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Abstract: There are a dozen messaging protocols proposed for IoT systems. Choosing one for a new
design is complicated, and a non-optimal selection can result in slower development and higher
design costs. This paper aims to help select appropriate protocols, considering IoT applications’
specificity and communication requirements. We have identified the protocol features that are
significant for the design and operation of IoT systems. This paper gives a substantial comparison of
the protocols using the features and is based on a thorough analysis of the protocol specifications. The
results contain an assessment of the suitability of the protocols for the defined types of IoT devices and
the identified communication purposes. We conclude the comparison with some recommendations
of the protocol selection and usage.
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1. Introduction

IoT systems are designed to support very different applications and to work in various
environments. That explains the enormous numbers of available components, software
libraries, and tools [1,2] along with communication standards [3]. Moreover, the competi-
tion on the market and the observed rapid progress of hardware and software technologies
make designers struggle with abundance.

This article analyses messaging protocols available for IoT system designers. The
protocols simplify communication between application processes. They separate the
processes from transport and network protocols. Some provide specific functionalities
like Quality of Services (QoS), information tagging, or middlebox services useful for
information caching and routing. Most of the existing messaging protocols are available
as open-source programming libraries. Many of them are included in IoT platforms,
which are out-of-the-box solutions that encapsulate significant parts of an end-to-end IoT
system. The problem is that the protocols are numerous, and choosing the appropriate
one for a given solution is not a trivial task. We can mention MQTT, CoAP, STOMP,
XMPP, WAMP, AMQP, DDS, OPC UA, LwM2M, Weave, and HomeKit. Moreover, an
IoT system designer can select one of the existing communication programming libraries
with built-in non-standard messaging protocols, e.g., the YAMI4 (http://www.inspirel.
com/yami4/, accessed on 13 October 2021) or ZeroMQ (https://zeromq.org, accessed on
13 October 2021) middleware.

We can design an IoT system without messaging protocols, building application pro-
grams on top of a general-purpose transport protocol, e.g., UDP, TCP, or QUIC. Such an
approach is good if the system is not very complex and should work inside an enterprise
network. If some IoT devices should be accessible from web browsers, they should have
HTTP servers on-board, and HTTP could be the only needed application layer protocol.
According to the application needs, HTTP should be secured by TLS, and such settlement
is called HTTPS. The advantage of using HTTP is that most firewalls do not hinder com-
munication and it is easy to find experienced programmers. The advantage makes that the
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protocol is widely used instead of the mentioned transport protocols by new network ap-
plications. The WebSocket mechanism (RFC 6455), conceived to support better interactivity
between web browsers and web servers, is used as a transport protocol by many of today’s
applications. One WebSocket server can support many application protocols at the same
time. Most of the messaging protocols have defined profiles for running over WebSocket.
Both HTTP and WebSocket can and are used directly by IoT applications. However, most
IoT applications profit from messaging protocols, which provide additional functionality,
non-offered by the transport protocols, HTTP and WebSocket. We are going to compare
those additional functionalities.

An IoT system designer can use e-mail protocols (e.g., SMTP, IMAP, POP3) for message
exchange; he or she can even use social media as a transport layer platform (e.g., Twitter).
We decided to exclude them from the comparison. The principal aim of e-mail is to
serve a human at least at the recipient end of the communication. Moreover, today’s
e-mail services are overwhelmed by spam. We cannot consider them as a recommended
solution for communication between IoT devices and services. A solution based on a social
media can be considered a simple transport without specific functionalities expected in
IoT communication.

This work aims to provide a comprehensive and pragmatic comparison of messaging
protocols considered for new IoT projects to help designers choose. The following aspects
are analysed: protocol functionality, the complexity of documentation (which reflects
the cost of learning), and the universality of use. We do not analyse security aspects
such as authentication, confidentiality, and integrity, as they should be implemented in
the lower layers of the protocol stack. However, possible authorisation mechanisms are
included in the functional comparison. Even though many articles compare protocols for
IoT systems, most of them focus on performance analysis of selected implementations, and
the comparisons are often limited to a few selected protocols.

The main contributions of the paper are as follows:

• description of a rich set of messaging protocols, distinguishing their unique features,
• thorough and methodical comparison of the protocols,
• pragmatic evaluations and recommendations for IoT system designers.

The rest of this paper is organised as follows. Section 2 analyses the communication
requirements of modern IoT systems. Section 3 defines the comparison methodology used
in this work. Section 4 gives succinct descriptions of MQTT, MQTT-SN, CoAP, STOMP,
XMPP, WAMP, AMQP, DDS, OPC UA, LwM2M, and proprietary protocols for smart-
home devices. Section 5 provides the comparative analysis of the protocols presenting in
three subsections: comparison of the protocol functionalities, maturity and complexity,
and suitability for selected types of IoT devices with suitability for basic communication
purposes. Section 6 presents related works. The paper concludes in Section 7, where some
pragmatic recommendations are given.

This paper does not describe nor analyses the Common Industrial Protocol (CIP).
Either CIP is considered a solution for the Industrial Internet of Things (IIoT), it is not a
universal messaging protocol that can be an alternative for any mentioned above. CIP is a
solution for integration and inter-communication with different types of field networks,
i.e., Ethernet/IP/IP, ControlNet, DeviceNet, CompoNet, and Modbus.

2. Communication Requirements of IoT Systems

An IoT system can contain subnetworks of different kinds of devices. There are
constrained devices, i.e., with limited computation and memory resources due to price or
energy limitations. The communication protocols installed on such devices should have
a small memory footprint. Moreover, the protocols should minimise the communication
overhead to save energy.

Some devices can be stationary or moving. Some mobile devices do not transfer data
in motion, while others do. The device mobility causes that the IP address can change and
cannot serve as the device identifier. A consequence of mobility can be a temporal gap
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in communication. The mobility can be easily achieved using services of wide-area radio
networks, e.g., LTE, Sigfox, LoRa, which are paid per-use. Furthermore, some devices go to
sleeping mode due to energy saving or their expected functionalities, e.g., a need for data
sensing according to a given schedule. A proxy or broker, which could provide data when
the IoT devices are unavailable, is introduced in such a case.

We can compose a device-level IoT platform, i.e., a middleware to be installed on a
group of IoT devices that helps rapid development of a new system. A selected messaging
protocol or a set of protocols is a part of the device-level IoT platform. Such middleware
should be optimised for specific communication needs of a given IoT device type. We can
distinguish four types of such devices, i.e., the following:

1. Constrained devices.
2. Unconstrained devices connected to the internet via a pay-per-use plan or a flat-rate

plan with significant limits on the volume of transferred data.
3. Unconstrained devices being not always online.
4. Unconstrained, online devices anytime accessible by applications or services.

A cloud or edge server is unconstrained and always online. It can interact with sev-
eral IoT subnetworks or devices belonging to any of the above types. A communication
middleware installed on the server should respect the limitation imposed by the devices.
Moreover, the middleware should support the needs of the designed application. The mid-
dleware can contain several messaging protocols to enable communication with different
IoT subnetworks. It is also possible to install in the network middleboxes that are messages
brokers and operate several protocols to communicate with different IoT devices. We will
analyse the suitability of different messaging protocols for the above-mentioned types of
IoT devices.

An IoT system usually includes many processes and services that run on cloud, fog,
or edge servers; we will call them further internet actors. We will consider their communi-
cation with processes and services that run on IoT devices; we will call them further IoT
actors. The communication needs of the internet actors can vary depending on performed
functionalities. We can distinguish a few elementary types of communication purposes:

1. Device discovery and configuration—the IoT actor calls service from an internet
actor infrequently.

2. Data acquisition—the IoT actor sends data repeatedly.
3. Data querying—the IoT actor sends data only on request.
4. Notification and alarm analysing—the IoT actor sends priority data infrequently.
5. Command dispatching—the IoT actor receives commands.
6. Process control—messages are sent as responses to sensed data, or some feedback is

expected after control commands; the internet actor repeatedly calls service from an
IoT actor.

7. Opportunistic peer-to-peer data exchange—the IoT actors directly share some infor-
mation or services.

There can be other communication purposes, like software updates, system health
analysis, security analysis, but their communication schemas belong to the above set. We
will analyse the suitability of different messaging protocols for all of the above schemas.

The messaging protocols have diverse built-in mechanisms that simplify the design
of different communication patterns (paradigms). Distant processes can play some com-
munication roles depending on performed tasks. A process can act as a data producer,
consumer, message broker, RPC (remote procedure call) service, callee, or dealer. Data can
be delivered on request (the client-server approach) or just after production (the publish-
subscribe approach). If the communication channel is slow, then the latter approach is
more efficient. The publish-subscribe approach can apply a queue or a mailbox. The queue
serves to process incoming messages in the reception order. The mailbox serves to process
incoming messages in any order, e.g., depending on the sender or the message subject
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(topic). The data producer can be a server that sends data on request or a publisher that
sends data on subscription, and the data consumer can be a client or a subscriber.

There are two asymmetric communication patterns, master-slave and client-server. If
one node manages the message exchange, then we have master-slave communication. If
one node serves requests from many clients, then we have client-server communication.
Symmetric (peer-to-peer) communication is possible if the network nodes can play the
same and complementary roles—the node is server and client or publisher and subscriber
or RPC caller and callee simultaneously. There are two peer-to-peer patterns: 1-to-1 and
N-to-N. The second is possible if the communication protocol enables the delivery of a
once sent message or an RPC call to many nodes.

If a given protocol uses connection-oriented transport like TCP, the listening party
is called a server, and the connection initiation party is called a client. It is due to the
TCP convention, regardless of the role the application process performs. As a result,
the commonly used terminology of communication paradigms is a bit inconsistent. The
term client-server means the pattern with listening and connecting parties, and also can
suggest the architecture pattern with many client nodes that request some services from
the server node.

More complex communication patterns are applied to large systems with nodes that
can dynamically appear, be available or not. We can distinguish four architectures:

• With message broker—the broker interconnects many publishers and subscribers. It
can temporally store messages and control access rights. Implementation of a broker
can be centralised or distributed.

• With RPC dealer—the dealer interconnects many RPC callers and callees. It can control
access rights and manage the bounds between end-parties. Implementation of a dealer
can be centralised or distributed.

• With message router—the router selects the destination or finds a path to the desti-
nation if several routers belong to the system. The router can process annotations
attached to the forwarded message. That paradigm enables the high scalability of
the system.

• With message server—the server can do some message processing, e.g., it can aggre-
gate them. Moreover, the server can act as a broker or a message router.

A messaging protocol can support in a way one of the complex patterns. However, it
does not define the internals of the intermediary nodes. We will compare how the protocols
fit the communication paradigms. If a protocol does not match the needed pattern, the
programmer has some more coding to adapt the protocol to the application needs. For
example, a client can push produced data to a server, pull some data for consumption,
send an RPC call, or ask about a call to its procedure.

3. Comparison Methodology

An attempt to compare protocols that have been in use for years, that evolve, that
have been analysed in many ways is challenging. Any performance aspect (e.g., related
to energy consumption or time response) depends on more factors, not only the selected
messaging protocol. The way of its usage and the choice of lower-level protocols are
significant. Moreover, optimisation of its implementation and selected hardware/software
environment influence efficiency. Results of performance comparison for one application
scenario must not hold in a different scenario. Changing a library that implements a given
protocol may result in performance (in terms of latency, memory, and CPU consumption)
improvement or deterioration by one order of magnitude; see, for example, the Iglesias-
Urkia’s et al. analysis of CoAP implementations [4]. For all these reasons, we give up the
performance comparison.

We intend to help engineers select the protocol for new designs. Thus, we provide
analysis and comparison of supported communication paradigms, functionalities, maturity,
complexity, suitability for the four defined above types of IoT devices, and suitability for
the seven defined communication purposes. All these aspects are described in the next



Sensors 2021, 21, 6904 5 of 32

section, which introduces each analysed protocol. The comparison chapter presents values
of identified below protocol features, giving some tables and figures for better readability.
The comparison is based on a thorough study of the available specifications of the protocols
and their extensions.

The formation of any protocol has been led by an objective that reflected the intended
application class, assuming one or more communication paradigms. The features related to
such objectives are the roles defined for communicating nodes, the architecture, a built-in
discovery mechanism, real-time support, and additional features. The additional features
can characterise programming style, e.g., object-oriented or RESTful.

We split the protocol functionalities into messaging and transport features. The mes-
saging features are constraints for maximum payload size, possible data representations,
support for labelling, metadata and transaction processing. The transport features are
possible transport protocols, security properties, QoS, prioritisation, message addressing,
and filtering.

These supported communication paradigms and functionalities are more important
than the novelty of a protocol. The protocol maturity and stability are of value for a large
or industrial project. For that reason, we provide information about the first and the recent
dates of protocol issues and the publication dates of their newest extensions.

We try to assess the complexity of the protocols. The complexity affects the memory
footprint of an implementation; hence, it should be considered for systems with constrained
devices. Moreover, the complexity of a protocol impacts learning time, so project cost. We
assess the learning difficulty by comparing the volume of protocol specifications counted
in page numbers. The programming difficulty can be assessed by comparing the number of
PDU (Protocol Data Unit) types and protocol elements. PDU is a message (a data structure)
exchanged and processed by distant protocol instances. The protocol elements are different
fields in the fixed and variable headers and properties specific for every PDU type. The
number of PDU types reflects how many different operations an application can call. The
number of elements reflects how many parameters a programmer can set.

4. Characteristic of Selected Messaging Protocols

We present in this chapter a brief review of the selected protocols. We aim to show
their most important functionalities and features needed for their comparison. In the
following sections, we describe MQTT, MQTT-SN, CoAP, STOMP, XMPP, WAMP, AMQP,
DDS, OPC UA, LwM2M and proprietary protocols for smart-home devices.

4.1. MQTT

MQTT (Message Queuing Telemetry Transport) is an open standard maintained by
OASIS [5]. The MQTT paradigm is publish-subscribe with a broker. Publishers and
subscribers act as clients, while the broker acts as a server. The broker is an intermediary
node that relays messages accordingly to their topics. The topics are organised in a
hierarchical structure. The broker can delete a message sent to all subscribers of the given
topic; it can also delete a message if there is no subscriber. An IoT device and a network
service or process can embed a publisher, a subscriber, or both. The broker can be installed
on a cloud or edge server or on an IoT gate that separates a network of devices from the
internet. A server supporting the broker can be at the same time a publisher and subscriber
to another broker—what enables hierarchical and scalable deployments.

There are three QoS modes of data delivery. QoS0—at most once—it is a best-effort
delivery. QoS1—at least once—duplicates can occur. QoS2—exactly once—a reliable
delivery. The higher the QoS type, the more PDUs are exchanged. A subscription can be
durable or non-durable. The durable subscription instructs the broker to store messages
for a given client when disconnected, e.g., in a sleeping mode. Moreover, a publisher
may instruct the broker to retain messages even if there are no registered subscribers for
the topic. In such a case, a subsequent message will overwrite the previous one, and an
appearing subscriber will get the more recent value of the topic.
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The recent MQTT version 5.0 was published in 2019 (137 pages). MQTT has evolved
since 1999. Moreover, since 2017, some work has been led to define the TLS profile for
MQTT [6] (33 pages). The profile enables authorising a connection between a client and
the broker and protecting resources identified by topic names. An authorisation server
provides tokens to the clients. The token proves access right to the broker for publishing or
subscribing on a given topic.

Some solutions to secure MQTT were proposed in the past. For example, in 2014,
Neisse et al. [7] integrated their Model-based Security Toolkit with MQTT to support
security and privacy requirements. In 2015, Singh et al. [8] defined a security extension
for MQTT and MQTT-SN called Secure MQTT (SMQTT). The extension is based on the
lightweight Elliptic Curve Cryptography and allows broadcasting encrypted messages
to multiple nodes. However, the mentioned solutions were not included in the latest
MQTT version from 2019, which introduces, among others, an enhanced authentication
method. The method is commonly used to carry the SASL mechanism, but it is not
constrained to SASL, and others like Kerberos can be applied. The MQTT specification
strongly recommends using TLS for securing message exchange with the broker.

MQTT works on top of TCP or TLS, or WebSocket. The MQTT standard defines
14 PDU types. The PDU length can range from 2 B to 256 MiB, and its header length can
vary from 2 B to 5 B. The content of the published payload is application-specific. The
UTF-8 text string codes the topic, and the payload can be a byte or UTF-8 text string. The
MQTT standard defines several protocol fields in the fixed and variable headers and many
properties specific for every PDU type. The application programmer can set the values of
these protocol elements; only some of them are set by the protocol. Their total number is
99, which characterise the complexity of the protocol.

MQTT was designed to minimise the complexity of a client implementation; for
example, its C library size is in the range of 30 KiB and Java in the range of 64 KiB.
However, the broker implementation should be robust. Redundancy can be needed to
eliminate the risk of a single point of failure. When high scalability is needed, a distributed
broker implementation should be done in a way. Though, the redundancy and scalability
issues are out of the MQTT standard scope. MQTT is supported by many programming
libraries, frameworks, and tools associated with learning materials; see https://mqtt.org
(accessed on 13 October 2021).

Any IoT platform for unconstrained devices can use MQTT. The upper layer takes
responsibility for proper dealing with network availability and the possible cost of data
transfer. Some constrained devices can support TCP and non-compressed messages due
to the infrequent transfer of short data. However, in general, the MQTT standard is not a
good choice for constrained devices.

An IoT device that is only a publisher can be used for data acquisition and notifica-
tion/alarm analysing. An IoT device that is only a subscriber can be used for the execution
of dispatched commands. An IoT device that acts as both publisher and subscriber can
be used in device discovery and configuration processes, data querying, and remote con-
trolling processes. However, MQTT is not suitable for the case that serves peer-to-peer
communication between neighbouring devices.

MQTT is used in a large variety of IoT applications. There are known industrial MQTT
deployments covering hundreds or thousands of topics/subtopics and similar numbers
of active terminal nodes. A particular example of MQTT usage is Facebook Messenger. A
valuable review of MQTT applications and comparison of various MQTT programming
libraries can be found in a recent work by Mishra and Kertesz [9].

4.2. MQTT-SN

MQTT-SN (MQTT for Sensor Networks) [10] is a variation of MQTT developed by
IBM and accepted by OASIS. It is aimed at constrained devices. It works efficiently over
wireless radio links, where low speed and high failure transmission rate is expected, and
messages should be short.

https://mqtt.org
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MQTT-SN provides the same functionalities standard MQTT does. The main differ-
ence is that it can work in non-TCP/IP networks. It was initially developed for running
on top of ZigBee, but Bluetooth and UDP are also used. Other differences between MQTT
and MQTT-SN can be perceived as extensions. There are new architecture elements, i.e.,
transparent and aggregating gateways, which facilitate the planning of the range of radio
links; moreover, they enable load-sharing. There is defined a discovery procedure of an
active server/gateway. Next, a keep-alive procedure that supports sleeping clients—a
server/gateway buffers then messages. Additionally, QoS mode (called -1 level) is sup-
ported. This mode is intended for very simple terminals that publish only messages on
one predefined topic. Such a terminal neither opens nor closes the connection with the
broker nor does it receive message acknowledgement. An MQTT-SN broker can serve
data exchange only between MQTT-SN clients. However, with the help of the MQTT-SN
gateway, any existing MQTT broker can be used, and then communication with a client of
any type can occur. Moreover, there are not many MQTT-SN brokers available currently.

The recent MQTT-SN version 1.2 was published in 2013 (28 pages). However, its
specification should be considered as an extension of the MQTT standard (137 pages).
MQTT evolves since 2007.

MQTT-SN can work on top of any unreliable packet transport protocol. The MQTT-SN
standard defines 28 PDU types. The PDU length can vary from 2 B to 64 KiB; however, in
some networks, the length can be limited; e.g., in ZigBee, the maximum length is restricted
to 60 octets. The PDU header length can vary from 2 B to 4 B. Instead of passing long topic
names in messages, their short numbers or names are carried over (1 or 2 B). The published
payload is application-specific and carried as a string of bytes. The variable header is
simplified. The total number of different fields defined by the MQTT-SN standard is 18.

MQTT-SN extends the use of standard MQTT by effectively supporting communi-
cation with constrained devices. Together, the two protocols can back up a device-level
IoT platform of any type. However, MQTT-SN does not extend the list of suitable commu-
nication schemas. MQTT-SN is not suitable neither for the case that serves peer-to-peer
communication between neighbouring devices.

4.3. CoAP

CoAP (Constrained Application Protocol) is an IETF standard. All IETF standards
and drafts can be accessed on the webpage https://datatracker.ietf.org (accessed on
13 October 2021). RFC 7252 defines the core CoAP specification, and several other RFCs
define CoAP extensions. Moreover, a dozen further improvement proposals can be found
between active IETF drafts. CoAP can be considered as a specific version of the HTTP
protocol designed to communicate with resource-constrained devices. It suits the RESTful
programming approach and works according to the client-server paradigm. The server
provides resources identified by the URIs. The client communicates with a server with
a known, predefined address, although it is possible to profit from the mechanism of
dynamic server discovery in local networks. A given device can act as both a server and a
client. An extension, defined by RFC 7641, enables the client to subscribe to server resource
updates over a period of time, providing the best-effort publish-subscribe communication
pattern. CoAP supports a few communication architectures, i.e., peer-to-peer, client-server,
master-slave. It can be applied in more complex architectures, too.

CoAP implements two QoS modes, delivery with and without acknowledgement. An
acknowledgement can be delayed in order to minimise the number of sent messages. An
application designer should be aware that CoAP offers two retransmission parameters to
be tuned, i.e., ACK_TIMEOUT and MAX_RETRANSMIT. If the retransmission counter
expires, then the delivery is not guaranteed. It is possible to configure CoAP to forward
messages to a group of recipients—extensions for group communication are defined by
RFC 7390. In turn, RFC 7959 defines a way to pass large blocks of information using
short CoAP messages—this feature can be used to update the software or configure the
IoT device. Dedicated proxies can process CoAP messages with various functions, such

https://datatracker.ietf.org
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as logging data to the cache memory or representing devices using other protocols. It is
possible to deploy a proxy that translates CoAP messages from/to HTTP messages.

The core CoAP specification was published in 2014 (112 pages). There exist its errata
from 2017. The first CoAP draft was published in 2009, and we can find open-source
libraries written in 2010, 2011, and 2013 according to the draft specifications from those
years. Twelve RFCs define extensions and recommendations for CoAP (395 pages in total).
The newest was published in 2021, and we can be sure to have more CoAP-related RFCs,
seeing the number of active drafts.

UDP and DTLS are the primary protocols for carrying CoAP messages. Moreover,
these messages can be transported over other protocols such as TCP, SCTP, WebSocket, or
even SMS (Short Message Service from mobile telephony) transport was proposed. CoAP
offers 7 PDU types, i.e., 4 request methods (GET, POST, PUT, DELETE) and the response,
acknowledgement, reset messages. However, RFC 8132 defines 3 more PDUs for CoAP, i.e.,
FETCH, PATCH, and iPATCH. The message header is only 4 B long, and the main protocol
fields (token, options, payload) are of variable length. The number of all defined fields that
can appear in the message frame is 24.

The maximum message length is limited—as a single IP packet should carry the
message without fragmentation. Most networks have a limit of 1024 B, but some networks
may restrict the length even to 40 B. The payload of a request or response typically carries
a representation of a resource. Its format can be any internet media types, e.g., text/plain,
application/senml + json, application/cbor.

Any IoT platform for unconstrained or constrained devices can use CoAP. However,
in the case of constrained devices, special attention should be directed to how the payload
is coded to minimise its volume.

An IoT device being only a client can be used for data acquisition, notification/alarm
analysing, and device discovery and configuration. An IoT device being only a server can
be used for: the execution of dispatched commands, data querying and remote controlling
processes. An IoT device acting both as a client and as a server can be used in any commu-
nication schema, including peer-to-peer communication between neighbouring devices.

CoAP can be used in any Web-of-Things application. It is as flexible as HTTP but
more suited for device-to-device communication. It is efficient for communication with
constrained devices under the condition of thoughtful design and programming.

4.4. STOMP

STOMP (Simple/Streaming Text Oriented Messaging Protocol) specification is devel-
oped and maintained by the community of programmers (http://stomp.github.io, accessed
on 13 October 2021). The STOMP follows the paradigm publish-subscribe with a broker
(STOMP server). A client can work as a publisher, a subscriber, or both. Thanks to the
server, STOMP can provide one-to-many communication. The server is an intermediary
node that relays messages accordingly to the destination value. The STOMP destination
plays the same role as the MQTT topic. Several servers can be deployed in a chain that
links two clients. The server can modify and add headers to transmitted messages. The
protocol supports the client-message_server-client communication pattern. The message
server can do some message processing, which is more than just a broker functionality.

STOMP messages have an HTTP-like text syntax. The message consists of the name of
the command or response, a set of optional headers composed of the pairs of <attribute,
value>, and the body of the message. STOMP enables the transfer of binary content. The
content-type header can indicate any media type, and the implicit encoding of the message
is UTF-8.

The recent STOMP version 1.2 was published in 2012 (18 pages). The first mention of
the protocol on the internet (http://kasparov.skife.org/blog/src/stomp/ttmp-is-named-
stomp.html, accessed on 13 October 2021) was in 2005.

STOMP messages are carried over TCP. It is also possible to use WebSocket to avoid
problems with firewalls that are blocking most TCP ports. There are 10 PDUs (commands)

http://stomp.github.io
http://kasparov.skife.org/blog/src/stomp/ttmp-is-named-stomp.html
http://kasparov.skife.org/blog/src/stomp/ttmp-is-named-stomp.html
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in STOMP. Commands can be followed by headers (key-value pairs). Only three of them
(SEND, MESSAGE, and ERROR) may carry a body. The commands and headers are
encoded in UTF-8, which is also recommended for the body. However, any other internet
media type can be used and pointed in the header. The maximum message length is
implementation dependent; the server may define limits for the body length and the
number of headers. The STOMP specification defines 19 headers, so we have 20 protocol
elements together with the commands. Any user-defined, application-specific header
is allowed.

STOMP is a simple and flexible protocol. It is even possible to execute a commu-
nication session with the server using the telnet tool for testing purposes. The desti-
nation semantics and reliability of message exchange are left to the server implementa-
tion, providing many other functionalities using the STOMP header mechanism. Sev-
eral known STOMP server and client implementations are listed on the project webpage
(https://stomp.github.io/implementations.html, accessed on 13 October 2021).

Any IoT platform for unconstrained devices can use STOMP. Even though some
constrained devices can support TCP and non-compressed messages due to the infrequent
transfer of short data, STOMP is not a good choice for constrained devices.

Depending on the application’s needs, the functionality of a STOMP server can be
reduced or rich; thus, its software can be pretty simple or very complex. Regardless
of how simple the software is, it is difficult to find an application where an IoT device
should work as a message broker. IoT device being a STOMP client, can be used in any
communication schema, excluding peer-to-peer communication between neighbouring
devices. However, the STOMP server can be a part of an application server that controls a
set of IoT devices—the STOMP clients.

4.5. XMPP

XMPP (Extensible Messaging and Presence Protocol) is standardised by IETF. Its basic
specification is composed of the following: RFC 6120 defining the core of the protocol,
RFC 6121 defining the construction of instant messaging and presence functionality, RFC 7622
defining the address format. A dozen RFCs define various aspects of the protocol operations.

XMPP follows the client-server paradigm. Several XMPP servers can be intercon-
nected. The client connects to the selected server, thus opening itself to other clients
connected to this or other servers. XMPP creates a one-way stream to the target. Inside the
stream, it sends any number of individual XML phrases (aka stanzas).

A significant feature of XMPP is the ability to transfer the presence status between
users. Moreover, XMPP allows persistent streams over constantly open TCP connections,
ensuring minimal latency. Although XMPP messages are exchanged according to the
client-server paradigm, the communicating users form a peer-to-peer network (with equal
rights) from the application point of view. Thanks to XMPP extensions, it is easy to organise
communication between users according to any paradigm, i.e., peer-to-peer, client-server,
publish-subscribe, message broker. However, the primary communication pattern of the
protocol is client-message_router-client. The message router finds a path in the network of
XMPP routers, which is more than just a broker functionality.

Each user, human, or process, is assigned an XMPP address (UTF-8 coding), similar to
email addresses and consists of three parts: local-part@domain-part/resource-part, e.g.,
anything@example.com, thisthing@example.com/chamber1. For historical reasons, the
address is called Jabber Id. The user can connect to a given server only if he or she has
an account registered on that server. The XMPP address format and the principles of
server operations simplify a gateway deployment between a given XMPP system and
email servers.

The XMPP specification defines a mechanism for establishing connections between
the client and server and between servers. Besides, it specifies how to use the StartTLS
mechanism to start an encrypted connection on the same port as an unencrypted connection
and use SASL (RFC 4422) for user authentication. The main task of the XMPP server is

https://stomp.github.io/implementations.html
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to authenticate clients, maintain their streams, and pass stanzas. Also, the server stores
selected data, e.g., a user’s contact list and their status (aka roster). Moreover, it can
implement additional communication services, such as multicast and message broker.

The XMPP Standards Foundation (https://xmpp.org, accessed on 13 October 2021)
promotes the protocol, develops extension proposals, and standardises them. The foun-
dation carried out some work on XMPP extensions addressed to IoT systems. Several
documents have been developed on message compression, sensor networks, service
delivery, device discovery, and more. The current status of these documents is with-
drawn or deferred. Anyhow, the foundation still works on new extensions to XMPP
(https://xmpp.org/extensions, accessed on 13 October 2021).

The three RFCs specifying the XMPP core were published in 2011 and 2015 (352 pages).
There exist errata from 2017. The first RFC defining XMPP was published in 2004. The
protocol evolved from the Jabber text messaging technology, which appeared in 1999. The
first IETF draft specifying XMPP appeared in 2002. Nowadays, eighteen RFCs define
extensions and recommendations for XMPP (725 pages in total with the core); we do not
count obsoleted RFCs. The newest was published in 2019. There is not any active draft
related to XMPP.

XMPP works on top of the TCP protocol. It is also possible to use HTTP or WebSocket
to bypass restrictive firewalls. This protocol enables the exchange of XML streams in almost
real-time, i.e., with such delays as in a given network occur for transmission within TCP
connections. The streaming content is structured in stanzas of 3 types: Message, Presence,
and Info/Query. The types can be considered as PDUs of the XMPP protocol. The limit
of stanza size is implementation-specific; it should be part of server configuration. The
client can send an unbounded number of stanzas over the stream. Any binary data must be
base64 encoded before it can be transported. XMPP exchanges XML phrases to manage the
stream, the roster, and go through StartTLS or SASL processes. There are 13 such phrases,
and they can be considered as PDUs. As a result, we can distinguish 16 PDUs of the XMPP
protocol. The number of defined XML elements for which a value can be assigned is 100.
Those numbers show the complexity and rich functionality of the protocol.

Any IoT platform for unconstrained devices can use XMPP. Even though some con-
strained devices can support TCP and non-compressed messages due to the infrequent
transfer of short data, XMPP is not a good choice for constrained devices. Setting up a
session for each short data exchange makes XMPP inefficient in terms of protocol overhead.
Careful application programming is needed in the case of devices connected to the internet
via a pay-per-use plan. Keeping long TCP connections could result in unnecessary costs;
thus, the XMPP session should be closed immediately after every data transfer or exchange.

Depending on the application’s needs, the functionality of an XMPP server can be
reduced or complex. The server is not intended to work on terminal devices. An IoT
device being an XMPP client can work in any communication schema, excluding direct
peer-to-peer communication between neighbours. However, a peer-to-peer connection
between terminal devices via an edge or cloud XMPP server can be achieved.

XMPP is a popular and universal message exchange protocol. It has many extensions,
and as a result, it can be found in many very different applications. The main fields of
application of this protocol are instant messaging, social networking services, online games,
content syndication, and signalling for VoIP/video.

4.6. WAMP

WAMP (Web Application Messaging Protocol) is an open protocol [11] maintained by
Crossbar.io (https://wamp-proto.org, accessed on 13 October 2021). WAMP is a WebSocket
sub-protocol that allows remote procedure calls and publish-subscribe messages to be
forwarded. The protocol supports the client-message_router-client and client-RPC_router-
client communication patterns.

A client communicating with the WAMP router (server) can register offered proce-
dures to be executed and topics of expected messages. Another client can call registered

https://xmpp.org
https://xmpp.org/extensions
https://wamp-proto.org
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procedures and send messages on specific topics. The router then acts as a message broker,
remote procedure dealer, or both. There is no restriction for an application to play several
roles from the following set: callee, caller, publisher, subscriber, dealer, and broker. The
WAMP protocol defines communication between client and router. It is recommended
to use TLS to ensure communication security. Besides, routers can have realms defined
as administrative domains that separate the namespaces of message topics and offered
procedures. Access to a given realm may be limited for a specific set of authenticated clients.
A given client can be granted permissions to perform particular operations from the set:
subscribe, publish, register, and invoke. The pattern-based subscriptions/registration
mechanism allows for the discovery of offered topics and RPCs.

The most recent version of the WAMP specification is from 2021 (164 pages). An initial
version of the protocol was released in 2012. The specification defines the basic and the
advanced profile. The implemented profile functionality can be discovered dynamically.
The advanced profile is considered underspecified and still in evolution. It features trust
levels, URI pattern matching, and client listing.

WAMP was created to work over WebSocket, but it can work through any bi-directional
and reliable message transport mechanism. One or more WAMP sessions can run se-
quentially in one WebSocket session. Its specification defines 22 PDUs for the basic pro-
file and four additional PDUs for the advanced profile. The PDUs can carry 14 differ-
ent message elements. The maximum message length is implementation-dependent; a
client can set it between 512 B and 16 MiB. The WAMP protocol defines JSON and Mes-
sagePack (https://msgpack.org, accessed on 13 October 2021) notations to serialise sub-
scription/publishing messages and registration/calls of remote procedures. MessagePack
gives a more concise representation of messages than JSON. Other serialisation methods
may be introduced in future WAMP versions.

There is a considerable collection of programming libraries that include WAMP clients
and routers (https://wamp-proto.org/implementations.html, accessed on 13 October 2021).
However, many of them support only the basic profile.

Any IoT platform for unconstrained devices can use WAMP. There are some applica-
tions of constrained devices that can support WebSocket due to infrequent data transfer.
In the case of devices connected to the internet via a pay-per-use plan, careful application
programming is needed to minimise communication costs; so, offering remote procedures
or subscribing for incoming messages by the devices should be excluded.

Depending on the application’s needs, the functionality of a WAMP router can vary.
However, it should be a robust and reliable communication node. An IoT device being a
WAMP client, can be used in any communication schema, excluding direct peer-to-peer
communication. However, due to WAMP’s symmetric messaging, the devices being WAMP
servers can communicate directly.

WAMP can be used in any web application that employs microservices or offers users
collaboration, e.g., video games. It also can be used in some IoT systems, i.e., those that
can support WebSocket transport. Many IoT devices simultaneously offer procedures that
control activators and publish messages from sensors. Moreover, RPCs can serve data
querying. The WAMP router can separate such devices from IoT servers, facilitating system
integration and increasing its flexibility.

4.7. AMQP

AMQP (Advanced Message Queuing Protocol) is maintained by OASIS [12] and stan-
dardised by ISO and IEC. An AMQP communication node can act as a producer, consumer,
or message queue. A process can contain several such nodes, which enables the building of
very complex network components. The process can act as a client, server, broker, or router.
The router can forward a message immediately or store it depending on application needs.
Connected terminal processes form a peer-to-peer network. The primary communication
pattern of the protocol is client-message_router-client. However, an implementation can
provide only simple broker functionality in place of the message router.

https://msgpack.org
https://wamp-proto.org/implementations.html
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The AMQP standard defines the encoding of primitive and composite data types, a
complex transport mechanism, and a messaging system (i.e., the structure and semantics
of messages carried by the transport mechanism). Moreover, the AMQP specification
defines how TLS and SASL are used to authenticate and encrypt communications. The
encoding allows for binary data representation and also for annotation of data types to
support application needs. The transport mechanism enables to open of several parallel
communication sessions inside one AMQP connection between two processes. Any number
of unidirectional links can be established inside one session. The link serves to transport
frames. AMQP can fragment a large message, transmitting it with subsequent frames.
The communication end-points advertise the limits of the message and frame sizes. Flow
parameters are defined for a link; e.g., message delivery guarantees (QoS) such as the
following: at most, at least, and exactly once. Moreover, filtering functions can be associated
with the sending node, preventing sending messages that do not meet the specified criteria.
In case of a broken connection, the links are recreated, and the state of exchanged messages
is preserved.

A message transported by AMQP may have a complex structure. Application data is
a mandatory field of the structure. The optional fields are header, transport annotations,
message annotations, standard properties, application-defined properties, and footer. Ap-
plication data and its properties remain the same from the sender to the recipient. The
remaining fields can be used and modified by message routers. The standard defines a
rich set of elements that can be included in the fields listed above. These elements can
influence the processing of messages in intermediary nodes, determine the priority and
lifetime of messages, adjust the reliability of their transmission and ensure the required
security, and others.

An interesting feature offered by AMQP is the ability to execute transactions, that is,
organise groups of messages for joint processing. Transactions can be defined, recalled,
and executed. A separate link is created to control the transactions, independent of those
for the forwarding of messages.

The rich syntax of AMQP messages and message fields make this protocol universal
and flexible. Most of its functions are optional, thanks to which it is possible to tune
an implementation size and complexity to the needs of a given application. During
the establishment of connections and sessions, the communication parties signalise the
functions expected and offered.

The recent AMQP version 1.0 comes from 2012 (125 pages). There is also the WebSocket
binding specification [13] from 2016 (18 pages). The initial design of AMQP was carried
out at JPMorgan Chase (a financial holding company), and one of its first specifications
was published in 2006.

AMQP works on top of TCP. It defines 9 PDUs (called AMQP performatives), which
are very complex data structures. It also specifies several dozen data types intended to
standardise the structure of exchanged messages. We can distinguish 131 protocol elements
defined on the transport, messages, and transaction layers (we counted the number of field
name definitions as protocol elements). AMQP can exchange end-user data in a binary,
text representation, or any internet media type.

Any IoT platform for unconstrained devices can use AMQP. In the case of devices
connected to the internet via a pay-per-use plan, careful application programming is needed
to minimise communication costs; the AMQP connections should be as short as possible.

AMQP does not define roles for communicating devices, but it specifies messages that
simplify the design of very different and complex application network devices. AMQP
can support every communication schema applied in IoT systems. However, in the case of
opportunistic peer-to-peer data exchange, it could not be very efficient. AMQP is a good
choice for an application that can take advantage of its rich functionality.

The origins of this protocol are related to applications in distributed financial applica-
tions. It is mainly used in business applications.
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4.8. DDS

DDS (Data Distribution Service) is maintained by Object Management Group (OMG) [14].
The standard is open; however, US patents protect some solutions described in this standard.
DDS communication services follow the publish-subscribe paradigm, but there is no broker
here. Its functions are performed in a distributed way by terminal nodes. In simplified
terms, the DDS mechanism is that the publisher writes data to local caches associated with
subscribers, and propagation of data between nodes caches occurs automatically. A given
node can only be a publisher or subscriber, or both. Defined QoS attributes govern the data
transfer process. DDS also automates the switch between the primary and backup nodes
when the former fails.

The DDS communication model seen as an API is quite extensive. The publishing
application defines thematic channels (named topics). The channel can hold one variable,
or it can form a data queue of limited length. In the first case, the subsequent written
value (called a sample) erases the previous one. In the second case, the new value is
added to the queue. The thematic channel defines the type of transferred values and the
set of QoS attributes. A name identifies the channel. Depending on the dynamically set
parameters, only one or more publishers can write to a given channel, and only one or
more readers can read from it. Moreover, the subscribing application may define filters
for the data values received; e.g., it may only receive temperature values exceeding the
defined range. QoS attributes are assigned to topics, publishers, and subscribers. An
application process defines the attributes, e.g., reliability of the transmission, the maximum
frequency of publication, the maximum allowable delay between the received data, or the
transmission priority.

DSS allows limiting the range of transferred data by defining domains and partitions
within domains. A domain can be viewed as a virtual network. A partition is a collection
of communication channels logically related to each other, for example, a collection of
sensors in one room, where the domain is a collection of temperature and lighting controls
throughout the building. The hierarchy of connections between nodes enables high scala-
bility. DDS provides dynamic discovery of publishers and subscribers within a domain.
Although domains are virtually separated, the application can pass data between domains.

The recent DDS version 1.4 comes from 2015 (168 pages). Moreover, OMG published
13 DDS related documents, i.e., extensions, recommendations, and informative statements
(1468 pages in total). DDS specifies the object model of the communication system and
the abstract API to the objects. Interface Definition Language, also defined by OMG [15],
specifies DSS API and data structures. OMG defined the interface between the model and
the internet as the DDSI-RTPS protocol [16]. DDSI-RTPS uses UDP and allows for multicast
IP addresses. However, DDSI-RTPS does not impose UDP, and other transports, e.g., TCP,
are permitted. The modular structure of the protocol allows for a limited implementation
on constrained devices. OMG also developed a DDS version (DDS-XRCE) for devices
with particularly limited resources [17]. The other DDS related standards define service
Invocation (DDS-RPC), Information Modelling (DDS-XTYPES), Security (DDS-SECURITY),
as well as programming APIs for C++ and Java. A DDS extension is defined to enable
dynamic data type recognition while the system is running.

DDSI-RTPS sends one or more sub-messages in one UDP datagram. Large user data
chunks can be fragmented and sent in subsequent messages, and the limit is 216 datagrams
(i.e., 4 GiB). Moreover, DDSI-RTPS defines two subprotocols for a participant (a distributed
application) and end-point discovery. CDR (Common Data Representation) is the transfer
syntax used for DDS data types. The application data can be transferred using CDR,
XML, or any application-defined representation. We can characterise the complexity of
DDSI-RTPS by two numbers: 12 PDUs (sub-message types) and 94 protocol elements (total
number of attributes defined for headers, sub-messages and subprotocols). However, a DDS
user interacts with DDS API, which reflexes the DDS objects, not protocol elements. We
can characterise the complexity of the API by two numbers: 34 interfaces and 49 structures,
which are defined by the IDL specification of DDS.
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Secure communication between DSS nodes can be built using IPsec or DTLS. Moreover,
the mentioned DDS-SECURITY standard specifies the mechanism of configurable safety
plug-ins for DDS software. This standard defines five plug-ins that provide the following
services: authentication, access control, cryptographic functions, event logging, and data
tagging. Authentication applies to users, i.e., applications that use DDS. Access control
allows a given user to grant specific operations rights, such as what DDS domain he can
join and what topic channel he can open for publication or subscription. Cryptographic
functions include encryption, hash, digital signature, key generation. The event logging
plug-in handles all events related to the operation of security services and attempts to
breach them. The tagging plug-in allows to label data transmitted through thematic
channels to control access rights.

Any IoT platform can use DDS. Moreover, DDS can support every communication
schema applied in IoT systems. However, in the case of data querying, it could not
be very efficient. Even though DDS allows for direct communication between peers,
their discovery and authentication should be assisted by a known server, making such
implementation difficult.

DDS is designed for machine-to-machine communication where reliability, perfor-
mance, real-time operation support, and scalability are essential. Industrial Internet,
cyber-physical, and mission-critical are intended applications of DDS.

4.9. OPC UA

OPC UA (Open Platform Communication Unified Architecture) is a complex standard
for machine-to-machine communication addressed to all industrial domains. The OPC
Foundation consortium handles its development. The multi-volume specification of this pro-
tocol is available to registered users on the consortium’s website (https://opcfoundation.org/
developer-tools/specifications-unified-architecture, accessed on 13 October 2021). OPC UA
communication follows the client-server and publish-subscribe paradigms. The second can
take a broker-less or broker-based deployment form depending on underlying protocols.

OPC UA is object-oriented. Reach and complex OPC UA Information Model is
defined and a schema to represent semantic dependencies between objects. The standard
describes the semantics, relationships, and syntax of the architectural elements. Majumder
et al. [18] have provided an interesting and detailed comparison of two semantic modelling
approaches, the built-in OPC UA and Resource Description Framework (RDF), which is
the basis for the semantic web.

OPC UA provides a profile mechanism for the description, classification and discovery
of implementation features. The mechanism allows communication between different de-
vices like programmable logic controllers (PLC) and powerful server machines. A common
understanding of implemented OPC UA profiles is needed to guarantee interoperation
between applications. The profile can be a subject of conformance testing and certification.

OPC UA defines the interactions between servers and clients as well as the set of
services offered by servers. An application can act as a server, client, publisher or subscriber
or any combination of the four. OPC UA defines address spaces for nodes that represent
physical or virtual objects reachable by an application process. The transported messages
can be OPC UA-defined or application-defined data types. Servers can provide clients
with current and historical data, also alarms and notifications about significant changes.
Moreover, servers can store object data model definitions that clients dynamically discover.
A client can query servers for the metadata and discover available services and formats
for requested data. Moreover, a local discovery server can be deployed to optimise the
discovery process.

OPC UA evolved from previous OPC standards based on Microsoft technologies,
namely Object Linking & Embedding (OLE), Component Object Model (COM), Distributed
Component Object Model (DCOM). After more than three years of specification work and
another year for prototype implementations, the first version of the Unified Architecture
was released in 2006. Its today’s specification (release 1.04 published at the turn of 2017

https://opcfoundation.org/developer-tools/specifications-unified-architecture
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and 2018) consists of 19 documents (1683 pages). The first 14 documents (1401 pages) are
considered as the main specification. Moreover, two subsequent documents are under
preparation. OPC Foundation works with many other organisations to create OPC UA
representations of information from different domains. Several dozen documents with
UA information models are available on the Foundation web pages. It should be noted
that the client-server communication was the base for OPC UA from its very beginning.
However, the publish-subscribe communication was added relatively recently (the draft
proposal in 2017). We can refer to them as Client/Server and Pub/Subchannels. Due to the
youthfulness of Pub/Sub specification, its implementations are still rare.

OPC UA is designed to be flexible and not bound to a particular transport protocol or
messaging system. Only specific documentation parts define mappings to selected proto-
cols. Transport of messages between clients and servers can occur directly over TCP, HTTPS,
HTTP/SOAP, or WebSocket, using binary, XML, or JSON codings. Transport of messages
between publishers and subscribers can run over different messaging middleware, e.g.,
UDP with IP multicast, MQTT, AMQP. OPC UA defines Pub/Sub communication as an
abstract model and mapping to binary and JSON representation. The binary representation
is called UA Datagram Protocol (UADP). UADP can even work directly over Ethernet.

OPC UA specifies 25 built-in data types, which include a structure for carrying
application-specific data. Moreover, there are 59 standard data types, 17 standard ref-
erence types, 32 standard event types, and more. They are used to construct structures,
arrays, and messages. A server can implement 40 services. The service requests and
responses (with defined parameters) are transported inside a reliable session or sessionless
communication via a secure communication channel. We can consider the service requests
and responses as PDUs. The number of different defined parameters is 166. Moreover, the
OPC UA specification defines an abstract connection protocol that establishes a full-duplex
channel between a Client and Server. The protocol consists of 4 PDUs with 15 parameter
fields together.

The Pub/Sub communication model defines a complex and hierarchical structure of a
network message passed to or received from a communication middleware. Analysing
the UADP definition, we can distinguish 3 PDUs and 37 protocol elements. Most of the
elements are composite data structures.

OPC UA supports communication with constrained devices and size limits of trans-
port layer frames. OPC UA messages can be sent in chunks. However, an intended security
mechanism can impose a weighty value for a message buffer. For example, OPC UA Secure
Conversation requires a buffer size that is at least 8 KiB.

OPC UA defines flexible mechanisms with choices to guarantee authentication, autho-
risation, integrity, and confidentiality. The defined message structure both for client-server
and publish-subscribe communication can carry security data. It is possible to use symmet-
ric and asymmetric cryptography, certificates and different deployments of certification
servers. Moreover, a diagnostic mechanism is defined that helps to troubleshoot and
discover security breaches.

OPC UA is a standard that defines abstract data models, communication scenarios
and mapping to underlying transport protocols. Physical performance parameters depend
on implementation choices. OPC UA by itself does not restrict any kind of application. It
can support any type of device-level IoT platform and any of the seven communication
schemas (defined in Section 2). However, not every implementation can be so universal.
We can even meet opinions that the support of OPC UA functionalities, communication
profiles and services is not practical for IoT devices, e.g., Karaagac et al. [19]. However, the
authors did not consider the Pub/Sub implementations.

Burger et al. [20] have compared the OPC UA Client/Server and Pub/Sub communi-
cation performance parameters. They made some measurements using selected implemen-
tations of the protocol on a Raspberry Pi platform. They found that the server CPU is the
main bottleneck for OPC UA Pub/Sub communication and that the Client/Server session
management overhead can severely impact performance.
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Raddatz et al. [21] give an excellent introduction to the OPC UA Pub/Substandard.
Although, their article aims to compare performance parameters of three OPC UA imple-
mentation types, i.e., Client/Server, Pub/Sub over UADP, and Pub/Sub over MQTT. They
demonstrated that the delay in exchanging a message using the Client/Server communica-
tion is relatively high compared to the time required to send the same message using one
of the Pub/Sub solutions; moreover, the communication based on MQTT is slower than
the UADP variant.

4.10. LwM2M

The Lightweight Machine to Machine (LwM2M) protocol was introduced to allow
communication and management for constrained devices. The first version of the pro-
tocol was developed and published by Open Mobile Alliance (OMA). In late 2017 OMA
merged with the IPSO Alliance and released further versions of the protocol as OMA
SpecWorks. The most recent LwM2M protocol version is 1.2, which was published in
November 2020. The whole specification is freely available at the consortium website
(http://openmobilealliance.org/wp/index.html, accessed on 13 October 2021).

The protocol uses a client-server model, in which IoT devices implement client soft-
ware. The LwM2M servers, because specification introduced one general LwM2M server
and one bootstrap server, are places in the public or private data centre and provide services
for connected devices. The protocol specification defines four logical interfaces between
clients and servers, which allow the following: device bootstrap, device discovery, and
registration, device management and service enablement, and information reporting. For
each interface a unique list of operations could be used, and their “direction” is defined.
For example, in the device management and service enablement interface, only the server
could perform some operations on the client, such as reading, writing, executing, creating,
deleting, and discovering. In contrast, the information reporting interface server could
perform four operations on the client (observe, observe-composite, cancel observation, and
cancel observation-composite). The client could perform two operations on a server—notify
and send. The defined operations are mapped to the sentences of a RESTful interface, and
they can be perceived as PDU types; their number is 26. The corresponding URI path types
and query parameters can be perceived as the protocol elements; their number is also 26.

LwM2M introduces not only a communication protocol but also a data model. The
data owned and/or managed by the IoT device is provided to the server as a resource.
Resources are logically grouped into an object. Depending on the specification and the
resource type, the server could read, write and execute the given resource. Each IoT device
has to provide an object called “device”. This object contains over a dozen resources
that could be read, for example, manufacturer, model type, serial number, and battery
level. Some resources could also be written, for example, current time and time zone.
Some could even be executed, for example, reboot, factory reset, or reset error code.
Some objects are mandatory and have to be provided by each IoT device that uses the
LwM2M protocol. For example, the LwM2M server and LwM2M security belong to such
a class of objects. OMA 3rd party standard development organisations and individual
vendors registered many additional objects. We could find elementary objects like digital
input, analogue input, or more complicated sensors, for example, smoke alarms and CO
detectors. A complete list of registered objects is provided at the consortium website
(https://technical.openmobilealliance.org/registries.html, accessed on 13 October 2021).

As even protocol name highlights, it was developed for constrained devices. The first
version of the protocol, 1.0, uses a limited subset of the CoAP functionality and allows
transmission of LwM2M messages using CoAP/UDP or CoAP/SMS. Both communication
channels could use DTLS for security. In the most recent 1.2 version of the protocol,
new carrier protocols are introduced, HTTP and MQTT, carrying data formats chosen
by a developer. In the most recent 1.2 version of the LwM2M protocol, data could be
encoded using, among others, plain text, octet strings, TLV, CBOR (Concise Binary Object
Representation), and JSON. The only payload limit size concerns TLV encoding, which

http://openmobilealliance.org/wp/index.html
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is mandatory for the LwM2M 1.0 version and is set to 16.7 MiB for any given resource
and object.

The first version of the protocols was devoted to the constrained devices. During
further revisions of the LwM2M protocol, other transport protocols are introduced. With
its advantages and disadvantages, selecting a given transport protocol impacts the whole
LwM2M mode of action and could completely change its behaviour and resource demands.

4.11. Proprietary Protocols for Smart-Home Devices

Smart-home systems constitute a significant segment of the IoT market. Their design
can be based on the presented above messaging protocols. However, three proprietary
protocols, i.e., Google Weave, Amazon Alexa Mobile Accessory Kit Protocol, and Apple
HomeKit Accessory Protocol, have gained popularity due to corresponding applications
available for smartphones and home computers. Thanks to the applications, manufacturers
of domestic appliances can swiftly find customers. The application users can remotely
manage these devices from a special control panel or a computer, tablet, or smartphone
equipped with one of those applications. In most cases, these systems utilise wireless
solutions, such as Wi-Fi, Bluetooth low energy, or Zigbee for connectivity. However, the IP
protocol usage enables remote managing of smart devices from any point of the globe.

One of the reasons for the popularity of the three smart-home applications is their
associated voice assistant: Amazon Alexa, Apple Siri, and Google Assistant, respectively.
The three companies offer voice assistant devices, i.e., Amazon Echo, Apple HomePod,
and Google Nest Mini. Moreover, they maintain cloud environments that allow remote
access to home devices worldwide. In consequence, they control their smart-home systems
enabling the design of domestic appliances to other enterprises. Unfortunately, only the
Google Weave protocol specification is publicly available. The details of the other protocols
are available after signing a business agreement. Due to this constraint, we describe them
rather generally. Further in the comparison, only Weave is considered and compared with
the other messaging protocols.

4.11.1. Google Weave

The Nest Labs initially developed the Weave protocol in 2013. It allows communication
and cooperation between various smart home devices, for example, thermostats, security
cameras, or smoke detectors. The protocol was designed for the so-called Home Area
Network (HAN) and enabled communication between HAN and the Nest cloud. In
effect, smart-home devices could be managed or monitored remotely via mobile or the
internet. After acquiring Nest Labs, Google provided its own reference implementation
as an open-source library named OpenWeave. All information concerning the Google
software library and documents concerning the Weave protocol are provided on the project
website: https://openweave.io (accessed on 13 October 2021). The first version of the
Weave specification is from 2013, and the most recent ones or new revisions are from the
beginning of 2020.

Weave uses the publish-subscribe model. Each smart device contains one or more
traits, which represent its possible state by various properties. For example, the audio
trait has properties that describe volume value and mute state. Users or other devices
can remotely change these properties, and other devices or services that subscribe to
a particular property will be notified. Traits could be joined together to describe more
complicated functionalities in so-called interfaces; for example, the intercom interface can
consist of microphone and speaker traits. Several traits and interfaces form so-called a
resource, which in most cases represents a device. In the Weave HAN, each resource is
identified by IPv6 address with the fd00::/48 prefix. Resources could be associated with a
physical device, or they can form a kind of virtual resource, which is called a controller. The
controller using its higher processing power could add more complicated functionalities to
the device traits. One kind of controller is the resource proxy controller, which can be used

https://openweave.io
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for routing messages and providing state information of the device. For example, it can
switch the device off periodically to save battery.

Weave protocol, in reality, consists of multiple protocols (called in documentation as
Profiles), for example, Echo, Heartbeat, Bulk Data Transfer, and essential Weave Data Man-
agement (WDM). WDM allows requesting current traits’ property values, changing them,
and providing notifications. For this purpose, five basic operations are used: subscribe,
notify, observe, update, and command. The first one allows subscription to the interesting
trait property. After that, all changes of the property cause sending of notification for the
subscriber. Observe allows querying of current property state. The update operation is
used to change the property values, which allows managing the device state. The last
operation, command, enables the execution of specific functions provided by the trait and
could not be changed by a property update. For example, this operation could be used for
complicated tasks like choosing the next track on a media player or starting a neighbouring
Wi-Fi network scanning process.

Weave messages due to performance reasons and support for constrained devices use
the TLV communication scheme. They are transmitted via the UDP or TCP protocol carried
by IPv4 or IPv6. Moreover, they can be directly included in the BLE or Thread frames for
low-range communication in the HAN.

The open-source OpenWeave library, provided by Google, utilises an approach similar
to the RPC implementations. First, the programmer defines all necessary traits, interfaces,
and resources using a special language called Weave Schema Description Language (WDL).
After that, a dedicated compiler generates source code, which could be compiled in the
target environment after necessary enhancements. For the embedded and mobile devices,
this tool will generate C++ with Weave TLV code. For services running in the cloud and
mobile apps Objective C, Swift, Java, and Scala could be chosen.

4.11.2. Amazon Alexa Mobile Accessory Kit Protocol

The simplest way to connect an appliance to the Alexa voice assistant is to use the
Z-Wave or Zigbee radio stack. In this case, controlling the appliance is performed using
features introduced in the application layers of these two radio stacks. Both stacks define
profiles for most common device types, for example, thermostats, light bulbs, switches, or
fans. For each category, well-defined voice commands could be given to the Alexa assistant,
and it manages the appropriate device. For example, “Alexa, turn on the lights”, “Alexa,
raise the temperature 1 degree”, or “Alexa, ask Garageio to close my garage”.

The second option for connecting an appliance to the Alexa system is dedicated to
devices with built-in microphones. In this solution, a developer could use Alexa Voice
Service (AVS). Depending on the appliance’s computing resources, this solution can use
voice recognition of so-called “Wake Word” or a simpler method called “Tap-to-Talk”.
When the command issued will be detected in both situations, the appliance records a short
voice sample, which is later sent to the AVS for analysis. For this purpose, the HTTP/2
protocol is used as a transport protocol. All data, including voice samples, are encoded
using JSON. As an HTTP/2 response containing a JSON structure with directives to the
device or exception—in case any errors are received.

The last method for connecting an appliance to Alexa Cloud utilises Alexa Connect
Kit (ACK). ACK is a dedicated hardware module produced by the Espressif company. This
tiny electronic board (16 × 23 × 2.3 mm) contains Wi-Fi and Bluetooth Low Energy capa-
bilities and runs Amazon custom firmware. This firmware carries out all communication
mechanisms associated with connection to the Alexa Cloud. A newly developed appliance
exchanges messages with the module using the UART (Universal Asynchronous Receiver-
Transmitter) interface. Amazon provides a dedicated SDK (Software Development Kit) for
the device microcontroller, seamlessly hiding all UART communication details and provid-
ing intuitive interfaces for the most popular devices. The developer has to only react in
the appliance hardware to appropriate commands, e.g., switch on the light. Currently, this
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setup allows managing fourteen interfaces for the most popular devices, such as cooking
appliances, power controllers, or temperature sensors.

4.11.3. Apple HomeKit Accessory Protocol

HomeKit is Apple’s proprietary protocol for smart-home devices. The devices could
be commanded and managed by the Apple Siri voice assistant or Home app, which works
on Apple products, like iPads, iPhones, and Apple Watches. The workhorse of this solution
is HomeKit Accessory Protocol (HAP). It uses two radio mediums—Wi-Fi with IP and
Bluetooth Low Energy (BLE), according to the residual publicity available documents.
HAP introduces around thirty device categories of popular device classes, such as air
conditioners, IP cameras, smoke alarms, or thermostats.

4.11.4. Matter Protocol Formerly Connected Home IP

The existence of three not-compatible smart-home ecosystems leads to inconveniences
for clients and device manufacturers. They must choose one ecosystem and buy or develop
devices compatible with the chosen one. Due to this fact, Amazon, Apple, Google, and
Connectivity Standards Alliance (formerly Zigbee Alliance) decided to ally and develop
one common standard for smart-home devices. From December 2019, when the project
was launched, the consortium named the project Connected Home IP, shortly mentioned
as CHIP. In May 2021, the name of the project was changed to Matter. All further details
should be provided on the project web page (https://buildwithmatter.com, accessed on
13 October 2021).

We could learn, from available information, that their messaging protocols extensively
will be applying the IPv6 network protocol plus TCP and UDP as the transport protocols.
It will use various communication protocols in the lower layers, including Ethernet, Wi-Fi,
Bluetooth Low Energy, and Thread, utilising 802.15.4. The most crucial design decision
concerns the usage of the open-source approach. The first specification of Matter should be
publicly available in the first quarter of 2021, according to the earlier press announcements.
However, at the time of writing, no detailed description is available.

5. Comparative Analysis

In the previous chapter, we characterise the most popular protocols used in IoT
systems. In this chapter, we present a comparison of them. We decided to use a qualitative
rather than quantitative approach. The rationale for this decision is that presenting one
representative situation is almost impossible due to the complexity of the protocols, the
number of theirs extensions, and possible usage scenarios. Moreover, all quantitative
measurements in such an environment would be valuable to a very narrow group of
readers with an almost identical system. We are convinced that our qualitative analysis
will be beneficial for a broader group of designers. Additionally, comparison, presented in
the following text, allows a better selection of protocol for a given system design.

We structured the analysis into three parts. The first sees to selected functional features
of the messaging protocols, the second deals with their maturity and complexity. The third
considers their applicability to the defined (in Section 2) types of device-level IoT platforms
and suitability for different communication schemas.

5.1. Functionalities

The formation of any protocol was led by an intended purpose and related features.
Table 1 summarises them. If a system under design is in line with the primary purpose of a
protocol (see the second column), then the protocol will simplify the design. As we see,
MQTT-SN and CoAP were conceived for communication with constrained devices and
MQTT for the end devices that have limited memory and link bandwidth. As time goes
by, protocols evolve, and their extensions appear, e.g., the DDS-XRCE extension, which
supports constrained devices and their access to the standard DDS cloud via a gateway.

https://buildwithmatter.com


Sensors 2021, 21, 6904 20 of 32

Table 1. Protocol objectives and related features.

Protocol Main Purpose Defined Roles Architectures Discovery of Real Time Specific Features

MQTT

M2M & IoT
small code footprint
limited bandwidth
and high latency

networks

publisher,
subscriber, broker client-broker-client topics partial

MQTT-SN constrained devices publisher,
subscriber, broker client-broker-client topics, gateway partial

CoAP constrained devices,
lossy networks

server, client,
support pub/sub

mechanism

p2p, client-server,
master-slave resources yes RESTful

STOMP simple data
exchange

publisher,
subscriber, server client-m_server-client partial

XMPP generalized routing
of XML data client, server client-m_router-client clients limited

roster of user’s
contacts & their
presence status

WAMP messaging & RPC

publisher,
subscriber, broker,

callee, caller,
dealer

client-m_router-client,
client-RPC_router-client topics & RPCs yes or partial

AMQP
corporate

environments publisher,
subscriber, broker

client-m_router-client,
client-broker-client partial multiple links in

one connection

DDS

real-time
dependable

systems,
constrained devices

(DDS-XRCE)

publisher,
subscriber p2p

publishers,
subscribers,

topics
yes

global data space,
abstract API in

IDL and
mappings to C++

and Java

OPC UA Industrial
applications

client, server,
publisher,
subscriber

client-server,
publishers- subscribers,

servers-aggregator-
clients, p2p,

application
profiles, objects

methods and
variables

yes or partial
domain-specific

information
models

LwM2M General M2M
communication client, server client-server devices yes or partial

Weave smart-home publisher,
subscriber

p2p,
client-broker-client

The protocol specifications define specific roles for the communication points and the
target architecture of the end-system. The two features are good indices for the selection of
a protocol. However, with some programming effort, the application can adapt to other
roles and architecture. Only WAMP defines RPC related roles, but a programmer can
use any other protocol that allows two-way message exchange to achieve RPC calls. An
application can also take profit from the discovery mechanism provided by the selected
protocol. If there is no such support, the programmer should craft some code to achieve
what is desired.

The real-time support cannot be added on the top of a protocol if it does not have it.
As we see, CoAP, DDS, OPC UA, and LwM2M provide that feature. However, not every
implementation of them guarantees real-time backing—e.g., the selected underlying trans-
port protocol can limit this feature. The partial support means that the transmission time
can be estimated. However, the broker/router/server delays are difficult to be predicted,
as the devices are prone to congestion. Thus, only soft real-time applications can use such
protocols as MQTT, STOMP, and AMPQ. In WAMP, an application node can play any role
or roles, so we can build communication between two nodes without an intermediary,
which can be considered real-time support. However, the typical WAMP use-cases are
with broker or dealer, then we consider real-time support partial. Some applications, e.g.,
instant messaging, expect real-time behaviour only during a communication session. This
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kind of application is insensitive to delays related to opening the session, and the full speed
TCP connectivity is considered sufficient real-time condition.

The specific features given in the last column strongly distinguish the protocols. If
they are required, the protocol selection is straightforward.

Table 2 presents some selected features related to application messages to be ex-
changed. In IoT systems, the messages are usually short, and the maximum payload size
is not an issue. The only exception can be the need for software updates. However, the
limit of 64 KiB for updates is not restrictive for constrained devices, but the more powerful
devices enable storing bigger chunks of code. The constraint on energy consumption is a
stronger limit for transmitted data volume. The designer of an update subsystem should
analyse restrictions imposed by used operating systems and communication middleware.
The protocols do not impose prohibitive restrictions; their implementations set such limits.

Table 2. Messaging features.

Protocol Payload Size Limits Payload Data Representation Labelling Metadata Transaction Support

MQTT 256 MiB UTF-8 text,
unspecified bytes yes yes

MQTT-SN 64 KiB unspecified bytes yes

CoAP
40 B–1 KiB (without IP

fragmentation), 1 MiB–1 GiB
with block-wise transfer

internet media type yes

STOMP implementation dependent internet media type yes yes

XMPP defined by end-points
(64 KiB stanza size) UTF-8 text yes yes

WAMP defined by end-points
512 B–16 MiB JSON text and MessagePack yes yes

AMQP defined by end-points internet media type yes yes yes

DDS 64 KB
4 GiB with block-wise transfer CDR, XML, user-def. yes yes yes

OPC UA defined by end-points serialized binary data, JSON,
XML yes yes yes

LwM2M

depends on used transport
and payload representation,

for v. 1.0 mandatory TLV
representation limit is 16.7 MiB

plain text, TLV, JSON, CBOR

Weave
no strict limit

advice to fit in transport
protocol MTU

serialized binary data

All of the protocols define transfer representation for their header fields and other
protocol elements. Some define allowed representation for application data, carried as the
protocol payload; e.g,. XMPP can carry only text representation, and WAMP allows for
JSON text and binary MessagePack representations. Only XMPP does not allow for the
transmission of compressed data. All other protocols allow carrying binary data, which
can be a compressed form of any information. MQTT transport labels in text form, while
MQTT-SN supports their compressed representation. If a protocol transmits an unspecified
byte stream, then the representation is application-specific. The internet media types (used
by CoAP, STOMP, AMQP) specify the data representation explicitly. DDS uses only CDR
coding, and WAMP states the MessagePack coding explicitly in the message header. The
defined payload representation helps to connect independently designed subsystems.

The labels and metadata simplify interoperability. The labels help distinguish the
semantics of exchanged data. The hierarchical structure of the labels, either MQTT-like or
URI-like, simplifies querying data sets or filtering them. The metadata can be defined by a
protocol, application, or both, to carry additional information about the messages, their
transport, and sender or receiver expectations. Some metadata can control the behaviour
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of message caches, brokers, routes or servers. The protocol labelling and metadata support
help the interoperability of complex systems that are programmed by different teams.

Some applications should perform atomic operations on a data set that is formed
by several messages. After the messages transfer, the operation can be committed or
discarded. Protocol support for transactions is desired when several remote processes
should simultaneously execute an atomic action. Only AMQP, DDS, and OPC UA provide
such support.

The choice of a transport protocol influences the features of an application protocol.
Any messaging based on UDP is more efficient on wireless links with high packet loss rates
than protocols based on TCP, which results from the TCP congestion avoidance algorithms
and slow TCP connection start mechanism. The efficiency gain is observed as lower latency.
UDP delivers faster short messages than TCP without losing time on connection setting
up. Moreover, UDP-based traffic has lower transmission overhead due to the small UDP
header size and absence of overmuch acknowledgement packets. The reliability of TCP
is an advantage. It is helpful to transfer big chunks of data, freeing the programmer
from dealing with the network congestion control. However, TCP acknowledges data
delivery, not processing, which should be approved by the application if needed. Such
approval is a must in machine-to-machine communication or if the TCP connection is prone
to losses. The application layer acknowledgements make the transport ones redundant.
Moreover, standard TCP implementations are memory demanding, which is prohibitive
for constrained devices. RFC 9006 guides TCP usage in IoT systems. There are even some
TCP/IP stack implementations for constrained devices (e.g., uIP, IwIP, GNRC/RIOT) with
reduced functionality and efficiency. Their purpose is to enable communication with TCP
based servers and applications when it is not to avoid. Running application protocols
on the top of UDP is a better choice for constrained devices or high loss radio networks,
which is confirmed by many experiments devoted to performance evaluation of messaging
protocols, e.g., Moraes et al. [22] and Thangavel et al. [23].

Table 3 shows the primary transport protocols defined for the analysed protocols. The
additional ones are given according to the IANA registrations. As we can see, MQTT-SN,
CoAP, and DDS are the only protocols running by definition over UDP. An OPC UA
application can use at the same time, both TCP and UDP or only one of them. WebSocket
popularity goes from the need of overcoming communication problems related to restrictive
firewalls, which exist in enterprise and institutional networks. It allows for opening a TCP
connection using the standard HTTP port, which is seldom blocked. WebSocket exchanges
two HTTP messages on opening and allows multiple data streams (text or binary) over
one TCP connection. Moreover, some extension data can be sent together with payload
data. The extension data may carry metadata information. These features can be used by
an application protocol and be specified as a so-called WebSocket profile or subprotocol.
Some messaging protocols have such profiles defined.

Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) proto-
cols aim primarily to provide privacy and data integrity between communicating processes.
They also allow authenticating one or two communication end-points. TLS works over
TCP. DTLS is its functional equivalent that works over UDP. These protocols use public-key
cryptography for secure key exchange. When the encryption key is securely exchanged,
user data for efficiency purposes are encrypted using symmetric encryption, in most cases
some variant of AES encryption. Moreover, data stored in the certificates could be used
for the authentication of one side of communication. In most cases, in such a way server
where clients are connecting is verified. However, TLS/DTLS introduces so-called mutual
authentication during both communication sides are authenticated. In the IoT environment,
this feature can be used for authentication of IoT devices as well as a central server, where
they send data. TLS/DTLS can also be configured to work with pre-shared symmetric keys
(RFC 4279). Thus, an IoT system designer can based authentication on digital certificates
with public keys, raw asymmetric keys, and pre-shared symmetric keys.
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Table 3. Transport features.

Protocol
Basic

[Additional]
Transport

Security QoS Data
Prioritisation Addressing Filtering

Capability

MQTT TCP,
[WebSocket]

TLS profile:
authentication
+authorisation

3 levels topic

MQTT-SN ZigBee or UDP 4 levels topic

CoAP UDP,
[TCP, WebSocket] DTLS 2 levels URI URI syntax

STOMP TCP,
[WebSocket] destination name

XMPP TCP,
[WebSocket] StartTLS, SASL yes Jabber Id.

WAMP WebSocket realms, trust levels URI URI syntax

AMQP TCP, [UDP, SCTP,
WebSocket] TLS, SASL 3 levels yes queue,

topic/routing key
based on message

properties

DDS UDP, [TCP] DDS Sec.: safety
plug-ins

15 QoS politics
22 parameters yes topic/key topic, time,

content

OPC UA

TCP,
WebSocket, HTTPS,

UDP, [AMQP,
MQTT]

Secure channel and
security message

fields
yes URI, identifier

from namespace
views, filter data

structures

LwM2M
CoAP/UDP,

CoAP/SMS, MQTT,
HTTP

DTLS,
dedicated objects

URI, ObjectID,
Resource ID

Weave UDP, TCP Security profile IPv6 as resource
ID, traits

Another alternative for providing security and authentication is using Simple Au-
thentication and Security Layer (SASL) specified in RFC 4422. This protocol, called by
authors, framework, allows the addition of security functions for currently used application
protocols, like that used in the IoT environment. In contrast to TLS/DTLS, it contains
an extensive list of possible authorisation mechanisms, such as simple plaintext, various
challenge-response mechanisms, and integration with Kerberos or OAuth. It could intro-
duce data encryption and integrity checking; however, it allows the usage of TLS for this
purpose. XMPP and AMQP could utilise both mechanisms, TLS and SASL, at once.

StartTLS mechanism (a.k.a. Opportunistic Encryption) defined in RFC 4322 allows
starting an encrypted connection without any pre-arrangement specific to the pair of
systems involved. StartTLS is used to initiate an encrypted connection on the same port as
an unencrypted connection.

Every TCP session can be secured by TLS and every UDP session by DTLS. Both TLS
and DTLS mechanisms have many options, so application profiles define the particularities.
Some messaging protocols have such profiles. Moreover, as column 3 depicts, some of the
protocols specify additional mechanisms for authorisation purposes.

The protocols differ in the way they handle QoS parameters. XMPP, AMQP, and
DDS support priority data transfers. A messaging protocol can support the reliability of
data delivery. The support is needed if unreliable transport is used (UDP) or intermediate
devices (brokers, message routers, or servers) are on the path. The expected reliability level
is expressed as the QoS parameter in MQTT, CoAP, and AMQP. However, DDS offers the
most extensive set of QoS settings.

Application messages can be identified differently. Which one is the most suitable
depends on the application logic. Column 6 shows the offering of the analysed protocols.
Querying and subscriptions can be more efficient if the addressing is supported by a
filtering capability (column 7).
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5.2. Maturity and Complexity

All of the messaging protocols can be found in many existing deployments. We assess
their maturity seeing the time its stable specification exists. From that perspective, only
WAM can be considered as not mature. Figure 1 depicts the time of the first draft of the
protocols appeared, and older specifications were valid (the yellow colour bars), the years
of the latest specifications (the beginnings of grey bars), and the publication years of the
newest protocol extensions (the starts of green bars). We can see that simpler protocols
tend to be more stable, as not many modifications or extensions are proposed to them.
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The complexity of a protocol determines the time and cost of learning. Moreover,
very complex protocols can be challenging to use, thus, entail more programming errors
or suboptimal coding. We can estimate the complexity of the protocols by comparing the
volume of their specifications (Figure 2) and the number of defined protocol elements
(Figure 3). We distinguish volumes of the core protocol and related standards. The
comparison is not very strict. In most cases, the related standards propose some functional
extensions, but they can give implementation guidance, use-cases descriptions, or user
APIs. For example, the DDS related documents cover many API issues, while MQTT none.

For LwM2M, we only provide the volume of the core specification. It is difficult to
assess the volume of related documents, as they are XML schemas for object modelling
and registries of objects and resources. The same for OPC UA—we have not calculated the
volume of many information models already published. Nevertheless, the effort needed to
learn the full potential of DDS, XMPP, OPC UA, LwM2M, and CoAP is more significant than
to learn STOMP, MQTT, or WAMP. We should notice here that there are more information
models for IoT, which are defined by other organisations, e.g., W3C “Web of Things (WoT)
Thing Description”.
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The complexity of the protocols is illustrated by the number of PDUs and protocol
elements. The PDU number reflects how many different operations an application can
call. The number of elements reflects how many parameters a programmer can set. For the
Weave protocol, PDUs reflect five possible actions that could be performed on so-called
traits, which describe each device’s functionality. These traits could be in this comparison
treated as protocol elements. We cannot show this number, as it depends on the device’s
functionality. Moreover, the bigger protocol complexity, the bigger footprint implementa-
tion has. However, the footprint size can depend on the application code and implemented
options. The middleware and code development environments, especially for constrained
applications, optimise the size of linked libraries according to their usage. From the com-
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plexity measures perspective, CoAP is simpler than MQTT, contrary to documentation size.
The first perspective indicates the learning time the second programming difficulty.

The number of PDU types determines the number of SDUs (Service Data Units), which
are the API functions a programmer interacts with. The API of a given protocol library is
slightly more numerous in practice than the PDU type number. The API provides functions
that instantiate and close the protocol context. Moreover, it optionally provides functions
that alter the context state, process some data format conversions or provide some security
operations. With a given messaging protocol implementation, the available programming
libraries often provide rich functionality, e.g., a complex server or broker module. The
programmer should pay attention to the protocol version and options supported by the
selected library. The library may implement one of the first protocol versions, and that the
library may provide some extensions not yet standardised. Moreover, two libraries can
support different sets of protocol options, which results in interoperability problems.

5.3. Suitability and Applicability

We have distinguished four types of IoT devices related to communication needs.
Table 4 shows the suitability of the analysed protocols for them. The constrained devices
that save energy should minimise the volume and frequency of transmitted data. The
constrained devices with a small memory size and processing power need simple protocols
with a small footprint. The two requirements imply the choice of UDP-based protocols
(MQTT-SN, DDS, UADP). Some TCP-based protocols (MQTT, STOMP, LwM2M) can be
selected if the expected data transfer is infrequent and short.

Table 4. Suitability for selected types of IoT devices.

Protocol Constrained
Devices

Payed
Transmission

Temporary
Off-Line

Always
Online

MQTT +/− + + +
MQTT-SN + + + +

CoAP + + + +
STOMP +/− + + +
XMPP − +/− + +
WAMP − +/− + +
AMQP − +/− + +

DDS + + + +
OPC UA +/− + + +
LwM2M +/− +/− +/− +
Weave + +/− + +

The devices whose cost of internet access should be considered (e.g., those connected
via a low-power wide-area network) should minimise the time of communication sessions
and volume of transferred data. Hence, the protocols based on long TCP connectivity
should be avoided (XMPP, WAMP, AMQP). All the analysed protocols can tolerate session
interruptions and are suitable for always-online devices.

We have distinguished seven communication purposes for IoT applications. As we
see in Table 5, most of the purposes can be realised using any protocol. The only exception
is the opportunistic peer-to-peer data exchange. For example, such exchange is necessary
for communication between mobile devices. Direct peer-to-peer communication needs
symmetric roles for message exchange and a lack of intermediate devices. Only CoAP
can easily be used for this purpose. DDS allows for direct communication between peers;
however, their discovery and authentication are a problem to overcome in a way. WAMP
specification promises communication with symmetric roles between neighbouring devices.
Nevertheless, it could be more suitable to create links between WAMP brokers than between
mobile devices.
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Table 5. Suitability for basic communication purposes.

Protocol Configuration Data
Acquisition

Data
Querying Alarms Command

Dispatching
Process
Control

Direct
Peer-to-Peer

MQTT + + +/− + + +/− −
MQTT-SN + + +/− + + +/− −

CoAP + + + + + + +
STOMP + + +/− + + + −
XMPP + + +/− + + + −
WAMP + + + + + + +/−
AMQP + + + + + + +/−

DDS + + +/− + + + +/−
OPC UA + + + + + + +/−
LwM2M + + + + + + +
Weave + + + + + + +

The IoT applications that expect data samples only on request can use any of the
protocols. However, using some of them may be suboptimal, as column four shows. For
example, MQTT and MQTT-SN cannot be optimal for process control applications. The
intermediary devices introduce delays. Moreover, the intermediaries can be overloaded by
such applications.

Information concerning Weave can be a little misleading. Weave can be used, or at least
have functionality, for all considered communication purposes. However, due to its specific
application, in most cases, this protocol is used only for smart-home device management
and utilised only by dedicated smart-home management software or smart-home cloud.

6. Related Work

We can find many papers that compare selected messaging protocols. However, most
of them analyse only a few of them. Moreover, the older comparisons are outdated due to
the continuous evolution of the protocols, as Figure 1 depicts. Below we give a short review
of the recent papers trying to supplement our comparison with interesting information and
illustrate the reading available on this topic.

The need to find an appropriate messaging protocol for a specific application has
stimulated some research. For example, Amaran et al. [24] have evaluated CoAP and
MQTT-SN in a robotic application. Their experiment shows that MQTT-SN performs
30% faster than CoAP. Durante et al. [25] analysed the same two protocols for a marine
environment acoustic monitoring system design. They demonstrated that MQTT-SN
latency is 30% lower, the power consumption is 10% lower, and the traffic flow is 2.15 times
larger than CoAP for architecture with 40 wireless nodes. The two works selected only
MQTT-SN and CoAP, as both protocols work over UDP, which is a justified decision for
constrained devices.

Smart grid systems are another specific IoT application, which motivated the Šikić et al.
work [26]. Their laboratory experiments showed that the MQTT protocol achieves minimal
message overhead and shortest delivery time than AMQP and HTTP. Glaroudis et al. [27]
analysed a more extensive set of protocols for smart farming developments. They have
compared MQTT, CoAP, XMPP, AMQP, DDS, REST-HTTP, and WebSocket. They conclude
that the most promising protocols for agriculture applications are CoAP (when regarding
such factors as latency over LAN, bandwidth consumption, and energy consumption) and
MQTT (considering latency over a mobile network, throughput, reliability, developers’
and researchers’ preferences). They admit that there is no suitable-for-all solution, and
different protocols can be reasonable for device-to-gateway, gateway-to-cloud, and cloud
to the end-user communication.

Dizdarević et al. [28] have compared a similar set of protocols, i.e., RESTful HTTP,
MQTT, CoAP, AMQP, DDS, and XMPP, focusing on possible implementations in the
IoT-based fog and cloud computing systems. They conclude that the most mature are



Sensors 2021, 21, 6904 28 of 32

RESTful HTTP and MQTT, that MQTT has excellent performance on constrained devices,
and that the performance of RESTful HTTP is not sufficient for combine IoT-fog-cloud
solutions. They notice that AMQP has relatively high power-, processing- and memory-
related requirements, making it a rather heavy protocol, not well-fitting IoT systems. They
mention that XMPP has some inconveniences, i.e., massage size, absence of QoS, lacks
an efficient binary encoding, and that the lightweight XMPP publish/subscribe scheme
is not yet available. They have analysed several dozen papers presented comparisons to
assess latency, bandwidth utilisation and throughput, energy consumption, and security of
selected messaging protocols. The observation is that the optimal protocol choice depends
on the selected application scenario; e.g., it depends on the size of the payloads and the
transfer’s frequency and burstiness. Consequently, they conclude that the straightforward
solution would include combining a lightweight protocol between IoT and the fog and
a protocol not restricted to the constrained devices between the fog and the cloud. They
consider two protocol pairs CoAP with RESTful HTTP and MQTT with AMQP.

Ghotbou and Khansari [29] have identified a set of particular requirements that
should be satisfied for video transmission in low-power lossy networks. They analysed
the suitability of many protocols for that purpose, i.e., AMQP, CoAP, DDS, MQTT, MQTT-
SN, Websocket, XMPP, HTTP 1.1/2.0, RTP/RTCP. They concluded that CoAP is the most
suitable protocol amongst all reviewed, and CoAP could satisfactorily support video
transmission on constrained and non-constrained networks.

One of the aims of vehicle-to-cloud communication is maintaining digital twins. Proos
and Carlsson [30] have compared the performance parameters of AMQP, CoAP, MQTT for
such applications. They used real-case data and selected protocol implementations in their
experiments. Their results show that CoAP has the lowest latency and overhead but cannot
guarantee reliable transfer (even when using its confirmable message feature). The best
performer that guarantees reliable transfer is MQTT. We can comment that TCP, similarly
to CoAP, has a retransmission counter, which breaks the connection when it expires. Thus,
their observation shows a flaw in the implementation, not on the protocol side.

Talaminos et al. [31] have analysed the DDS, MQTT, CoAP, JMS, AMQP, and XMPP
protocols considering a particular e-health use-case, i.e., monitoring respiratory rehabil-
itation of chronic obstructive pulmonary disease patients in ambulatory and at home.
They built a dedicated benchmark framework and gathered different performance metrics,
including CPU usage, memory usage, bandwidth consumption, latency, and jitter. They
conclude that DDS is the best choice for the ambulatory scenario and MQTT for the home
scenario. Their metrics well illustrate the strengths and weaknesses of the analysed protocols.

The selection of appropriate messaging protocol for an industrial application is a
problem analysed in some recent papers. Karaagac et al. [19] have analysed the OPC UA
and LwM2M protocols and implemented a docker-based virtualisation server to enable
cooperation between networks built over the two protocols. They pointed out that OPC UA
supports more complex data models (e.g., type inheritance, nested object structure) than
LwM2M. Moreover, they notice that OPC UA supports a wide variety of data types and
methods, where LwM2M only defines eight data types and uses existing CoAP methods.
Profanter et al. [32] have compared performance parameters of selected implementations
of OPC UA, ROS (Robot Operating System), DDS, and MQTT. They demonstrated that
the OPC UA and DDS implementations deliver high performance than the ROS and
MQTT implementations.

In the research by Thangavel et al. [23], we can find a performance evaluation of
MQTT and CoAP based on a common middleware and application scenario. Their findings
reveal that MQTT messages have lower delay than CoAP messages at lower packet loss
rates in a transmission medium. However, the results are opposite at higher loss rates.
Moreover, when the message size is small and the loss rate is equal to or less than 25%,
CoAP generates lower additional traffic than MQTT to ensure message reliability. We can
notice that their findings stem from the features of TCP and UDP that carry PDUs of MQTT
and CoAP, respectively.
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V. Sarafov [33] has constructed an abstract theoretical model for comparing the over-
head of the same protocols, then the article above-mentioned presenting experimental
comparison, i.e., CoAP and MQTT. Moreover, Sarafov also analysed WebSocket. He con-
firmed the theoretical results with some experiments. He showed that the overhead of
CoAP with non-confirmable requests and responses is the least. Next, MQTT with QoS 0 is
the second. However, CoAP’s reliable configuration performs better than MQTT QoS 2.
WebSocket behaviour is slightly worse than MQTT due to the additional data exchange for
connection opening.

Recently Al-Masri et al. have published a comprehensive comparison of messaging
protocols for IoT [34], i.e., HTTP, MQTT, CoAP, AMQP, DDS, and XMPP. They analysed
the support of the protocols by ten popular IoT platforms (like Azure IoT Hub, Google
IoT Core). Interestingly, all platforms carry HTTP and MQTT; six support AMQP, four
CoAP, two XMPP, none of them DDS. The authors analysed about 170 papers to gather
helpful information about the protocols, providing long lists of the protocols’ advantages
and disadvantages. Even though some of their statements are arguable, we consider their
study a valuable review of numerous analyses of the messaging protocols. We find their
findings complementary to our comparison presented in the previous chapter.

Another recent comparison of IoT messaging protocols by Silva et al. [35] provides
experimental data on MQTT, CoAP, OPC UA usage. The article also analyses several
communication techniques in the context of IoT design, namely HTTP, CoAP, QUICK,
AMQP, MQTT, DDS, OPC UA, and NDN (Named Data Networking).

In the paper by N. Naik [36], a short comparison of MQTT, CoAP, AMQP, and HTTP
can be found. He ranks the protocols concerning message overhead, resource consumption,
bandwidth, latency, reliability, security, and usage. The ranking is well presented. However,
the reliability and security features depend more on implementations than on the protocols
themselves; thus, these features analysis is arguable. Unfortunately, we have found more
articles presenting arguable methodology or conclusions.

Many of the related works investigated the performance parameters of selected mes-
saging protocols. The consumption of computation resources strongly depends on the
implementation way, installed and activated extensions, configuration method, and in some
cases also the way the application is used—for example, a protocol throughput depends on
the size of data samples, on the QoS setting. In consequence, the performance comparisons
should be cautiously considered. Moreover, functional comparisons from the past may no
longer be valid due to the evolution of the standards and implementation libraries.

We tried to gather the performance measurements from different articles and put them
together, but such data was misleading. The published results are incomparable. They are
related to different usage scenarios and software and hardware platforms applied in the
performed tests. Additionally, presented in the article, comparisons cover only selected
protocols, in many cases only two. Due to this fact, we decided qualitatively compare
all protocols.

7. Conclusions

We have surveyed the plethora of messaging protocols available to IoT system design-
ers and comprehensively compared them. We have also analysed the functional objectives
of protocols, their messaging and transport features, complexity, and suitability for different
uses. The collected observations and recommendations provided a pragmatic view helpful
for IoT system architects. The value of such a view results from the fact that selecting an
appropriate communication protocol could have a crucial impact on cost, time, and the
most crucial issue—the success of the deployment.

Each of the described protocols has a large group of enthusiasts who promote and
develop their standards. All of the protocols are used in many deployed systems. Moreover,
each of them is associated with numerous programming libraries. However, some of these
libraries are older and do not fulfil all the functions defined in the latest standard versions.
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There are also functions implemented in a given library but not defined in the standard. All
the facts increase the difficulty of choosing the appropriate protocol for a given IoT solution.

The communities engaged in particular protocol evolution tend to make the protocol
universal and commonly used. Thus, the results of suitability and applicability analyses
(Tables 4 and 5) do not allow for easy protocol classification. Consequently, the choice of a
suitable protocol for a given application is more complicated.

For resource-constrained IoT devices, MQTT and CoAP are attractive protocols. De-
vices that do not support the TCP protocol due to energy consumption can only use CoAP,
MQTT-SN, DDS, and UADP. The significant advantages of CoAP and MQTT over other
protocols include low header overhead, low consumption of computing resources, and
low message delivery delays. All this makes them attractive for any IoT device. In turn,
striving to minimise the complexity of the message exchange mechanism, which translates
into computing requirements for the hardware and design time, it is worth considering the
mentioned ZeroMQ and YAMI4 communication libraries.

While designing simple systems without particular implementation constraints, the
most straightforward protocols, such as STOMP or WebSocket, may be the optimal choice.
On the other hand, when we expect functionally rich support in managing messages,
LwM2M, AMQP, DDS, and OPC UA, can be attractive. The DDS and OPC UA are the most
complex of the protocols presented here, and they can be recommended as a basis for large
IoT systems.

A different choice may be optimal for each specific implementation. The protocols of
moderate complexity are XMPP and WAMP. It is a good design practice to select a protocol
that is as simple as possible that meets the functions necessary for a given implementation.
The more complex the mechanism, the more time it takes to design and implement, the
more compute and memory resources are used.

The presented comparison is more qualitative than quantitative. It is not easy to
find qualitative parameters for comparing protocols basing on their specifications. Even
simple parameters like min/average/max header and message sizes depend on application
scenarios and selected protocol options, and we failed to calculate them. The interesting
parameters like processor, memory, bandwidth consumptions, effective-to-transmitted
bitrate are implementation-dependent. To make a credible protocols comparison based
on their implementations, a team should build at least three different IoT communication
scenarios based on at least three different implementations of each protocol on the same
hardware devices. Moreover, even if such a comparison was provided, there was a high
risk that results could be completely different in a slightly changed application or due to
the usage of other extensions. It is probably a challenging future work to do, but it is huge
work. It is also challenging to define some benchmarks for such comparison.

In this paper, we have considered mainly the communication aspects of the messaging
protocols. The data representation issues, we touched only in the context of message
compactness. The protocols use different approaches to object modelling, expressing
their semantic, defining namespaces. An IoT system designer has multiple choices. Thus,
there is a need for a comprehensive analysis and comparison of IoT data and metadata
representation, which points to an essential direction for further research.
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