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Abstract: The Internet of Things (IoT) leads the era of interconnection, where numerous sensors and
devices are being introduced and interconnected. To support such an amount of data traffic, wireless
communication technologies have to overcome available spectrum shortage and complex fading
channels. The transform domain communication system (TDCS) is a cognitive anti-interference
communication system with a low probability of detection and dynamic spectrum sensing and
accessing. However, the non-continuous and asymmetric spectrum brings new challenges to the
traditional TDCS block-type pilot, which uses a series of discrete symbols in the time domain as
pilots. Low efficiency and poor adaptability in fast-varying channels are the main drawbacks for
the block-type pilot in TDCS. In this study, a frequency domain non-uniform pilot design method
was proposed with intersecting, skewing, and edging of three typical non-uniform pilots. Some
numerical examples are also presented with multipath model COST207RAx4 to verify the proposed
methods in the bit error ratio and the mean square error. Compared with traditional block-type pilot,
the proposed method can adapt to the fast-varying channels, as well as the non-continuous and
asymmetric spectrum conditions with much higher efficiency.

Keywords: Internet of Things; transform domain communication system; non-continuous spectrum;
fast-varying channel; non-uniform pilot; efficiency

1. Introduction

The Internet of Things (IoT) is a global network of interconnected objects, where
numerous sensors and devices are interconnected as parts of the internet to expand their
efficiency [1]. Wired and wireless networks are ubiquitous in IoT, which largely increases
the demand on the spectrum overhead [2,3]. Cognitive radio (CR) is an emerging trend for
supporting multiuser and hybrid communications [4,5]. With the combination of IoT and
CR concepts, the network is applicable for real-time cognitive radio applications as well as
various dynamic environments [6–9]. Transform domain communication system (TDCS)
is a cognitive anti-interference communication system, which is regarded as a promising
candidate of CR for the IoT massive multiple access scenarios [10,11]. Unlike orthogonal
frequency division multiplexing (OFDM) and multi-carrier code division multiple access
(CDMA), TDCS is designed to avoid occupied frequency bins by signal processing facilities
at both the transmitter and receiver instead of mitigating the interference only at the
receiver [12–14]. Therefore, sensing the spectrum at both sides and shaping the transmitting
waveform are the key features of TDCS.

In practical applications, TDCS has to adapt to the multipath time-varying channels.
Without accurate channel state information (CSI), TDCS either cannot work or may suffer
serious performance losses. Besides, the non-continuous and asymmetric spectrum of the
transmitter and the receiver make the channel estimation and equalization more difficult.
Pilots are a common solution for obtaining the CSI [15]. For TDCS, only block-type pilots
are reported in the literature, which periodically inserts certain symbols in the time domain
of the transmitting signal. Since pilots appear in all unoccupied frequency bins of the
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inserted symbols, the block-type pilots are insensitive to the frequency selective fading. In
other words, they are only valid for the slow-varying channels, where the CSI is constant
during one block [16,17]. Besides, the pilot symbols could not carry data, which reduces
the system efficiency. Comb-type pilots are widely used in OFDM [18]. They uniformly
distribute in the frequency domain of every symbol, which leads to a better flexibility for
the fast-varying channels. Since the CSI is obtained after frequency domain interpolation,
comb type pilots are sensitive to the frequency selective fading [19]. However, in TDCS,
uniform pilots are not suitable for the non-continuous spectrum conditions [20]. Besides,
some convex optimization methods based on non-continuous OFDM are seriously affected
by the asymmetric spectrum between the transmitter and the receiver [21]. In this article, a
series of efficient non-uniform pilots are proposed in the frequency domain in the forms
of intersecting, skewing, and edging types. Compared with the existing pilot types, the
proposed methods are more adaptive to the fast-varying channels, as well as the non-
continuous and asymmetric spectrum conditions with much higher efficiency.

In Section 2, TDCS and the classification of the typical transmitters and receivers are
reviewed as the foundation of the subsequent studies. In Section 3, efficient non-uniform
pilots are designed for TDCS, whose performance is also analyzed with comparisons. In
Section 4, some numerical examples are presented to verify the proposed methods. The
article is then concluded in Section 5.

2. TDCS and the Classification of the Transceivers
2.1. TDCS Model

The TDCS model is depicted in Figure 1. The transmitter and the receiver indepen-
dently sense the whole bandwidth to create the spectrum mask A(k), with the value 1 or 0 if
the kth frequency bin is unoccupied or interfered. Pseudo-random phases θk are created by
a pseudo-random sequence generator and applied element by the element to the spectrum
mask. The resulting vector is then passed through an inverse fast Fourier transform (IFFT)
and scaled to the desired power. Then, the basis waveform is cyclic-shifted to modulate
data in Gray code. The ith modulated symbol in the frequency and the time domain can be
expressed in complex baseband notation as (1) and (2), respectively.

STDCS,i(k) =

√
N
N1

A(k)ejθk e−j2πmik/M (1)

sTDCS,i(n) =
1√

NN1

N−1

∑
k=0

A(k)ejθk e−j2πmik/Mej2πkn/N (2)
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In the equations above, N and N1 are the numbers of the total and the unoccupied
frequency bins, respectively. mi ∈ [1, M] is the ith data with M-ary CCSK (cyclic code shift
keying) modulation [22].

In the transmitter of TDCS, pilot symbols are then periodically inserted to the modu-
lated symbols in the time domain. After inserting the cycle prefix (CP) to every symbol [23],
the transmitting signal is completely generated.

The transmitting signal goes through the multi-path channels with interferences and
additive white Gaussian noise (AWGN). In the receiver, the CP is removed from the
received signal, the pilots are extracted to estimate the CSI. The rest are the data symbols,
which are used for correlation and peak detection with the estimated CSI. Finally, the
demodulated data can be obtained by the corresponding inverse mapping.

2.2. The Classification of TDCS Transmitters and Receivers

Considering the influence from predetermined conditions of the frequency domain pi-
lot interval and the practical spectrum mask generation, we can classify TDCS transmitters
into two categories:

1. Tx 1;

The two factors above act independently. The pilots are uniformly inserted in the fre-
quency domain of every symbol, which are designed the same as the contiguous spectrum.
The practical spectrum mask restricts the interfered frequency bins for transmission [24].

2. Tx 2;

The practical spectrum mask can influence the frequency domain pilot interval. Ex-
haustion or convex optimization methods insert pilots non-uniformly in the unoccupied
frequency bins.

According to whether the receiver knows the real-time pilots of the transmitter, the
receivers can be classified as:

1. Rx 1;

The receiver knows the transmitter practical spectrum mask or the positions of the
pilots. Some spectrum exchange mechanisms were implemented to obtain the accurate
pilots for channel estimation and interpolation. If the pilot design method is known, pilots
on the symmetric frequency bins of both Tx 1 and Tx 2 type can be obtained.

2. Rx 2;

The receiver does not know the transmitter practical spectrum mask. This means
there is no spectrum exchange between the transmitter and the receiver. If the spectrum is
symmetric, the receiver can obtain the accurate pilot positions. For asymmetric spectrum
conditions, partial pilots on the asymmetric frequency bins of Tx 1 type would be influenced.
However, almost all pilots of Tx 2 type are influenced since different spectrum masks lead
to entirely different pilot positions, and orders are confused [25].

Actually, the transmitter and the receiver of TDCS usually work in the non-continuous
and asymmetric spectrum conditions. The spectrum exchange mechanism would occupy
too much control signaling spending [26]. Therefore, to ensure Rx-2-type receivers work
properly, the transmitter should be modified based on the Tx 1 type.

3. Efficient Non-Uniform Pilot Design for TDCS
3.1. Non-Uniform Pilot Design

For uniform pilots, according to the Nyquist sampling theorem [27], to restore fre-
quency domain signal without distortion, the corresponding time domain extension period
should be less than the maximum delay spread.

N f ≤
1

τmax∆ f
(3)
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In (3), N f is the minimum pilot interval in the frequency domain, ∆ f is the interval
between adjacent frequency bins, and τmax is the maximum multipath delay. As shown
in Figure 2, the spectrum of the whole bandwidth is divided into Ns segments (separated
with the dotted lines), and the uniform pilots lie in the center of every segment.
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To fit the non-continuous and asymmetric spectrum conditions, we designed non-
uniform pilots gradually. The simplest method is to directly use the intersecting between
the uniform pilots and the practical spectrum mask. The positions of intersecting type
Pint(k) can be designed as the uniform type pilot.

Pint(k) = Puni f orm(k)A(k) (4)

Puni f orm(k) is the uniform pilot mask with a value 1 or 0 if the kth position is pilot or
not. In the positions of Pint(k) = 1, the values of the pilots Sint(k) can be designed as the
absolute values of the frequency domain basis waveform.

Sint(k) =
{
|STDCS,i(k)|, pilot positions
STDCS,i(k), else

(5)

The intersecting type is restricted by the practical spectrum mask. However, some
segments are usually partly unoccupied with the uniform pilot positions interfered. This
means the segments carry information, but no corresponding pilots are inserted to the
segments. Therefore, the CSI of those segments could not be estimated, and their carried
information may not be correctly demodulated. To solve the problem above, we designed
skewing-type non-uniform pilots by appropriately skewing the pilots in the segments.

The skewing type was designed based on the intersecting type, if the uniform pilot
position is unoccupied or the whole segment is interfered, which was set the same as the
intersecting type. If the segment is partly unoccupied with the uniform pilot position
interfered, the pilot position should skew using the following rule.

O = [−1,+1,−2,+2 . . . . . .− N/Ns − 1
2

,+
N/Ns − 1

2
] (6)

In (6), O is the value of the skewing and − and + mean skewing in descending and
ascending order within the segment, respectively. The values of the pilots are the same as
the intersecting type in (5). As shown in Figure 2, the extra dotted arrowed pilots in the
skewing type ensure the partly interfered segments can be estimated. Therefore, the most
applicative spectrum conditions for the skewing type are dispersive and dense to ensure
every segment has a valid pilot.

We assumed that the availability of each frequency bin within the total bandwidth
N follows a binomial distribution B(N, p), where p is the probability of the availability.
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If only one pilot is inserted in each segment, the probability of the none frequency bin is
available within a continuous s frequency bins, which could be deduced.

P(s, p) = (1− p)s (7)

According to (7), for the typical case with p = 0.5 and s = 8, the probability could be
easily calculated as P(8, 0.5) = 0.0039, which would hardly happen. In other words, a valid
pilot would be correctly inserted into every segment to achieve the channel estimation in
the vast majority of cases. However, in actual fact, compared with multi-tone interference
occupying on different frequency bins, narrowband or wideband interference are more
common [28]. Therefore, to obtain a compete channel response, the restored frequency
domain pilots must be interpolated, with frequently used constant interpolation, Gaussian
interpolation, or cubic spline interpolation [29].

If the spectrum conditions are aggregate and sparse, the edges of the segments could
not be correctly interpolated and estimated. In Figure 2, the shaded parts of the spectrum
mask could not be interpolated for the non-valid pilot between them. We designed the
edging type pilot based on the skewing type. Extra pilots were inserted in the edges
of every interference (continuous zeros in the spectrum mask) with the vales as (5). In
Figure 2, the dotted arrowed pilots in the edging type are the extra pilots.

3.2. System Design with Non-Uniform Interpolation, Estimation, and Equalization

TDCS with frequency domain non-uniform pilots in Figure 3 is quite different with
a time domain pilot system in Figure 1. To avoid the extra process in the time domain,
we directly generated M-ary frequency symbols in the frequency domain by multiplying
spectrum mask, pseudo-random phases, and CCSK phases 2πmk/M.

Sm(k) =

√
N
N1

A(k)ejθk ej2πmk/M (8)Sensors 2021, 21, x 6 of 13 
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In (8), m ∈ [1, M] is the sequence of M-ary CCSK. Then, the pilots were inserted in
different types mentioned above with the absolute values of Sm(k) in the pilot positions to
generate CCSK symbols Sm,pilot(k).

Sm,pilot(k) =
{
|Sm(k)|, pilot positions
Sm(k), else

(9)
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The ith signal with data mi can be expressed.

si(n) =
1√

NN1

N−1

∑
k=0

Smi ,pilot(k)ej2πkn/N (10)

To eliminate the inter-symbol interference (ISI), the length of CP follows the rule as
(11) [30].

LCP ≥
τmax

ts
= τmax fs (11)

In (11), τmax is the maximum multi-path delay and fs and ts are the sampling frequency
and sampling period, respectively.

In the receiver, the removed CP signal ri(n) was used for demodulation. According to
the non-uniform pilot positions, we extracted pilots Pi(k) from Ri(k), which is the FFT of
ri(n).

Ri(k) =
1
N

N−1

∑
k=0

ri(n)ej2πkn/N (12)

We used the least squares (LS) method [31] to estimate the channel response in the
frequency domain.

Ĥi(k) =
Pi(k)

Pi,local(k)
(13)

In (13), Ĥi(k) was only valid in the pilot positions, while others were set as zero.
Pi,local(k) is the local accurate pilot. Ĥi(k) was non-uniform, and interpolation was nec-
essary to fill the whole channel response according to the existing pilots. Uniform linear
interpolation is first-order and fits the small pilot interval conditions. Uniform Gaussian
and cubic spline interpolations are high-order, which leads to the variance of noise being
doubled.

In this study, we regarded uniform linear interpolations between every adjacent non-
uniform pilots as non-uniform linear interpolation to obtain the whole channel response
Ĥi,intp(k).

Ĥi,intp(x) = (1− q− x
p− q− 1

)Ĥi(q) + (1− x− p
p− q− 1

)Ĥi(p) (14)

In (14), p and q were the adjacent pilots. x ∈ (p, q) are the interpolated positions.
Minimum mean square error (MMSE) equalization [32] was used to eliminate the multi-
path influence. The signal after equalization ri,MMSE(n) could be deduced.

ri,MMSE(n) =
1√

NN1

N−1

∑
k=0

Ri(k)Fi(k)ej2πkn/N (15)

Fi(k) =
C(Ĥi,intp(k))

Ĥi,intp(k)C(Ĥi,intp(k)) + σ2
n I1×N

(16)

In the two equations above, σ2
n is the variance of the AWGN, I1×N is the all-ones

matrix with one row and N columns. C(x) means the conjugate of a complex matrix x.
To keep the signal-to-noise ratio (SNR) in the same level, we demodulated with pilots

by using sm(n) (the time domain CCSK symbols with pilots) in the receiver to correlate
with ri,MMSE(n). The peak detection and inverse mapping were the same as traditional
TDCS in Figure 1.

3.3. Performance Analysis

For the time-domain block-type pilots, the pilots themselves occupied the symbols
that are used for carrying information. Similar to (3), the sampling rate 1/NtT should be
not less than twice the signal bandwidth. The intervals between symbols can be expressed
as (17). The efficiency Nt can be defined as (18), which declines with the number of pilots.
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Nt ≤
1

2 fdT
(17)

In (17), fd is the Doppler frequency, and T is the symbol duration. Nt is the time
domain interval according to the Nyquist sampling theorem.

ηt =
Nt

Nt + 1
(18)

In TDCS, the CCSK constellation size M should meet the dimensionality theorem to
ensure orthogonality [33].

M ≤ N1 (19)

For frequency domain pilots, the pilots themselves occupy only some frequency
bins rather than whole symbols. However, the pilots still occupy the power of those
frequency bins, which are used for carrying information. The efficiency η f can be defined
as Equation (20). Especially, based on (19), if it satisfies M + Np ≤ N1, the efficiency of the
TDCS with frequency domain non-uniform pilots can be constant η f = 1.

η f =

{
N1−Np

N1
, M + Np > N1

1, M + Np ≤ N1
(20)

In (20), Np is the number of the non-uniform pilots. M frequency bins ensure the
CCSK orthogonality, while other Np frequency bins were used as pilots. The Np pilots just
occupied the surplus dimensions.

The pilots were contained in every symbol, which made frequency domain non-
uniform pilots fit to the fast-varying channels. The mean square error (MSE) can be
expressed as (21).

MSE(Ĥi,intp) = E
{
‖(Ĥi,intp(k)− Hi(k))A(k)‖2

}
(21)

In (21), Hi is the true channel response with pilots in all unoccupied frequency bins.
E{·} is the mean of all unoccupied frequency bins.

Compared with convex optimization methods [34,35], the proposed methods ensure
that the symmetric part of the frequency bins could be correctly estimated and equalized.
The asymmetric part cannot be accumulated to the matching peak of the correlated demod-
ulation in the receiver. Therefore, the SNR loss only appeared in the asymmetric parts.

4. Numerical Simulations

In this section, some numerical examples are simulated to verify the proposed methods.
The parameters were set as bandwidth B = 60 MHz, number of frequency bins N = 256,
and multipath model COST207RAx4 [36,37]. The bandwidth of every frequency bin
was 234 KHz, while other signals and interferences in the L band could be regarded as
large frequency blocks. Therefore, the spectrum mask was composed of interfered and
unoccupied frequency blocks.

According to (5) and (6), the non-uniform pilot positions of the intersecting, the
skewing, and the edging types are located as Figure 4 with N1 = 128 and uniform pilot
initial interval two frequency bins. Corresponding to the spectrum mask in the first row,
the pilots’ positions are listed with in the bandwidth. To exactly restore the TDCS signal
parts in the unoccupied frequency blocks as shown in the spectrum mask, the numbers of
the skewing- and edging-type pilots were slightly greater than the intersecting type with
an extra five and seven pilots, respectively.
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Figure 5 shows the MSE of the three proposed pilot types with linear interpolation.
The MSE decreases with SNR Eb/N0,which implies that AWGN enlarges the difference
between the estimated and the actual channel response. The number of the practical
inserted pilots was slightly different, as in Figure 4, which led to that channel’s estimation
performance of the edging-type pilot being slightly better than the others.
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Figure 6 shows the BER performance of the three proposed pilot types with linear
interpolation. The channel estimation of the edging type pilot was more accurate than
the others; therefore, it needed a much lower SNR Eb/N0 of 1 dB gap at BER 10−3. The
differences in Figures 5 and 6 also reflect the effect of certain key pilots for the channel
estimation and equalization performance.
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In Figure 7, the BER performance of the edging type pilots was simulated with
different parameters. The initial interval between two adjacent pilots determines the initial
pilot number; the smaller the interval the more pilots are inserted and the better the BER
performance the system achieves to restore the channel impulse response. The occupied
frequency bins, N1, represents the possibility of more pilots to some extent. Therefore, the
smaller number of N1 the worse the BER performance. Compared with N1 = 200 case,
the N1 = 128 case was much worse. The Doppler frequency fd increased the difficulty of
channel estimation; a larger Doppler frequency leads to a worse BER performance.
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In Figure 8, a traditional block-type pilot in a small Doppler of fd = 4 KHz (slow-
varying channel) condition showed the best BER performance, with an SNR Eb/N0 2.5 dB
lower than the proposed method at BER 10−3. However, according to the definition of
efficiency in (18) and (20), it also had the lowest efficiency η = 50%. The platform of
the triangle-line represents that the existing block-type pilot could not achieve in the fast-
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varying channels. As a comparison, the proposed edging-type pilot achieved an efficiency
of η = 100% with a much larger Doppler of fd = 50 KHz. The SNR Eb/N0 gap was about
6 dB lower than the existing block-type pilot. Therefore, the proposed method had a much
higher efficiency and better BER performance in the fast-varying channels.
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Dopplers.

To verify the availability of the proposed method in the asymmetric spectrum con-
ditions, the BER performance of the edging-type pilot was simulated in symmetric and
asymmetric spectrum conditions with different Dopplers. Based on the spectrum condition
of the transmitter side, the spectrum was randomly changed for 5 to 10% of the whole
bandwidth to simulate the typical asymmetry on the receiver side. Figure 9 shows that the
proposed method in the asymmetric spectrum condition was about 1 dB better than the
symmetric condition at BER 10−3 with a Doppler of 50 KHz and 0.5 dB with a Doppler
of 4 KHz. The result represents that the proposed method is valid on the asymmetric
spectrum conditions with a large Doppler.
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5. Conclusions and Outlooks

This study presents an efficient frequency domain non-uniform pilot design method
for TDCS, to enhance the adaptation of IoT cognitive radio devices in the non-continuous
and asymmetric spectrum conditions. Based on the idea of the comb-type pilot in OFDM,
considering the actual non-continuous and asymmetric spectrum, three frequency domain
non-uniform pilots were proposed as the intersecting, the skewing, and the edging type.
Then, the corresponding system estimation and equalization flow was presented with
performance analysis. Some numerical examples were also presented with multipath
model COST207RAx4 to verify the proposed methods in pilot distribution, BER and
MSE. The simulation showed that the proposed methods achieved a much better channel
estimation as well as efficiency performance than the existing block-type pilot method. The
edging-type pilot had an obvious performance advantage over the others with a few extra
pilot costs. The proposed method had a considerable performance in the large Doppler
and asymmetric spectrum channel conditions

As a promising CR candidate, TDCS has a series of actual technical problems to solve,
such as efficiency, environmental adaptation, peak-to-average power ratio (PAPR), etc.
However, various aspects of capacity in TDCS are mutually restrictive. To put the proposed
frequency domain non-uniform pilot into practical use, future work should consider the
PAPR reduction for the inserted pilots.
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