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Abstract: In this paper we revisited a database with measurements of the dielectric properties of
rat muscles. Measurements were performed both in vivo and ex vivo; the latter were performed in
tissues with varying levels of hydration. Dielectric property measurements were performed with an
open-ended coaxial probe between the frequencies of 500 MHz and 50 GHz at a room temperature of
25 ◦C. In vivo dielectric properties are more valuable for creating realistic electromagnetic models of
biological tissue, but these are more difficult to measure and scarcer in the literature. In this paper, we
used machine learning models to predict the in vivo dielectric properties of rat muscle from ex vivo
dielectric property measurements for varying levels of hydration. We observed promising results
that suggest that our model can make a fair estimation of in vivo properties from ex vivo properties.

Keywords: ex vivo and in vivo dielectric properties; tissue hydration; machine learning modelling

1. Introduction

A significant body of fundamental research has been conducted by researchers to
measure the dielectric properties of biological tissue (e.g., [1–3]). Such studies are of extreme
importance to the correct modelling of the electromagnetic behaviour of biological systems,
which can be used in a number of applications. Traditionally, the dielectric properties of
biological tissues have been studied to address requirements defined by dosimetry studies
and often this determined the methodology used. Recently, there has been a great interest in
accurate knowledge of the dielectric properties by the microwave medical community [4–6],
as these facilitate the correct design and development of medical electromagnetic imaging
devices [7,8].

Many historical studies have reported dielectric data obtained using different protocols
for measuring the dielectric properties of biological tissues. Many studies reported data
measured under specified different conditions—such as temperature, frequency or time
from excision—(or have failed to report the conditions of experiments) and have also
reported different techniques for measuring dielectric properties such as coaxial probe,
transmission line, free space, resonant cavity, parallel plate and inductance measurement
method [9].

An international networking project, COST Action (MyWAVE, CA17115), has begun
with the objective of reviewing current protocols for measuring biological dielectric and
thermal properties and converging toward a standard protocol that will allow for data

Sensors 2021, 21, 6935. https://doi.org/10.3390/s21206935 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1571-8037
https://orcid.org/0000-0002-8138-3052
https://orcid.org/0000-0002-0025-863X
https://doi.org/10.3390/s21206935
https://doi.org/10.3390/s21206935
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21206935
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21206935?type=check_update&version=2


Sensors 2021, 21, 6935 2 of 13

collected across sites to be comparable, eventually merging into a single database. One of
the groups involved in this international project has proposed the use of the “Minimum
Information Model for Dielectric Measurements of Biological Tissues (MINDER)”, which
provides “a framework for recording and storing dielectric data and metadata for measure-
ments conducted on biological tissues”. By ensuring that common metadata is collected
across sites, then it is ensured that “the generation of data is repeatable, interoperable, and
re-usable” [10,11].

One recurrent discussion within this research community is how to correlate ex vivo
with in vivo dielectric properties. Ex vivo properties are easier to measure, whereas in vivo
properties are preferred to create realistic electromagnetic models of biological tissue.
Additionally, several works in the literature dealt with measurements of tissue dielectric
properties in ex vivo conditions; nevertheless, it is important to investigate whether the
irreversible variations, occurring in biological tissues after their excision from the host,
affect the dielectric properties. Ex vivo measurements on specimens from surgical resections
are subject to confounding factors and depend on the frequency range under investigation.
At microwave frequencies, the dielectric response is often referred to as the γ-dispersion,
which is mainly due to the interaction with water content [12]. Therefore, the variability
of hydration in the sample under test significantly influences the resulting measured
dielectric properties. It has been shown that in vivo properties can be estimated by ex
vivo measurements given that the variation in hydration between the two samples does
not exceed 10% [13,14]. Many studies on dielectric properties emphasise the importance
of tissue hydration, but very few studies quantify these variations [13,15]. One of the
first studies that quantified water content goes back to 1992 by Campbell and Land [16],
reporting no sufficient data for comparison. Moreover, they used a resonant technique that
requires extensive sample preparation which can compromise the accuracy of the water
content evaluated in the sample under test.

Dielectric properties are easier to measure ex vivo, but the in vivo properties repre-
sent a more realistic scenario with more accurate measurements of the electromagnetic
properties of the biological tissue, as required for the design of microwave medical devices
and applications. Thus, it is key to understanding the correlation between the ex vivo
and in vivo properties in order to use the former to predict the latter. In this paper, we
show preliminary results that demonstrate which information from the recorded meta-
data can help predict and infer the in vivo dielectric properties from available ex vivo
dielectric properties.

2. Materials

This work investigated the ex vivo dielectric properties of biological tissue samples
(i.e., rat muscle) and to studied how the variation in tissue hydration may help predict
in vivo dielectric properties.

Spectroscopy measurements were conducted using an Agilent Slim Form 85,070 probe
connected to a R&S ZVA-50 Vector Network Analyzer (VNA) in a frequency range between
500 MHz and 50 GHz in a linear scale. The VNA measured the complex reflection coefficient,
S11, which was converted to complex permittivity, ε*, using the Agilent software 85070E
(Agilent, 2012).

Each tissue sample underwent a dehydration process using a loss-on drying method.
The dielectric properties of each tissue sample were measured in vivo in situ, when freshly
excised and after dehydration, and then correlated with the percentage loss of water
content. Various techniques were studied to determine the water content of the samples:
loss-on-drying (LOD) method, centrifugation and freezing, with LOD being the most
reliable method for biological tissues and, thus, used for the purpose of this study. In the
meantime, intermediate measurements were made, obtaining a set of dielectric data and
their corresponding water content. Levels of dehydration between 10% and 70% were
achieved. The dielectric measurement data of biological tissues in vivo and ex vivo used
in this study are reported in [13] which outline the experimental protocol adopted for the
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measurement collection. We would like to emphasise that the in vivo and ex vivo samples
from each animal were the same.

3. Data Processing and Discussion of Results

We modelled the ex vivo dielectric data in several machine learning models. The
database comprised a large number of observations (each measurement of complex permit-
tivity) which were characterised by a number of input features, for example, the frequencies
at which the measurements were recorded and the level of hydration for a tissue. We knew
the ground truth of the in vivo measurement of complex permittivity for each ex vivo
observation. We used a nested cross-validation methodology to train and test our model.
In the outer cross-validation loop, we took each rat as a test set and conducted an inner
cross-validation loop with the rest of the rats. In the inner loop, we performed a randomised
search of the model’s hyperparameters using a leave-one-out group (rat) cross-validation.
The best performing hyperparameters were then used to train a model in the whole inner
loop set, which was then evaluated on the test set in the outer loop. Finally, the score for
each model was calculated as an average score across the outer loop iterations. We present
the regression calculation of the in vivo complex permittivity of the validation set and
compare these with the ground truth measured results.

We completed the following five tasks:

Task 1—load the measurement data set in Python;
Task 2—explore and visualise the data;
Task 3—structure the data for regression model training and evaluation;
Task 4—choose a set of machine learning regression models to evaluate;
Task 5—train and evaluate the models with the data in a nested cross validation loop
tuning their hyperparameters.

The data set comprised measurements of the relative permittivity εr of rat muscle
tissue given by:

εr =
ε

ε0
, (1)

εr = ε′r − iε′′r , (2)

where ε* is the actual permittivity of the tissue, and ε0 is the permittivity of vacuum. ε′r
and ε

′′
r are the real and imaginary parts of the relative permittivity, respectively. Relative

permittivity was measured in the range of 101 frequency data points from 500 MHz to
50 GHz, with a step of 495 MHz (101 frequency measurements). Both in vivo and ex vivo
properties were measured.

For ex vivo properties, permittivity was tracked across several stages of dehydration
which were thermally induced and determined by the percentage of weight loss. Four
rats were used for multiple measurements, with the ex vivo dehydration levels varying
between the rats. For each rat, two thigh muscles were measured in a varying number of
randomly chosen locations to obtain a good estimate of the average permittivity of the
tissue. In total, 3535 in vivo and 33,229 ex vivo data points at different frequencies, for a
total of eight muscle samples, at every dehydration state (in ex vivo), were available in the
data set. In the data set we used for this analysis, we discarded some of the data due to
the noted calibration problems with the measurement device. The final spread of the data
used across the different rats is given in Table 1. The total number of measured data points
used was 25,149, taken from 249 measurements (each at 101 frequencies).
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Table 1. Summary of the number of data points for each rat as measured in vivo, ex vivo (freshly excised) and at different
dehydration levels.

Rat In Vivo Ex Vivo without Dehydration Ex Vivo with Dehydration Ex Vivo Dehydration Levels Total

rat 3 808 808 4141 5 5757
rat 4 707 808 5959 10 7474
rat 5 808 808 3232 6 4848
rat 6 707 808 5555 9 7070
Total 3030 3232 18,887 30 25,149

3.1. Exploratory Data Analysis
3.1.1. Data Loading, Cleaning and Restructuring

In the first step of our exploration, we loaded the measured data points, originally
available across a number of Excel spreadsheets into Pandas (Python Data Analysis Library
https://pandas.pydata.org/, accessed on 23 September 2021) dataframes. To do so, we
first re-organised the column labels in the spreadsheets. We then loaded the data into
Python and eliminated the measurements with known calibration issues. Finally, we
restructured all the data into a single master dataframe containing one data point per row,
i.e., 25,149 rows.

3.1.2. Number of Measurements and Dehydration Levels

To visualise the spread of the dehydration levels and number of measurements per
rat/level, we plotted the scatter plot shown in Figure 1. The dehydration level shown below
0% encodes in vivo measurements. The colour codes for the four rats are red for rat 3, blue
for rat 4, green for rat 5 and purple for rat 6. In vivo muscle measurements are represented
in coloured squares (there is no muscle designator for the in vivo measurements), whereas
ex vivo measurements of the measured muscles 1 and 2 are represented in circles and
triangles, respectively. Scatter points were plotted with an added offset to avoid their
overlap. We can observe that the number of measurements went from four measurements
for each rat–muscle combination of ex vivo without dehydration, up to 11 measurements
for rat 3 muscle 1. The average number of measurements per rat–muscle combination
was 5.8. We can further observe that the two muscles of rat 3 were measured at three
dehydration levels, as were those for rat 5; the muscles for rat 4 were measured at five
dehydration levels, and the muscles for rat 6 were measured at eight dehydration levels.
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Figure 1. Spread of dehydration levels and number of measurements per level per rat. The in vivo
measurements are shown below the ex vivo measurements. The colour codes for the four rats are
red, blue, green and purple for rats labelled 3, 4, 5 and 6, respectively. In vivo muscle measurements
are represented in coloured squares (there is no muscle designator for the in vivo measurements),
whereas ex vivo measurements of measured muscles 1 and 2 are represented in circles and triangles,
respectively. Scatter points were plotted with an added offset to avoid their overlap.
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3.1.3. Visualising the Measurements Per Frequencies

To visualise the measurements, we plotted the real and imaginary part of the εr (ε′r and
ε
′′
r , respectively) for a set frequency as shown in Figure 2. We can observe that the data did

capture the general dynamics of permittivity change for increasing dehydration levels. We
can also observe that the variability in the measurements also increased with the increase
in dehydration. Moreover, we can note that the inter-rat spread of the measurements was
rather consistent, although there were some inconsistencies, e.g., measurements at the
~30% dehydration level were only recorded for rats 4 and 6. Finally, we can note that there
were no measurements made between the levels of 40% and 50% dehydration for any of
the rats. One can also infer the technical challenges behind ensuring specific dehydration
levels at higher percentages, as it was not possible to measure at the same dehydration
level: ~54% was the highest dehydration possible in rat 3, ~59% and 64% in rat 6, ~62% in
rat 4 and ~64% and ~68% in rat 5. In addition, the measurements at higher dehydration
levels varied more compared to measurements at lower dehydration levels.
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Figure 2. Measurements of the real (top) and imaginary (bottom) part of the permittivity (ε′ and ε”, respectively) for a
frequency of 500 MHz. Measurements were performed on 4 rats (labelled as 3, 4, 5 and 6, colours red, blue, green and purple,
respectively); in vivo measurements were made on a single muscle (square), and ex vivo measurements were performed on
two muscles (1 and 2, circle and triangle shapes, respectively).
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3.1.4. Visualising the Measurements for all Frequencies in 3D

To plot ε′r and ε
′′
r across all frequencies using a 3D plot, we calculated the mean and

standard deviation of both real and imaginary parts, respectively, for each dehydration
level, grouping the measurements from different rats and muscles. The resulting averages
of ε′ and ε” are shown in the two surface plots in Figure 3. We can observe that ε’ (the real
part) had a more monotonous change with respect to both the frequency and dehydration
levels. It decreased steadily for higher frequency and dehydration levels.

Sensors 2021, 21, 6935 6 of 13 
 

 

3.1.4. Visualising the Measurements for all Frequencies in 3D 

To plot 𝜀𝑟
′  and 𝜀𝑟

′′ across all frequencies using a 3D plot, we calculated the mean and 

standard deviation of both real and imaginary parts, respectively, for each dehydration 

level, grouping the measurements from different rats and muscles. The resulting averages 

of ε′ and ε″ are shown in the two surface plots in Figure 3. We can observe that ε’ (the real 

part) had a more monotonous change with respect to both the frequency and dehydration 

levels. It decreased steadily for higher frequency and dehydration levels. 

 

 

Figure 3. Average real (top) and imaginary (bottom) parts of the relative permittivity (𝜀𝑟
′  and 𝜀𝑟

′′, respectively) across all 

frequencies in 3D. Note that the colour bar limits were adjusted for better contrast; the actual ranges are 7–65 for Re(𝜀𝑟) 

and 3–68 for Im(𝜀𝑟). 

Figure 3. Average real (top) and imaginary (bottom) parts of the relative permittivity (ε′r and ε′′r , respectively) across all
frequencies in 3D. Note that the colour bar limits were adjusted for better contrast; the actual ranges are 7–65 for Re(εr) and
3–68 for Im(εr).



Sensors 2021, 21, 6935 7 of 13

The changes in the imaginary part were more complex. Its value started high and
dropped to a “valley” for low frequencies (approximately 3 GHz), which was followed by
a “plateau” in the midrange of the measured frequencies (approximately 24 GHz) and a
final drop for the highest measured frequencies (approximately 40 GHz). This irregularity
decreased with the rise in the dehydration level, and the curve flattened for the highest
dehydration levels (above 50%). We can also note that for the lowest frequencies, the
imaginary part of the permittivity increased with the dehydration level.

3.1.5. Visualising the Measurements for all Frequencies in 2D

We also plotted the average ε′r and ε
′′
r for all frequencies in a 2D plot, inspired by how

spectrograms are represented. The results are shown in Figure 4. To obtain this plot, we
first binned all the dehydration levels to bins that were multiples of 10. Since there were no
data for the 40% dehydration bin, we then used linear interpolation to obtain the values for
it. These plots show the trends we observed in the 3D plots of the data more clearly.
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permittivity (ε′r and ε′′r , respectively) across all frequencies. Note that the colour bar limits were
adjusted for better contrast, the actual ranges are 7–65 for Re(εr) and 3–68 for Im(εr).



Sensors 2021, 21, 6935 8 of 13

3.2. Regression Problem
3.2.1. Restructuring with Average Nonuniform Samples

To formulate the task of estimating the in vivo permittivity from the measured ex
vivo data, we chose to structure the data so that we grouped it by rat and averaged the
measurements per dehydration level. Each average measurement is a sample with the
target being the in vivo data for the rat measured. Since the targets are estimates of a
continuous variable, it can be posed as a machine learning regression problem, in contrast
to a classification problem in which the model is trained to estimate a target’s class. In our
data re-organisation, we ignored the muscle identifier for the ex vivo measurements, as
there was none for the in vivo ones.

Thus, we constructed a six-dimensional feature vector that comprised frequency,
dehydration level, and the mean and standard deviation of both ε′ and ε”, extracted from
the ex vivo data. The target was, in turn, two-dimensional comprising only the means
of the ε′ and ε” of the in vivo data. This restructuring of the data amounted to a total of
3634 observations.

Even though the data showed that the dynamics were influenced by the dehydration
level, the measurement series made for different dehydration levels per rat cannot be
directly used in most regression models because they are nonuniformly sampled. Namely,
the permittivity was not measured at regular dehydration points across the different
rats. Thus, we depended on the regression models to implicitly learn the influence of
dehydration of the target values based on the set of training samples provided.

3.2.2. Data Imputation

One way to deal with nonuniformly sampled data is through the use of data imputa-
tion, i.e., resampling the data at regular sample points using interpolated values from the
original sampling of the data. To assess whether this approach was applicable to our data
set, we took the mean data for rat 3 at a single frequency and used various interpolation
and extrapolation methods to impute points over the whole range of dehydration levels.
In particular, we used a spline interpolator with the following orders: 0 (zero), 1 (linear)
and 2 (quadratic) as well as an interpolator imputing the value of the nearest known
point (nearest).

The results of this experiment are shown in Figure 5. The plots suggest that the
usefulness of interpolation is limited by the access to only a handful of measurements to
calculate the means. Unfortunately, due to the experimental nature of this study, we cannot
explore imputing further. We do, however, publish these results so that other authors
designing a measurement campaign can address this issue.

3.3. Chosen Regression Models

We based our analysis on the regression models implemented in the powerful ma-
chine learning package scikit-learn (Machine Learning in Python https://scikit-learn.org/,
13 October 2021). Indeed, scikit-learn provides a large variety of models from which to
choose. From them, we chose to use models based on four different categories: linear
regression, kernels, trees and tree ensembles, and neural networks. In total 11 models were
selected, trained and evaluated.

3.3.1. Linear Regression-Based Models

In our evaluation we incorporated:

• Linear regression—the ordinary least squares method evaluated for different degrees
of the polynomial feature generator;

• Ridge regression—linear least squares with L2 regularisation of the weight parameters;
• Lasso regression—linear least squares with L1 regularisation of the weight parameters;
• Elastic net regression—linear least squares with combined L1 and L2 regularisation of

the weight parameters.

https://scikit-learn.org/
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3.3.2. Kernel-Based Models

From the available kernel-based models we evaluated:

• Epsilon-support vector regression (SVR)—an extension of the support vector machines
used for classification, the SVR supports various kernels from which we used the
radial basis function (RBF) kernel;

• Kernel ridge regression (KRR)—combines ridge regression with the kernel trick to
obtain a model identical in form to SVR but trained with a different loss function.
Similarly, we again used the RBF kernel.

3.3.3. Tree and Ensemble of Tree-Based Models

From the tree and ensemble of trees-based regressors we selected the:

• Decision tree regressor (regtree)—similarly to the decision tree classifier but outputs
an estimate of the continuous target value from each leaf; splitting decisions are made
in each node based on the best split among all the features;

• Random forest regressor (randforest)—an ensemble method based on averaging the
output of a collection of decision tree regressors, each trained on a random subset
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of the data set; splitting is done with the best split among a random subset of all
the features;

• Extremely randomised trees regressor (extratree)—an ensemble method based on
averaging the output of a collection of decision tree regressors, each trained on a
random subset of the data set; splitting is based on the best randomly chosen threshold
for a random subset of features;

• Gradient boosted regression trees (gradboost)—an additive model made from a cas-
cade of weak tree regressors, each trained on the previous one’s output.

3.3.4. Neural Network-Based Models

From the neural network-based models, we used the multilayer perceptron (MLP)
regressor. Since scikit-learn allows for building models with multiple hidden layers; we
also trained and evaluated deep neural network (DNN)-based regressors.

3.4. Model Training and Evaluation
3.4.1. Feature Augmentation

To increase the number of features available to the linear regression-based classifiers,
we added polynomial feature combinations up to the 3rd degree. For example, a 2nd
order polynomial feature generator that receives as input a two-dimensional feature vector
(a, b), would output the six-dimensional feature vector (1, a, b, a2, ab, b2). This feature
augmentation allows linear models to learn a polynomial data manifold.

3.4.2. Data Normalisation

Since some regression models work better when the input features have similar scales,
we included a standard scaler in the cross-validation pipeline. The standard scaler removes
the mean and scales the features to unit variance as in:

x̂ =
x− µ

σ
, (3)

where µ is the mean value of feature x, and σ is its standard deviation.
An important caveat is that the data must be scaled using the mean and standard

deviation of the training set exclusively. Doing otherwise would leak information from the
validation or test sets into the model training.

3.4.3. Hyperparameter Tuning

Random hyperparameter tuning was carried out for each of the selected regression
models. For each hyperparameter, we defined a valid range of values and a random
sampling function to sample from this range. Most hyperparameters were sampled using
an exponential distribution, and some were sampled using a uniform distribution. Finally,
some hyperparameter settings were limited to a list of values.

3.4.4. Nested Cross-Validation Loop

Each of the models were trained and evaluated using a “leave one group out” nested
cross-validation loop in which the data were grouped according to the rat identifier. In
each iteration of the outer loop, one rat was selected to be the test rat. In the inner loop,
each of the three remaining rats were taken out to be the validation rat in each iteration.
Within each inner loop iteration, the model was trained with various hyperparameters and
evaluated on the validation rat, and the hyperparameters that resulted in the best validation
score were used to retrain the model for the three rats, i.e., including the validation rat. The
newly trained model was then evaluated on the test rat. After the four rats were selected
as test rats and the outer loop was completed, the average test score was calculated for the
four rats.
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The best results were selected based on the R2 coefficient of determination regression
score measure defined as:

R2 = 1− ∑N−1
i=0 (yi − ŷi)

2

∑N−1
i=0 (yi − µ)2 , (4)

where N is the number of samples, y is the target value, µ is its average, and y is the target
estimate output by the model. The best R2 score is a value close to 1, but the score can be
negative. The advantage over using the mean square error (MSE), which is partly in the
nominator in the above equation:

MSE =
1
N
−∑N−1

i=0 (yi − ŷi)
2, (5)

Is that a model that always predicts the mean target value, disregarding the input
features, would have a R2 score of 0.

3.4.5. Regression Models Results

The results obtained using the selected regression models on predicting the real and
imaginary part of the in vivo permittivity, ε′ and ε”, based on its ex vivo measurements
at various levels of dehydration, are shown in Table 2. The linear regression model was
included to have a non-machine learning algorithm to predict in vivo dielectric properties.
As expected, due to the pronounced non-linearity of the data, this algorithm performed
the worst compared to the other machine learning algorithms. We can observe that most
models do well on the set task, with the four best performing models being: extremely
randomised trees, random forests, gradient boosted trees and regression trees, all scoring
below 1.2 average MSE. From the remaining models, ridge regression is the next in line in
terms of performance.

Table 2. Average metrics obtained with the various regression models: linear regression (linear), ridge regression (ridge),
lasso regression (lasso), elastic regression (elastic), support vector machines regressor (SVR), k-nearest neighbour regressor
(KNNR), regression tree (regtree), random forest (randforest), extra trees (extratree), gradboost (gradient boost regression)
and multilayer perceptron (MLP).

Model Number of Evaluated
Hyperparameters

MSE
Re(εr)

MSE
Im(εr)

MSE
Average

R2 Score
Re(εr)

R2 Score
Im(εr)

R2 Score
Average

linear 1000 3.03 3.52 3.28 0.982 0.667 0.825
ridge 1000 1.18 1.56 1.37 0.993 0.855 0.924
lasso 1000 1.33 1.59 1.46 0.992 0.855 0.924

elastic 1000 1.82 1.36 1.59 0.989 0.876 0.933
SVR 100 1.63 1.35 1.49 0.991 0.877 0.934
KRR 100 1.43 1.46 1.44 0.992 0.868 0.930

regtree 1000 1.25 0.99 1.12 0.993 0.913 0.953
randforest 100 1.11 0.98 1.05 0.994 0.913 0.954

extratree 100 0.99 0.94 0.96 0.994 0.918 0.956
gradboost 100 1.13 0.93 1.03 0.994 0.919 0.956

MLP 100 1.63 1.29 1.46 0.990 0.883 0.937

3.5. Most Important Features

To estimate the most important features for estimating the in vivo target values, we
took the best performing model—the extremely randomised trees—and repeated the nested
cross-validation loop for 1000 iterations, aggregating the feature importance for each of
the four models trained within one loop. Because of its stochastic nature, this process
resulted with some 4000 trained models and as much feature importance values for each
of the features. These are shown in the box plot in Figure 6. We can see that the two most
important features are the frequency of the measured value and the mean of ε′r.
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4. Conclusions

The presented results show that estimating the in vivo permittivity of muscle tissue
in rats, based on measurements of its ex vivo permittivity is feasible, and current state-
of-the-art regression models provide promising results. The models best suited for the
task are ensemble tree-based methods, especially the extremely randomised trees regressor,
which yielded the lowest MSE and highest R2 metrics. This study is an important first step
towards the development of tools that can predict in vivo dielectric properties from widely
available ex vivo dielectric properties.

In future work, we intend to include more metadata in our machine learning model to
better estimate the in vivo dielectric properties of biological tissues as well as extending
this study to other types of tissues other than rat muscle. Moreover, we will attempt to
use a state-of-the-art model that can deal with nonuniformly sampled data, which is the
recurrent neural network (RNN). In order to use this data with an RNN-based regressor,
the data will have to be restructured in a dehydration series format.
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