. This shows that the frequency of 350 kHz was appropriate for
reducing the effect of scattering attenuation and achieving the high sensitivity to the slit
in this specimen. In contrast, the PA image (Figure 11d) obtained with the 2.5 MHz array
transducer did not visualize the slit. In addition, even though it is much easier to visualize
the bottom than the slit, the bottom response was very weak. This shows that most of the
2.5 MHz wave was attenuated before returning from the bottom. Thus, the difference in
the bottom response between Figure 11c,d clearly shows the usefulness of utilizing the LF
wave for highly attenuative materials. Furthermore, given the high SNR in Figure 11c, the
PA using the LF transducer can be expected to visualize a narrower slit (or natural cracks),
which will be an interesting future topic.
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4. Discussion

We demonstrated the effectiveness of the LF array transducer in concrete specimens
with a delamination and slit. In contrast to a conventional array transducer with a backing
layer and filling material [29–32], the structure without a backing layer and filling materials
and the shape optimization of the soft PZT element resulted in a suppressed dead zone
in addition to reduced scattering attenuation. However, it is impossible to suppress the
dead zone perfectly. For the inspection of the subsurface region in concrete structures,
a surface-acoustic-wave phased array (SAW PA) [33–35] seems promising. The SAW PA
uses a wedge to generate a Rayleigh wave via mode conversion. The penetration depth of
Rayleigh waves is approximately one wavelength. The penetration depth can be changed
by using a different frequency and mode. Although the SAW PA has been verified to be
effective for the inspection of metals, it has yet to be applied to concrete inspections. The
SAW PA using the LF array transducer would be an exciting topic for concrete inspection.

In this study, we carried out imaging experiments using incident longitudinal and scat-
tered longitudinal waves. On the other hand, the mode conversion from the longitudinal
wave to the transverse one occurs at scattering; this has been utilized for the PA imaging of
metals [36–41]. The utilization of mode-converted scattered waves in the PA using the LF
array transducer will provide further information on defects in concrete structures.

For the imaging of the concrete specimens, we used a typical PA imaging algorithm
called delay and sum (DAS) processing [6,7]. The SNRs were sufficient in Figures 9c and 11c.
On the other hand, the imaging results may be affected by uncertainties because of the
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difference in the coupling gel between the LF array transducer and concrete specimens. To
overcome such a problem, a fuzzy processing technique would be promising [42].

To achieve high-sensitivity imaging for concrete specimens, we selected a frequency
of 350 kHz, which is relatively high for typical concrete UT. Therefore, such a frequency
would be too high to inspect more attenuative concrete structures, e.g., those containing
larger aggregates. The frequency selection depends on the balance between the attenuation
of concrete structures and the sensitivity required to detect defects. It is essential to use
a suitable frequency for each concrete structure. Note that the method for designing the
structure of the LF array transducer proposed in this study is very general and can be
directly applied to different frequencies. For example, to inspect more attenuative materials,
one can make an LF array transducer with a lower resonance frequency by increasing the
size of each piezoelectric element with the same shape since an ultrasonic wave with such
a lower frequency can propagate a long distance while reducing the effect of attenuation.
On the other hand, the lateral resolution ∆X of PA images is determined as follows [43]:

∆X ∝ λ
d
A

, (1)

where λ is the wavelength, d is the distance from the top surface, and A is the size of the
aperture (i.e., the element pitch × the number of elements). Equation (1) shows that the
use of a low frequency (i.e., a large λ) causes a low ∆X. In contrast, ∆X can be improved
by selecting a large A, which can be realized by increasing the element pitch. However, an
array transducer with an element pitch of greater than λ/2 causes the generation of grating
lobes, resulting in severe artefacts [44]. To avoid grating lobes and obtain sufficient image
resolution, the design of an LF array transducer should be optimized following the above
discussion. On the other hand, the scheme proposed in this study can be used to design an
LF 2D matrix array transducer [45,46] for 3D concrete imaging, which is an exciting topic
of future work.

The classification of the type of defects is an important and challenging task. In this
study, we measured two types of defects (i.e., a delamination and slit). The imaging results
showed the difference in the lateral size in Figures 9c and 11c, classifying the type of
defects between the delamination and the slit. On the other hand, the image resolution is
determined using Equation (1). Therefore, it may be difficult to classify a similar size of
defects, such as slits and cracks, as well as defects smaller than the image resolution, such
as porosities. To overcome the limitation of image resolution, super-resolution algorithms
have been widely studied [47–52]. The combination of an LF phased array with such
imaging algorithms is an exciting topic for classifying the type of defects.

5. Conclusions

In this paper, we proposed a novel structure for achieving an LF array transducer
with a center frequency of hundreds of kHz for concrete inspection. To avoid the crosstalk
between piezoelectric elements and to dampen the vibration of each element, we adopted a
soft PZT (C9, Fuji Ceramics, Fujinomiya, Japan) with a low Qm value and a structure with-
out a backing layer or filling materials. Subsequently, we optimized the geometry of each
piezoelectric element by FE analysis to generate a short pulse. After validating the design
in a fundamental experiment using a single-element transducer, we fabricated a 32-element
array transducer with a center frequency of 350 kHz. To show the imaging capability of the
LF array transducer, we applied it to a concrete specimen with a delamination. As a result,
the PA with the LF array transducer clearly visualized the delamination that could not be
visualized using the PA with a 2.5 MHz array transducer. Furthermore, we applied it to a
more challenging defect, a slit, which is sometimes used to simulate a crack-type defect.
As a result, the PA using the LF array transducer clearly visualized a slit of 1 mm width
and 40 mm height in the concrete specimen. Thus, we demonstrated the usefulness of the
LF array transducer for inspecting crack-type defects in concrete structures.
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