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Abstract: Multi-sensor fusion intends to boost the general reliability of a decision-making procedure
or allow one sensor to compensate for others’ shortcomings. This field has been so prominent
that authors have proposed many different fusion approaches, or “architectures” as we call them
when they are structurally different, so it is now challenging to prescribe which one is better for
a specific collection of sensors and a particular application environment, other than by trial and
error. We propose an approach capable of predicting the best fusion architecture (from predefined
options) for a given dataset. This method involves the construction of a meta-dataset where statistical
characteristics from the original dataset are extracted. One challenge is that each dataset has a
different number of variables (columns). Previous work took the principal component analysis’s first
k components to make the meta-dataset columns coherent and trained machine learning classifiers to
predict the best fusion architecture. In this paper, we take a new route to build the meta-dataset. We
use the Sequential Forward Floating Selection algorithm and a T transform to reduce the features
and match them to a given number, respectively. Our findings indicate that our proposed method
could improve the accuracy in predicting the best sensor fusion architecture for multiple domains.

Keywords: sensor fusion; classification; SFFS; metadata; statistical signature

1. Introduction

The combined use of multiple sensors, either similar or different, to take measurements
of a given phenomenon is a good way to compensate for the weaknesses (for instance, lack
of precision, malfunction of a sensor, uncertainty, and limited spatial coverage [1]) of some
sensors with the help of others [2–4]. The combination of several sensors has the advantage
of increasing reliability, robustness, resolution, precision, and other desirable properties
while decreasing uncertainty and ambiguity [5].

The multi-sensor strategy has gained such prominence that many fusion methods have
been described in the literature such as Feature Aggregation (FA) [3,6], Voting (Vot) [7],
Multi-view stacking (MVS) [8], and AdaBoost (AB) [9]. The problem is that there are
now so many methods that it is hard from the outset which of the many possible fusion
configurations to choose for a specific set of sensors [10], mainly because none of the
proposals we found explains why it works for the particular set of sensors they use (we
suspect many authors just use the methods they are familiar with). We call the sensor
fusion methods “architectures” when we want to emphasize the structural differences,
such as several levels of fusion or the use of similar or different sensors.

One way to mitigate the problem of fusion architecture proliferation is to be able to
foretell the optimal fusion strategy for a specific given dataset. To our knowledge, only
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two studies have addressed this problem: the proposal by Aguileta et al. [11] and the one
of Brena et al. [12]. Aguileta et al. [11] introduced a machine learning approach laid on a
meta-dataset of statistical signatures (used as a vector of features) to perform this task for
human activity recognition (HAR), where they achieved a 90% precision in predicting the
best fusion architecture among eight (which used the previously mentioned methods: FA,
Vot, MVS, and AB) for a human activity dataset. Furthermore, Brena et al. [12] extended
this approach to identify (with 91% accuracy) the optimal fusion architecture (among these
eight fusion architectures) for a specific dataset from other fields besides HAR, including
chemical gas classification [13] and grammatical facial expressions (GFE) classification [6].
A key aspect of this extended approach was the use of the principal component analysis
(PCA) [14] method to construct a statistical signature (SS) meta-dataset. The statistical
signature will be referred to as SS from now on, and it is essentially a vector of features,
each of which is a statistical trait of a dataset in our collection. Details on how to calculate
SS are presented in Section 3.2.

Overall, the method consists of building a “meta-dataset” where each row is built
by trying several fusion architectures for different sensor combinations, then recording
the name of the best performing architecture for a given combination, which will be
later used as the class label for that row. Each row in the meta-dataset is completed by
extracting statistical features (SS) from the “source” datasets derived from the different
sensor combinations. Then, a classifier is trained with the meta-dataset to predict the name
of the best architecture based on the input SS.

One of the challenges to be solved is that since each dataset is reduced to a single SS
row in the meta-dataset, it is extremely difficult to construct meta-datasets of more than a
few dozen rows. Further, there is the problem that if the meta-dataset contains rows from
different domains (such as HAR, gas identification, and GFE recognition, as in this work),
we have to align the columns in such a way that the columns are compatible, both in their
number and also in their meaning, regardless of the considered domains, and eventually
additional ones. The previous solution [12] used PCA to reduce the SS columns (used as
features) to combine them, regardless of the domain, where one column corresponds to the
first PCA component, the next to the second component, and so on.

Although the approaches described above have addressed the problem of identifying
the appropriate sensor fusion for a specific dataset, there is still a precision and accuracy
gap to fill (around 9% accuracy). Furthermore, other commonly used methods for reducing
features (such as the Sequential Forward Floating Selection (SFFS) [15] algorithm) were
left unexplored.

In this work, we describe a method that improves the accuracy achieved by
Brena et al. [12] through the SFFS algorithm and a data transformation matrix T (see
Equation (8)) to build a meta-dataset from the SS of the three mentioned domains. The idea
is to reduce the dimensions of the SS datasets using the SFFS algorithm. Then, to match
the dimensions of such reduced SS with a given size, using the proposed transformation T.
Afterwards, to build a meta-dataset, row by row, combining these reduced SS set. Finally,
to train a machine learning algorithm so that it learns to predict the best fusion architecture
(using this new meta-dataset), within the eight methods mentioned above, for a particular
dataset from any of the domains.

The remaining of this paper is organized as follows. First, a review of the state-
of-the-art is presented, regarding sensor-data fusion techniques. Then, we describe the
methodology for choosing the most effective fusion method using the SFFS algorithm and
the proposed data transformation. Next, we describe the datasets, their assembly, and the
experimental setup, followed by the results and a discussion. We end with our conclusions.

2. Background on Sensor Fusion Techniques

Here, we review the previous works in the area of multi-sensor fusion techniques (ranked
by level of data abstraction) and feature selection (using the SFFS algorithm), respectively.
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2.1. Multi-Sensor Fusion

Multi-sensor fusion was conceptualized in the 1970s by the US Naval as a technique
to boost the Soviet Navy’s motion detection system’s accuracy, among other military
problems [16]. Over time, this strategy moved to the civil context and is currently being
used in diagnostics in medicine, robotics, video processing, and smart buildings [17].

Furthermore, this strategy has been so successful that many fusion methods have been
proposed to such an extent that various proposals have emerged to organize them. One of
them classifies fusion architectures into three classes according to the degree of abstraction
of data processing (fusion of the data, the features, or the decisions) [18,19]. However, not
all fusion methods fit into one of these categories because they combine two of them. These
methods have been classified in the category of two-level fusion [10]. We briefly explain
these categories below and provide some examples.

Fusion of the data: sensors’ unprocessed data are grouped into sets with the idea of
obtaining a higher quality (accurate, informative, and synthetic) in the grouped data than
when it is not grouped [20]. Raw Data Aggregation (RDA) [21] and Time-lagged Similarity
Features [22] are methods that fit into this category [10].

Fusion of the features: Combines the features of the sensor data to create a large feature
vector from which a classifier can learn to identify patterns [23,24]. FA, Temporal Fusion
(TF) [25], and the Data Fusion Location algorithm [18] are examples of feature-level fusion.

Fusion of the decisions: A final decision (a target class or tag) is made after combining
the results (considered intermediate) from several classifiers or decision processes [26].
This type of fusion can be seen in the dynamic multi-sensor data fusion approach based on
evidence theory and weighted ordered weighted averaging operator [27], Vot, and MVS.

Fusion at two levels: Two of the fusion styles described above are combined by fusion
architectures proposed in the literature [10]. For example, some methods merge data and
features, such as combining TF (feature-level) with RDA (data-level) [21]. Other methods
also merge features and decisions, such as the combination of Genetic Algorithm-Based
Classifiers Fusion (decision-level) with Feature Combination [28] (feature-level) (GABCF-
FC) [29].

These fusion methods were developed and tested on data from specific sensors with-
out further evaluation. Consequently, given a set of sensors, we do not know which fusion
method to choose. This problem was addressed by Brena et al. [12], where a method to
predict the best fusion method for a given set of sensors was proposed. The contribution of
this paper is then a proposal to improve the classification accuracy over Brena et al. work.

2.2. The SFFS Algorithm

Feature selection aims to take a larger collection of features (which we call D) and
choose a subgroup of features (which we call d) from this large group, where d < D.
The performance of a machine learning algorithm using subset d should not significantly
decrease relative to the achieved performance of that algorithm when using set D. The
selection of features can indeed be viewed as a search issue to find the best feature subgroup
according to a provided measure. A suitable criterion function calculates this measure.
From this problem emerges the necessity of developing computationally feasible proce-
dures that avoid the exhaustive search, although their result is a feature set that may be
suboptimal [15]. Although there have been several feature selection algorithms proposed
in the literature (such as the Sequential Backward Selection (SBS) method [30], Sequential
Forward Selection (SFS) method [31], Sequential Backward Floating Selection (SBFS) algo-
rithm [15], to name a few), in this work, we use the SFFS algorithm as both its performance
and computational efficiency are outstanding compared to other methods. Here is a formal
description of the SFFS algorithm, taken from Pudil et al. [15].

Let Xk = {x1, x2, .., xk} denote the group of k features from the group Y = {y1, y2, ..., yD},
where D is the total number of features and xi ∈ Y for i = 1, 2, ..., k. The individual sig-
nificance So(yi) is defined as the value J(yi) of the criterion function for deciding which
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features to use, where yi is the ith feature, for i = 1, 2, ..., D. The significance Sk−1(xj) of the
feature xj, with j = 1, 2, ..., D, in the group Xk is specified in Equation (1).

Sk−1(xj) = J(Xk)− J(Xk − xj) (1)

The relevance Sk+1( f j) of the feature f j ∈ Y − Xk = { f1, f2, ..., fD−K}, where fi ∈ Y
and fi 6= xl for all xl ∈ Xk, is defined in Equation (2).

Sk+1(Fj) = J(Xk + fi)− J(Xk) (2)

The feature xj ∈ Xk is the most relevant (best) feature in such set Xk if

Sk−1(xj) = max
1≤i≤k

Sk−1(xi)

=⇒ J(Xk − xj) = min
1≤i≤k

J(Xk − xi)
(3)

The feature xj ∈ Xk is the least relevant (worst) feature in such set Xk if

Sk−1(xj) = min
1≤i≤k

Sk−1(xi)

=⇒ J(Xk − xj) = max
1≤i≤k

J(Xk − xi)
(4)

The feature f j ∈ Y− Xk is the most relevant (best) feature regarding Xk if

Sk+1( f j) = max
1≤i≤D−k

Sk+1( fi)

=⇒ J(Xk + f j) = max
1≤i≤D−k

J(Xk + fi)
(5)

The feature f j ∈ Y− Xk is the least relevant (worst) feature regarding to Xk if

Sk+1( f j) = min
1≤i≤D−k

Sk+1( fi)

=⇒ J(Xk + f j) = max
1≤i≤D−k

J(Xk + fi)
(6)

Assume that the criterion function J(Xk) was used to create a set Xk ⊂ Y and that
J(Xi) values are known and stored for all subsets of size i = 1, 2, ..., K− 1. Then, the SFFS
algorithm follows the stages outlined below.

• Stage 1: choose the feature xk+1 ∈ Y− Xk, according to the SFS method, to construct
the feature group Xk+1. Hence, Xk+1 = Xk + xk+1, with xk+1 being the most relevant
characteristic according to the group Xk—it is the Inclusion stage.

• Stage 2: from the group Xk+1, pick the least relevant feature xk+1. Therefore, J(Xk+1−
xk+1) ≥ J(Xk+1 − xj), ∀j = 1, 2, ..., k. So, group k = k + 1 and go back to Stage 1. If
xr ∈ Xk+1, for 1 ≤ r ≤ k, is the least relevant feature, then J(Xk+1 − xr) > J(Xk).
Therefore, the new group X′k = Xk+1 − xr must be formed. Notice that now J(X′k) >
J(Xk). If k = 2, then put Xk = X′k and J(Xk) = J(X′k) and go back to Stage 1, otherwise
go to Stage 3. This step is called Conditional Exclusion.

• Stage 3: choose the least relevant feature Xs ∈ X′k. If J(X′k − xs) ≤ J(Xk−1) then put
Xk = X′k, J(Xk) = J(X′k), and go back to Stage 1. If J(X′k − xs) > J(Xk1) then the new
group X′k−1 = X′k − xs must be formed. Put k = k− 1. If k = 2, then establish Xk = X′k
and J(Xk) = J(X′k) and go back to Stage 1, otherwise repeat Stage 3. This is what
follows the Conditional Exclusion stage.

The parameters are initialized (k = 0 and Xo = ∅). The SFS approach is employed as
long as the feature set does not exceed cardinality two. Then the algorithm proceeds with
Stage 2.
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3. Method

Figure 1 presents the approach proposed by Brena et al. [12] that predicts the most
suitable fusion architecture for a given set of data (e.g., HAR [32], gas detection [13], or GFE
recognition [6]). In this section, we briefly explain this approach, first, in Section 3.1 the
process for choosing the most effective fusion architecture is described. Then, in Section 3.2,
the details of the statistical signature dataset stage are explained, as this is the core of
our proposal, and we are following a different approach than the one described by the
original authors. Furthermore, finally, in Section 3.3, the prediction of the optimal fusion
architecture step is briefly described. For more details, the reader can consult the work of
Brena et al. [12].

Figure 1. General schematic of the enhanced approach that identifies the optimal fusion architecture
(adapted from Brena et al. [12]).

3.1. Choosing the Most Effective Fusion Architecture

In the upper part of Figure 1, we can see how the tag (that is, which one is the most
appropriate fusion architecture for a specific dataset) is obtained. Through a statistical
analysis, we find the best sensor data fusion architecture out of eight predefined ones for a
given dataset [11].

In the following, we give a high-level explanation of the eight fusion architectures
we are considering in this study (bear in mind that this small collection is by no means
comprehensive, though the methods we are presenting are in principle applicable to many
other fusion architectures):

Aggregation (Agg). This architecture is a simple feature-level one, so much so that
we take it as the baseline method. The idea is to just take every available feature from every
sensor. It comprises two steps: the first one is to combine the features derived from the
considered dataset by column; the second step is to train a classifier—for instance Random
Forest (RFC) [33]—with these features in order to identify the actual labels of the dataset.
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Voting with shuffled features (VotWSF). This architecture operates at the level of
decisions and comprises five phases: (1) we start by combining by column the features
taken from the dataset under consideration; (2) we shuffle the features; (3) we divide them
into three sections of equal size; (4) we run a standard classifier (like RFC) on each of the
three partitions; and finally (5) we vote (using Vot) on the decision of each partition to
reach a final decision.

Voting without shuffled features (VotWoSF). This architecture is similar to the one
before it (VotWSF). The only difference is that phase two (to shuffle the features) is skipped.
The ones left steps are much like the ones before them.

Voting with three classifiers for all features (VotWTCAF). This architecture uses
fusion at the decision and feature levels, and works as follows: (1) obtain the features of
the dataset being considered; (2) use three different classifiers—we have used Logistic
Regression (LR) [34], Decision Tree (CART) [35] and RFC—with all the features; (3) train
the classifiers and assemble the final result using Vot.

Multi-View Stacking with shuffled features (MVSWSF). This process fuses the data
at a decision-level. It comprises the following phases: (1) acquiring the features derived
from the dataset being considered, and, taking the features as columns, shuffle them, and
then break them into three sections; (2) take three instances of a standard classification
algorithm (e.g., Random Forest) as the first-level learner; (3) train the base learners instances
with some of those three feature portions and aggregate the decisions of those instances by
column; (4) take a base ML classifier (RFC for instance) as a meta-learner to learn from the
base learners’ decisions so that it will be able to identify the labels of the given dataset.

Multi-View Stacking without shuffled features (MVSWoSF). This architecture dif-
fers from the previous one (MVSWSF) in that the features are not shuffled. The remaining
steps, on the other hand, remain unchanged.

Multi-View Stacking with three classifiers for all features (MVSWTCAF). This ar-
chitecture, which uses two forms of fusion (feature and decision levels), requires four
phases: (1) generate and aggregate the characteristics obtained from the dataset being
considered by columns—which is a feature-level fusion; (2) determine three classification
techniques (CART, RFC, or LR) as base learners; (3) train these aggregated features for each
base learners and combine the decisions by column; and (4) take a standard ML predictor
(RFC, for instance), which will play the role of a meta-learner, in a decision-level fusion,
and it will be trained with the aggregated decision of step (3), so that it predicts the classes
of the given dataset.

AdaBoost with RFC (ABWRFC). The four phases in this architecture, which uses var-
ious forms of fusion (e.g., decision/function level), consist of: (1) integrating the features
generated from the considered dataset column-wise (merging feature at level); (2) deter-
mining a predictor (for example, RFC); (3) designing the Adaboost classifier as a high-level
method (to perform decision-level merging); and (4) training AB with the features extracted
in phase 1 so that it identifies the labels recorded in the given dataset.

We briefly describe the statistical analysis below. It relies on the Friedman’s rank
test [36] and Holm’s test [37] to find substantial discrepancies concerning accuracy (if any)
among the Aggregation (designated as the reference when the goal is the comparison)
and each of the fusion architectures [11]. Some fusion architectures (different from Agg)
exhibit a substantial advantage over the accuracy of Agg. The best of the examined fusion
architectures is taken as such, as we explained above.

3.2. Statistical Signature Dataset

Here, we construct a meta-dataset with labeled statistical signatures derived from
each dataset from one of the domains under consideration, following a different path
than the original author (Brena et al. [12] ). To build this meta-dataset, we use the SFFS
algorithm and the T transform (see Equation (8)), rather than PCA as the original author.
Next, we show the method for generating this collection of meta-data (see Figure 2, which
presents the general structure of the mentioned method; refer to Figures 3–6 for method
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details), which is a simplified set of meta-data as it incorporates the SS of datasets from
various domains.

Figure 2. Steps to generate the SS database (adapted from Brena et al. [12]).

Figure 3. Statistical signature combination (adapted from Brena et al. [12]).
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Figure 4. Generalization step (adapted from Brena et al. [12]).

Figure 5. Reduced statistical signature labeling (adapted from Brena et al. [12]).

Figure 6. Statistical signature dataset (adapted from Brena et al. [12]).
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First, a SS of the characteristics of each dataset from each domain is generated. This
is shown in Figure 2. The method for generating the SSs is to obtain the mean, standard
deviation, the minimum value, maximum value, and percentiles 75th, 50th, and 25th, for
each of the datasets’ features [11].

Let a given dataset be characterized as a matrix A, with S rows (samples) and F
columns (characteristics). Let aij represent an entry in A, with i = 1, 2, ..., S and j =
1, 2, ..., F. Thus, A can be introduced as a collection of vectors AV = { f1, f2, .., fF}, with
f1 = [a11, a21, ..., aS1]

T , f2 = [a12, a22, ..., aS2]
T , ..., and fF = [a1F, a2F, ..., aSF]

T .
Thus, AV SS corresponds to the set:

SSAV = {mean( f1), std( f1), max( f1), min( f1), P25th( f1), P50th( f1), P75th( f1),

mean( f2), std( f2), max( f2), min( f2), P25th( f2), P50th( f2), P75th( f2), ..., mean( fF),

std( fF), max( fF), min( fF), P25th( fF), P50th( fF), P75th( fF)} (7)

Then, combine the SS derived from each dataset by row in the SS combination step,
by domain [11]. Next (unlike the original authors [12], who use PCA to reduce the SS
dimension), by domain, decrease the SS dimension using the SFFS algorithm (in the
generalization step) and match it to a given number using the T transformation (see
Equation (8)).

We used this algorithm since it is commonly used to minimize a function vector’s
dimensions [38]. In the first part (forward selection), SFFS adds the characteristic (feature)
of the characteristic space (feature space) that contributes to the maximum performance
improvement for the subset of characteristics, determined by the following criterion: the
characteristic that, if applied to this subset, is correlated with the best performance of the
classifier. SFFS excludes a characteristic in the second component (floating selection) if an
increase in output is achieved by the resulting subset. If the number of elements is equal to
or cannot be increased in this subset, return to the first part; otherwise, repeat it. Redo parts
one and two till you have the desired number of items [15]. Then, from the SFFS algorithm,
the reduced SS per domain (RSSD) is obtained: RSSDj = {dje1, dje2, ..., djentej}, where
j = {1, 2, ..., D}, D is the total number of domains, djel is the SS element l of domain j, and
ntej is the total number of elements in domain j. We define T : Rntej → Rk in Equation (8),
where k = ∑D

i=1[ntei] and Omxn is a zero matrix of m rows by n columns.

T(RF) =


(RSSD1,O1x(k−nte1)

) if RF=RSSD1, where RSSD1∈Rnte1

(O1x(nte1)
,RSSD2,O1x(k−nte1−nte2)

) if RF=RSSD2, where RSSD2∈Rnte2

(O1x(nte1+nte2)
,RSSD3,O1x(k−nte1−nte2−nte3)

) if RF=RSSD3, where RSSD3∈Rnte3

···
(O1x(k−nteD),RSSDD) if RF=RSSDD , where RSSDD∈RnteD

(8)

Subsequently, at the point of reduced SS labeling, the reduced SS shall be labeled with
the best associated fusion architecture achieved at the preceding step. To create the final
dataset of SS, the labeled and reduced SS from each dataset are stacked row-wise.

3.3. Predicting the Optimal Fusion Architecture

For a given data collection, this step attempts to predict the optimal fusion architecture.
In order to do so, train a classifier (e.g., a Random Forest) with the SS dataset generated in
the preceding step using k-fold cross-validation to identify the optimal fusion architecture
for the target dataset. We explain the specifics of how we perform training and prediction
in the following section.

4. Datasets Assembly and Experimental Set-Up

This section presents the experimental context, describing the datasets used, the
features extracted, and the procedure followed to test our proposal. This procedure consists
of two steps, that is, to select the best setup of fusion architectures, and to predict the
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best configuration of fusion architectures. In the first step, we select the configuration of
the best fusion architecture after conducting a comparative analysis of the different data
integration architectures. The second step consists of training a classifier that estimates
the best fusion method, of which there are eight possible options for a set of data not
used in training by cross-validation of k-folds. For instance, the dataset can be one of the
datasets we have considered: simple human activity (SHA) [32], gases, or grammatical
facial expressions (GFEs).

4.1. Datasets Configuration

To test the proposed method, we make use of several SHA, gas, and GFE datasets,
and organize them into a new, larger set of 116 datasets, as follows.

4.1.1. Simple Human Activity Dataset

We generate 40 SHA datasets from six different repositories [39–44], which are well
known in the literature [11]. All of them use different sensors located around the body,
being the most common, accelerometers and gyroscopes. The procedure to assemble the
40 SHA datasets is simple and consists of pairing two sensors’ data (accelerometer and
gyroscope) from each dataset [12].

1. We used the Multimodal Human Action Dataset (MHAD) from the University of
Texas [39] to construct a set of data pairs. The original data were recorded using a
Microsoft Kinect sensor and movement sensors, as 3-axis accelerometers (Acc) and
gyroscopes (Gyr). It includes activities from 8 subjects and 27 sportive actions, each
repeated four times, like swipe, clap, through, boxing, etc.

2. From the Opportunity Activity Recognition set [40], we generated ten datasets using
the paired combination of sensors proposed in Brena et al. [12] (see Table 1). The origi-
nal data contain 2477 instances of daily activity acquired through multimodal sensors
(mainly Acc and Gyr), placed on the body of four subjects, while they performed four
different physical activities including standing, walking, sitting, and lying down.

Table 1. Sensor pairs used to derive the Opportunity datasets. Ba = Back, Rl = Right lower arm, Ru =
Right upper arm, Lu = Left upper arm, and Ll=Left lower arm.

Sensor Pairs Description

1 Acc and Gyr of the Rl
2 Ba Acc and Ll Gyr
3 Ba Acc and Lu Gyr
4 Ba Accr and Rl Gyr
5 Ba Acc and Ru Gyr
6 Ll Acc and Ba Gyr
7 Acc and Gyr of the Ll
8 Acce and Gyr of the Ru
9 Ru Acc and Ll Gyr

10 Ru Acc and Lu Gyr

3. From the Physical Activity Monitoring for Aging People (PAMAP2) database [41], we
generated seven sets of data from sensor pairs in the same way as Brena et al. [12]
did it for this set (see Table 2). The original dataset consists of activity from inertial
sensors (mainly Acc and Gyr), from nine subjects performing 18 actions, as lie, sit,
stand, walk, run, etc.
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Table 2. Sensor used to extract the PAMAP2 datasets. Ha = Dominant arm , Ch = Chest, and An =
Dominant side’s ankle.

Sensor Pairs Description

1 Acc and Gyr of the Ha
2 Acc and Gyr of the An
3 An Acc and Ha Gyr
4 Acc and Gyr of the Ch
5 Ch Acc and Ha Gyr
6 Ha Acc and An Gyr
7 Ha Acc and Ch Gyr

4. From the Mobile Health dataset (MHealth) set [42], we generated four sets of data
pairs considering the sensor configuration that Brena et al. [12] used for this set
(see Table 3). The original dataset consists of activity from 10 subjects performing
12 actions, as lie, walk, climb stairs, waist end, etc.

Table 3. Sensor used to derive the Mhealth datasets. Ch = Chest, Ra = Right lower arm (Ra), and
La = Left ankle.

Sensor Pairs Description

1 Acc and Gyr of the Ra
2 Acc and Gyr of the La
3 La Acc and Ra Gyr
4 Ra Acc and La Gyr

5. From the Daily and Sports Activities (DSA) set [43], we generated 17 sets of data
pairs using the same sensor combination used in previous work [12] for this set (see
Table 4). The original data consist of sports activities from eight subjects performing
19 actions, for 5 minutes each, as sit, lie, climb stairs, stand, walk, etc.

Table 4. Sensor used to extract the DSA data sets. To = Torso, Ra = Right arm, La = Left arm,
Rl = Right leg, and Ll = Left leg.

Sensor Pairs Description

1 La Acc and Ll Gyr
2 La Accr and Rl Gyr
3 Ll Acc and La Gyr
4 Ll Acc and Ra Gyr
5 Ll Acc and Rl Gyr
6 Ra Acc and Rl Gyr
7 Rl Acc and La Gyr
8 Rl Acce and Ll Gyr
9 Rl Acc and Ra Gyr

10 Rl Acc and To Gyr
11 Acc and Gyr of the Ra
12 Acc and Gyr of the La
13 Acc and Gyr of the Ll
14 Acc and Gyr of the Rl
15 Acc and Gyr of the To
16 To Acc and Ll Gyre
17 To Acc and Ra Gyr

6. From the Human Activities and Postural Transitions (HAPT) set [44], we generated
one set of data pairs. The original data consist on daily activity from 30 subjects
performing 12 activities, wearing a smart cell phone on the waist, as walk, climb
upstairs, climb downstairs, stand to sit, lie, etc.



Sensors 2021, 21, 7007 12 of 17

4.1.2. Gas Datasets

The Gas Sensor Array Drift (GSAD) database [13], is commonly utilized for gas identi-
fication. The information corresponds to data acquired by 16 sensors during 36 months and
indicates the concentration of six different types of gases (such as acetone, ethane, ethylene,
etc.). From the data of month 36, we generate 36 sets of data pairs, matching the array of 16
sensors, according to the procedure proposed in Brena et al. [12].

4.1.3. Grammatical Facial Expressions Dataset

From the Grammatical Facial Expressions (GFE) dataset [6], we generate 40 sets of
data. The original data consist of 18 videos gathered using a Microsoft Kinect device, which
recorded facial expressions from nine emotions, tagged into two classes each as positive (P)
and negative (N). On each frame, 100 face landmarks are located as x, y, and z, for width,
height, and depth, respectively. These cover each eye, iris, and eyebrow, nose, nose tip,
mouth, face contour, etc. From these points, we extract the same points that Brena et al. [12]
did to construct 40 sets. Due to differences in the number of observations in each class, we
balance the sets by subsampling the majority class by randomly eliminating observations
through the process of resampling the majority class without replacement and matching
the minority class [45,46].

4.2. Feature Extraction

For each of the 40 SHA data pairs 16 statistical characteristics are extracted. The
process consists of dividing each pair into three-second segments, without overlapping,
and calculating several values including the mean, standard deviation, the maximum,
correlation, the magnitude’s average and its standard deviation, the area under the curve
and the differences in magnitude between neighboring segments.

For each of the 36 GSAD data pairs, 16 features are extracted. These correspond to
steady-state and transient characteristics, which evaluate the ascending and descending
response of the sensor [47,48].

For each of the 40 GFE data pairs, three types of features are identified from the
landmarks: distance, angle, and depth. From each frame, 21 characteristics are obtained:
six distances and 12 depths, corresponding to 12 reference points, and three angles corre-
sponding to nine landmarks. These 21 characteristics are then concatenated. Depending on
the type of emotion, a different number of consecutive frames can be concatenated, which
varies from two for Affirmative cases, Emphasis or Yes/No questions. Three are used for
Conditional, four for Topic, five for Doubt, and six for Relative and Wh-questions.

4.3. Selecting the Best Set-Up of Fusion Architectures

The procedure to identify the best fusion architecture (see Section 3.1) for each dataset
described above is as follows: First, each fusion architecture is tested repeatedly (24 times,
following Demvsar [49]) with each dataset, recording the accuracy. Second, a Friedman
test [36] is used to look for significant differences (95% confidence level) between pairs
of configurations, considering the accuracy. Third, the Holm post hoc test [37] is used to
test the difference (95% confidence level) between the aggregation architecture (taken as a
reference) and the other architectures, based on the results of the Friedman test. Finally,
with the results of the previous step, the fusion method with the best performance was
selected for each of the 116 datasets studied here. We report the “best” fusion method for a
particular row of the dataset as follows: in case no other method gets a better accuracy than
aggregation, then aggregation is reported as the best, even if there is one or even several
methods with better accuracy, but without a statistically significant difference. If one or
several methods get better accuracy results than aggregation with a statistically significant
difference, then, the one with the highest accuracy is reported as the best.
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4.4. Predicting the Best Configuration of Fusion Architectures

The procedure to find the most suitable fusion architecture for a given dataset that
belongs to any of the studied domains (SHA, GSAD, and GFE) consists of three stages.
(a) A meta-dataset of SS is constructed for each of the three domains considered here.
(b) The three meta-datasets are joint and their classes balanced. Furthermore, finally,
(c) train a RFC-based classifier to identify the best fusion architecture. These stages are
outlined below.

(a) To build the SS meta-dataset, first extract the SS (see Section 3.2) for each of the
features (see Section 4.2) from the datasets for the three domains discussed here (see
Section 4.1). The next step is to build a meta-dataset per domain, whose rows are the
concatenated SSs of the features of the datasets of the corresponding domain. Then,
because the number of columns (for the considered features) are different in each of the
three meta-datasets, we reduced them using the SFFS algorithm (see Section 2.2) and the T
transform (see Equation (8)) to be the same size. The SFFS algorithm was configured to
reduce the features of the meta-datasets in a range between 3 and 20, using RFC as the
classifier and the accuracy metric as the evaluation criterion, to find the best combination
of features (sets between 3 and 20). The values of this metric were obtained through a
three-fold cross-validation strategy with previously shuffled samples.

Therefore, from SFFS, we obtained a subset of nine features for the SHA meta-dataset
( fSHA), a subset of three characteristics for the Gas meta-dataset ( fGas), and a subset of three
features for the GFE meta-datasets ( fGFE). We chose these subsets because they achieved
an accuracy of at least 90% when RFC was used with them: 91% accuracy with fSHA, 92.5%
accuracy with fGas, and 96.9% accuracy with fGFE.

With the objective that the number of features is the same in the three meta-datasets,
we applied the transformation T (defined in Equation (8)) to the features obtained above.
We can see the result of this application in Equation (9), where T : Rm → R15 and m = 9 or
m = 3.

T(F) =

{
( fSHA ,0,0,0,0,0,0) if F= fSHA , where fSHA∈R9

(0,0,0,0,0,0,0,0,0, fGas ,0,0,0) if F= fGas , where fGas∈R3

(0,0,0,0,0,0,0,0,0,0,0,0, fGFE) if F= fGFE , where fGFE∈R3
(9)

The labels for each row of the three meta-datasets correspond to the best fusion
architecture (identified in Section 4.3): MVSWSF, MVSWoSF, VotWSF, ABWRFC, or Agg.
In the case of Agg, it is selected as the best when the difference with the others is not
statistically significant.

(b) The three meta-datasets are joined, by row, to create a larger set with SS and labels
that correspond to the best fusion architecture. We have made this large set of SS available
at https://data.mendeley.com/datasets/vpjt5v26tc/1 (accessed on 3 October 2021). This
dataset is larger and needs to be reviewed to ensure that there is a balance between classes.
In this case, we use the up-sampling strategy, in which the samples from minority classes
are increased by resampling with replacement to equalize the majority class [45,46]. The
final characteristics of the balanced data corresponding to the SS are shown in Table 5.

(c) Both the RFC-based classifier and the large set of SS, created in the previous
stage (b) (from now on, the meta-dataset of SS), are used to find the most suitable fusion
architecture for a given dataset that fits any of the domains studied here. In this case, a
tree folds cross-validation is used. The performance results of the classification and the
comparison with the approach proposed in Brena et al. [12] are presented in Table 6. We
use the precision, recall, f1-score, and accuracy metrics to measure the performance of
our proposal and compare it to other works because these metrics have been commonly
used for the same purposes [11,12]. Furthermore, we compare our approach only with
Brena et al. [12]’s proposal since, as far as we know, they are the only ones tackling the same
problem as us: finding the best fusion method for a given set of sensors for a particular set
of domains. Although Aguileta et al. [11] addressed the same topic, they only work on a
specific domain.

https://data.mendeley.com/datasets/vpjt5v26tc/1
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5. Results and Discussion

After balancing the number of classes in each of the sets, Table 5 displays the charac-
teristics of the SS dataset. The dimensions are 235 rows that correspond to the 47 instances
(after upsampling) belonging to each of the 5 fusion architectures. The 16 columns cor-
respond to the 15 reduced features (see Equation (9)) and the label. We emphasize the
balance of the classes, which will favor a fair measurement in metrics such as accuracy.

Table 5. Final SS dataset.

Dataset
Number of Division of Classes

(Rows, Columns) Agg MVSWFS VotWSF MVSWoFS ABWRFC

SS (235, 16) 47 47 47 47 47

Table 6 shows the details of identifying the most suitable setting of the considered
fusion architectures.

Table 6. Fusion strategies identification (RFC-based performance results).

Label Precision Recall f1-Score SupportOurs Brena [12] Ours Brena [12] Ours Brena [12]

ABWRFC 0.98 1.00 1.00 1.00 0.99 1.00 47
Agg 0.85 0.87 0.85 0.87 0.85 0.87 47

MVSWSF 0.91 0.88 0.91 0.81 0.91 0.84 47
MVSWoSF 0.90 0.90 0.96 0.91 0.93 0.91 47
VotWSF 1.00 0.92 0.91 0.98 0.96 0.95 47

avg/total 0.93 0.91 0.93 0.91 0.93 0.91 235

accuracy 0.93 0.91 235

In Table 6, we can see that the three metrics (precision, recall, and f1-score) reached
values between 90% and 100% with MVSWSF, VotWSF, and MVSWoSF, whereas these
metrics reached a value of 85% for Agg. This table also shows the support which is the
number of examples per class. These observations give evidence that the RFC classifier can
predict MVSWoSF, VotWSF, and MVSWSF well, and reasonably well Agg when trained
with the SS dataset created with SFFS.

When contrasting the approach proposed by Brena et al. [12] with our work, from
the perspective of the average value presented by the metrics in Table 6, we can see that
the performance achieved using the RFC classifier in combination with the SFFS is 93%
(on average for all metrics), which is higher than the 91% (on average for all metrics)
performance achieved by the combined RFC classifier and the PCA. This result suggests
that the SS set reduced by the SFFS algorithm contains more informative, discriminatory,
and independent characteristics (which the RFC could take advantage of) than the SS set
reduced by the PCA method.

Even though the SS dataset built with SFFS helped RFC produce better performance,
it took more steps to create it (calculate a subset of more relevant features and change
the size of this subset, see step 1 of Section 4.4) than the steps necessary to create the SS
dataset using PCA (extract the PCA components [14] and then combine then by row [12]).
Therefore, a user who uses our method (with the SS dataset built with PCA) would obtain
a quite good accuracy (91%) in the task of recognizing the best fusion architecture for a
given dataset, in a more direct way.

On the other hand, because PCA transforms the data assuming that they maintain
a linear relationship, and it is not always the case, the most general way to create the
SS dataset is to use the SFFS algorithm, since this algorithm takes a subset of features
(without transforming them, see step 1 of Section 4.4) that helps a classifier achieve the best
performance (see Table 6).
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From the results obtained in Table 6, we see that it is possible to estimate the most
appropriate fusion architecture, based on the average value of the performance metrics for
each dataset. Likewise, the transformation of the data described in Equations (8) and (9)
allows organizing the individual sets in such a way that they all contain the same number
of characteristics. These results suggest that the proposed methodology may be useful
in data-driven supervised learning applications whose operating environment (sensors)
is constantly changing. For example, applications for the domains here presented (SHA,
GSAD, and GFE). With our approach, these applications could react to changes in sensor
data and constantly change the best way to fuse that data, based on this changing data, to
maintain the best possible performance on its task (prediction or classification).

6. Conclusions

In this article, we describe, test and assess the use of the SFFS algorithm and a struc-
tural transformation (the “T transformation”) in the construction of a statistical signature
dataset for several domains (demonstrated here with three different ones), resulting in an
accuracy improvement in the task of predicting the best performing fusion architecture for
a given dataset. An important consideration when using our proposal arise while building
the SS meta-dataset, with each domain added, the number of columns (features) increases,
causing the T transformation to be redefined and applied in each domain each time. This
does not happen when using PCA, since in this method the number of columns does not
change, even in cases where the number of domains does change. Finally, our proposal
can benefit applications based on data-driven supervised learning algorithms that require
maintaining the best possible performance in the face of changes in their environments.
Our proposal can help these applications to identify the best fusion method according to
the changes in the data and thus increase the possibility of maintaining or even improving,
the performance in the tasks of these applications to classify or to predict.
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