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Abstract: This article presents the research and results of field tests and simulations regarding
an autonomous/robotic railway vehicle, designed to collect multiple information on safety and
functional parameters of a surface railway and/or subway section, based on data fusion and machine
learning. The maintenance of complex railways, or subway networks with long operating times
is a difficult process and intensive resources consuming. The proposed solution delivers human
operators in the fault management service and operations from the time-consuming task of railway
inspection and measurements, by integrating several sensors and collecting most relevant information
on railway, associated automation equipment and infrastructure on a single intelligent platform. The
robotic cart integrates autonomy, remote sensing, artificial intelligence, and ability to detect even
infrastructural anomalies. Moreover, via a future process of complex statistical filtering of data, it is
foreseen that the solution might be configured to offer second-order information about infrastructure
changes, such as land sliding, water flooding, or similar modifications. Results of simulations and
field tests show the ability of the platform to integrate several fault management operations in a
single process, useful in increasing railway capacity and resilience.

Keywords: railway automation; multisensory platform; infrastructure failure detection; data fusion;
machine learning; statistical data filtering

1. Introduction

The present evolution of intelligent transport systems and policies in this field points
towards the reduction of environmental emissions, use of green and/or renewable energies,
and increasing the efficiency of processes. The railway transport mode has been given less
importance in the past years, due to the rapid growth of road transportation, its flexibility
in reaching various destinations, and mobility. However, for large amounts of freight, or
numerous passengers, the railway remains one of the most efficient and rapid ways of
movement in land transportation. Therefore, the EU policies in the rail transport area are
proposing a single European railway area [1]. The document recommends several direc-
tions in which the railway transport system should go: (i) interoperability—meaning all
high-speed railway automation systems and infrastructures should be compatible, (ii) so-
cial harmonization—harmonization of the minimal qualification requirements for workers
engaged in interoperable activities, (iii) reducing environmental emissions, especially noise
in this case. In this context, it can be noticed that the pressure on the interoperable workers
will be greater and the associated necessary knowledge on equipment, infrastructure and
operations need to be of a higher level. Therefore, we believe the present solution of auto-
mated, preventive maintenance, given by the involvement of an autonomous platform able
to collect, process, store and remotely present integrated data and alarming on potentially
dangerous modifications of the railway infrastructure could represent a real help in the
preventive maintenance activities.
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The purpose of this research is to give a solution to the problem of detecting mechanical
defects in the subway rail and underground train wheels.

The large-scale development of urban subways raises a major problem, namely the
detection of tunnel defects and running tracks, which are becoming particularly important.
Due to the complexity of the tunnel environment, it is difficult for traditional tunnel fault
detection algorithms to detect such faults quickly and accurately. This article presents an
integrated model for the simultaneous detection of defects that can occur in the tunnel
but also in the subway rail using a complex battery of LIDAR sensors, ultrasound, video
cameras but also a high-performance learning algorithm PCA T2Q for the machine learning
module that can detect more tunnel and tread defects quickly and accurately

The novelty of the work consists in developing an autonomous railway cart fitted
with several kind of sensors, able to travel along the railway, detect defects by continuous
measurements and integrate data via a data fusion process. The same platform can be used
with few modifications for the surface railways maintenance activities. A specific method
of detecting defects in the railway is proposed, based on an ultrasonic system that analyzes
the internal structure of the subway line. The analysis of collected data is based on the
evaluation of signal propagation and ultrasonic imaging using decompositions, based on
the principal component analysis (PCA) algorithm in the classic version. Supplementary,
the analysis is also based on kernel PCA (KPCA). In the first phase, defects are detected,
classified, and counted by analyzing their location and geometric features. Then, depending
on the maximum difference between the different types of defects and the maximum
tolerance of the same type of defects, the generalized characteristics of defects are extracted.
Finally, generalization features and training templates are created for the use of a machine
learning architecture employing PCA. The purpose is to classify the internal defects of
the subway railway. On this basic strong and generalized feature, the constraints are
formulated after reducing the size, and the KPCA grouping algorithm is developed to
perform data merging for defect detection. The experimental results show that the proposed
method can be used to detect internal defects with an acceptable level of accuracy and
detection speed.

The remaining of the article is organized as following: Section 2 presents related
work in the domain, based on a literature study, Section 3 is dedicated to the design of the
proposed solution for mobile autonomous data collection, Section 4 is for presenting the
test-bed setup and results of experiments, Section 5 Discussion, and finally conclusions.

2. Related Work
2.1. Context

Due to its high degree of safety, the railway is an effective mode of transportation for
both passengers and freight. With the inclusion of high-speed trains with dedicated and
surveilled infrastructures, land transportation became now competitive with air transporta-
tion, mostly for medium distances. In Europe, Germany began operation of high-speed
concept in railway transportation with ICE trains in 1991 and in 1994 the UK was linked
to the European continent via the Eurostar service, connecting Paris to London through
the Channel Tunnel. The document [2] states that “Due to France’s early adoption of
high-speed rail and its central position between the Iberian Peninsula, the British Isles
and Central Europe, most other high-speed rail lines in Europe have been built to the
French standards for speeds, voltage and signaling, with the exception of Germany, which
built to existing German railway standards.” The trend continues nowadays to increase
the operational speeds of trains, no matter if it is about surface railway or underground,
so there is more pressure on the quality of infrastructure, maintenance, and operation.
Therefore, we consider that automatizing the process of preventive maintenance becomes
a must for the railway industry.

The subway transportation is another form of railway transport, designated mostly for
urban areas. It also represents the best alternative to automotive, individual transportation
in large urban environments. However, there are numerous cases in which railway, or
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subway networks face extensive wear and require large amount of capital expenditure to
maintain sufficient performance levels. Furthermore, based on these aspects, it was con-
sidered that the development of an integrated solution to make as efficient as possible the
fault maintenance operations is necessary. In these conditions, the objective of the present
research presented in this article was to develop an autonomous, intelligent platform for
railway and/or subway stations and tunnels measurement and profiling, considering
infrastructural, electrical, and mechanical components.

2.2. Literature Survey

The scientific literature is relatively rich in the field of automated measurement and
non-conventional solutions for a rapid assessment of the status of different functional com-
ponents of a railway, or underground network. The modern signaling systems, interlocking
and concentrated control dispatching solutions now use widely standardized solutions
employing fail-safe and majority (triple) redundancy principles in railway automation.
These involve numerous elements with high functional responsibility, zero-tolerance to
critical faults that lead to catastrophic events in railway. Therefore, the responsibility in
fault maintenance systems is very high, wherefrom the intense research in this direction to
achieve new solutions and procedures for fast and efficient measurements of correct state of
operation. In addition, the railway mechanical infrastructure itself, represents a collection
of constructions, mechanical elements, ancillary equipment always exposed to intense wear
and stress, that need continuous monitoring for early detection of faulty elements. Until
present, there are few developments in the field of autonomous railway vehicles designed
to detect and mark defects, and the subway lines make no exception. Track alignment
and other geometric measurement methods usability is analyzed in [3], where the authors
conclude that “The selection of the optimal method of measuring the geometry of the track
system depends on the technical and economic conditions of the contractor and the condi-
tions prevailing in the field.” They also say that “ . . . automatic systems such as measuring
systems using measuring cars will be the optimal choice.” Pengyu Pan et al. [4] present a
solution for measuring the impedance of electrical traction network at high-speed trains.
They propose a method to determine the equivalent impedances of traction network and
the 4QC of electric train in the stationary frame for stability analysis, also determining the
stability and mechanical oscillation issues specific to high speeds. Complex magnetic per-
meability measurements are used for calculating rail internal impedance via finite elements
method presented in [5] by Alberto Dolara and Sonia Leva. They considered the normal
magnetization curve and complex magnetic permeability and included that data into the
proposed finite elements method models. The authors also present an electric model for the
dynamic behavior of the supercapacitors for this methodology of measurement. Passing on
to the rolling contact analysis for railway systems, in [6], the author investigates the defects
(cracks) with the help of a robotic inspection system. A novel technology, involving mobile
mapping systems, is presented by Daniel Lamas et al., being applied on a 90 km long
railway sector for the acquisition of data regarding the classification of rails, masts, wiring,
droppers, traffic lights, and signals. The methodology consists of a pre-processing phase,
in which each point cloud is sectioned and voxelised (a process in which it is produced
any of the discrete elements comprising a three-dimensional entity); then a segmentation
process is performed, followed by a merging process. The methodology presented auto-
matically extracts relevant assets of the railway infrastructure, such as rails, wiring and
signs, traffic lights, and marks, from 3D point cloud data [7]. Zhang Yi et al. present in their
article [8] an adapted method for grounding impedance measurement of high-speed trains
integrated grounding system, with a four grounding terminals impedance tester, with
a compensation methodology for more accurate results. A solution for exterior railway
infrastructure inspections is presented here, where the authors employ a combination of an
inertial system with a GNSS receiver for inspecting high-speed railway lines. According to
the authors and their experiments, the presented methodology and instrumentation can
produce a measurement of the track parameters with an accuracy better than 0.2 mm at a
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detection speed of around 3 km/h. The authors state that “compared with the traditional
Kalman filter method, the proposed design improved the measurement accuracy and met
the requirements for the detection of geometric parameters of high-speed railway tracks.”

A visual measurement system for track gauge evaluation was developed, experi-
mented, and presented in [9], involving setting of some measurement points, detection of
those points and measurement of distance between them. The experiments were carried
on Vilnius railway station yard. The authors write that the proposed method’s advan-
tages are its easy integration, low cost, and energy efficiency. In addition, in this field of
measurement activities, Chen, et al. [10] describe their work, employing the integration
of an inertial navigation system with geodetic surveying apparatus to set up a modular
train gauge measuring trolley system. Kampczyk [11] presents the analysis and evaluation
of the turnout geometry conditions, also describing the causes of turnout deformations.
Researchers such as Wootae Jeong and Dahae Jeong [12] present a method for accurately
measuring the roughness of wheels and rails, considered the main cause of producing the
noise during trains operation. They propose enhancing the chord offset synchronization
algorithm applied to the existing ARCer for high measurement precision with only two
displacement sensors. There have been also proposed alternative solutions such as the one
of chord offset synchronizing, which assumes that the rail surface is a sinusoidal wave
consisting of various wavelengths and uses multiple sensors so that each one compensates
for the measured values of the others. This procedure has been used to prepare for the
structural shortcomings of mobile measuring systems equipped with displacement sen-
sors [13,14]. Visual sensing, such as two-dimensional image recognition, is also employed
in the measurement and/or detection of the abnormal fastener in the rail-track inspection
system. The authors of [15] propose a multi-source visual data detection method, and
an accurate and robust fastener location and nut or bolt segmentation algorithm. They
write that “By combining two-dimensional intensity information and three-dimensional
depth information generated by the projection of line structural light, the locating of nut
or bolt position and accurate perception of height information can be realized in the dy-
namic running environment of railway.” In addition, in a similar work, Liu [16] describes
a method for foreign objects detection, based on a deep trust network for railway envi-
ronment protection and trains safety. The author of [17] uses a visual methodology for
fastener condition detection, based on the model of Siamese deep network, where at the
input is a couple of images. The features of the fastener are extracted by determining the
similarity of a pair of images. A method for the alignment and centring of the railway track
is described in [18], where a combination of a global navigation satellite system, an inertial
measurement unit and a laser scanner is used for increasing the precision to an acceptable
level. The combination of the above-described methods gave the best result for the track
on which the measurement vehicle had moved in the practical experiments, mapping
almost 100% of the track. Similarly, Elberink and Khoshelham [19] published their research
results on the automatic extraction of center line of railway tracks from laser scanner data
using data-driven and model-driven approaches. Aerial observation for detecting intrusive
objects in the railway movement space is presented in [20], by Neubert, M. and others,
such as Zhu, L. [21], who proposes the use of an airborne laser and mobile laser scanning
for modelling the railway environment. Usually, by employing data fusion from visual and
laser imaging, a complete railway environment can be aggregated and further analysed
employing various techniques, to detect foreign objects on the railway space, to evaluate
the state of health of different infrastructure elements, etc. Corrections, in this case, might
prove necessary to employ, such as described by different other works [22–24].

GNSS technologies are good for use in outdoors experiments, measurements, and
recordings. However, as presented before, such technologies cannot be employed for
railways in tunnels, or for subway lines, where the presence of deep concrete walls prevents
the low-powered signals of GNSS to be received. Here is a novelty of our proposed solution,
where the robotic cart determines its position via odometers and has the ability to integrate
measured data with position. For indoor environments, different technologies are to be
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adopted for positioning, measurement of gauges and geolocation. One of these is, of
course, laser scanning. As presented in [25] by Qian Wang, et al., a mobile laser scanning
system (MLSS) was used for the inspection of subway tunnels, and the key technology
of the positioning and orientation system (POS) was investigated. The authors obtained
an “accuracy of the 3D coordinates of the point clouds of 8 mm, and the experiment also
showed that it takes less than 4 h to complete all the inspection work for a 5–6 km long
tunnel.” The missing of the very practical GNSS technology for accurate positioning in
tunnels or radio-obscured spaces must be replaced by laser scanning, ultrasonic scanning,
methods that must be also completed with map matching (MM), intermittent responders,
coordinates of control points, and so forth [26].

Things become even more complicated when specific measurements are needed to be
performed to determine curvature, or elements situated in a curved section of a railway, or
a tunnel railway. Arkadiusz Kampczyk [27] is proposing an innovative measuring device
called the magnetic-measuring square (MMS).

The researcher describes a method for lacing/string lining and the measurement of
the perpendicularity of rail joints. He also employs an MMS device for measuring versines
and differences recorded in the lengths of rails, especially in curves. A laser beam is used
for this purpose with a target cross, a camera, and a surveying disk for measurement.

For pro-active maintenance purposes, Pacifique Turabimana and Celestin Nkundineza
propose in their article [28] the testing of a new measurement tool that employs an inductive
displacement sensor. The proposed system is said to be working in both static and dynamic
state of the railway vehicle and being able to save the historical records of the wheel
flange thickness for further analysis. In related work, employing different measurement
technologies and platforms, such as cameras, lasers, ultrasonic transducers, is presented
in [29] and [30]. In a similar work, using a lidar to for 3D modelling of train rails is
described in [31]. In their research [32], Li Q., et al. analyse the accurate measurement of
the railway track geometry possibilities and show a solution based on the integration of an
inertial navigation system (INS) with a geodetic surveying equipment. They also designed
a modular TGMT (TGMT—trainguard mass transit—allows for a close distance between
trains and allows the use of driverless trains) system based on aided INS, with the ability to
be configured according to different surveying tasks, including precise adjustment of slab
track, providing tamping measurements, measuring track deformation and irregularities,
and determination of the track axis. The authors also declare that the method proposed by
them can improve the surveying capacity and efficiency at least 20 times, compared to the
traditional methods. Outside, the tracks’ irregularities may be measured with the help of
GPS receivers for positioning and alignment, but in subway tunnels this procedure is not
available. Q. Chen and others employ a laser-aided INS/odometer integrated system to
determine the subway track irregularity and the geo-reference absolute position relative to
the geodetic control network is determined by a laser scanner, to estimate the INS drift. In
a similar work, Jiang Q. et al. present a new filtering algorithm for railway track surveying
using also landmarks and inertial measurement units, complemented by odometers [33],
and applications using inertial sensors and odometers are analysed in [34].

Regarding the electrified line and its associated equipment for power traction,
Morris J., et al. [35] present a research on modelling the short neutral section for AC
line electrification—a source of frequent faults of the power supply network. In addition,
considering the automated measurement techniques, Chen L. and his co-researchers use
a methodology to collect information regarding the overhead contact system component,
employing data analysis on point clouds imported from a 2D mobile lidar. They also
designed an iterative point partitioning algorithm and a module named as the spatial
fusion network [36].

Coming back to mobile solutions for sensing remote parameters of railway equipment,
it is most usual to employ specific wagons, equipped with diverse measuring instrumen-
tation, such as in [37–44]. While a dedicated wagon can accommodate a larger quantity
of equipment and sensors, its availability, mobility, and flexibility of manoeuvring are
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less adequate as the one of a smaller, fully autonomous devices, such as railway carts.
Especially for subway purposes, where space and gauges are in general smaller than those
in the open space railway systems, the utility of the cart is much bigger. Therefore, one
aspect of this article is that it focuses on the relatively novel process of employing an inte-
grated approach for solving as much as possible automated measurements with a single,
compact autonomous cart. Using a dedicated solution with several sensors, data fusion
and analysis of recorded data based on machine learning techniques can ease the work
of human operators and automatically collect relevant information of fault management,
during off-service hours in subway transportation. The following represent aspects of
novelty in the present research:

- Autonomy of the method: the robotic cart can travel alone, collect position-referenced
information regarding tracks gauges, deviations from standards, presence of foreign
objects on the rails, imaging and external gauge profiling;

- Collected data can be either transmitted via Wi-Fi to dedicated access points, or locally
stored for off-line analysis;

- Integrates various machine learning techniques for data fusion;
- Has the possibility to fine tune a wide variety of measurements parameters and

speed increments;
- Is designed especially for subway lines with no GPS positioning signals, but can be

adapted to work in external environments, using additional GPS information for
position of a location;

- Reduces stress of maintenance personnel by overtaking some tasks in usual mainte-
nance activities during subway off-service periods;

- The following are comparisons with other previously published works related to the
railway inspection approaches:

- Rowshandel, H. [6] proposes in his doctorate thesis a robotic inspection system for
discovering fatigue cracks in the rolling system of a surface railway. The system
employs an alternating current field measurement (ACFM) sensor combined with a
rule-based expert system. The solution is dedicated for collecting a single type of data,
only detecting cracks, and not inspecting railway gauges, for example;

- Only 3% of the maintenance operations in railway tunnels (including subway) are
recently subject of robotic activities [45]—therefore, the benefits of such a solution;

- Robotic autonomous systems have been employed mostly for cleaning purposes [46],
rolling stock fluid servicing [47];

- Killian, K [48] proposes a vision system based on wayside sensors for inspecting
integrity of train wheels and rails (no mobility involved here for the automatic mea-
suring system);

- Railway catenary and power line automatic inspection are proposed via a system with
laser beams and imagistic analysis simultaneously for four wires [49]—the solution is
intended to be mounted on the engine of a train and is operational for speeds up to
90 km/h. No other parameters are envisaged to be measured;

- Railway robotic inspection in tracks maintenance operations: machine vision and
classification algorithms are used to detect and/or localize cracks in the rolling surface
of tracks. It is employed a laser scanner mounted on a car that uses a random
Forest classification learning algorithm [50] and for tracks geometry [51]. No other
parameters are envisaged to be measured;

- Ground penetrating radar is also used for some robotic inspections in tunnels [52].

Usually, these systems for automatic measurement and data collection are designed
for fewer dedicated operations and/or specific activities. Our proposed solution can make
use of different sensors to determine gauge parameters, detection of foreign objects on
tracks, smoke and gas, and as future development, the cart will be fitted with a system to
measure tracks impedance (for track circuits tuning).

Another novelty that our solution brings is the integration of sensors in a complex
system, and for prediction we use a machine learning algorithm based on PCA T2Q.
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3. Design of the Proposed Solution for Mobile Autonomous Data Collection
3.1. Rail Defects

Depending on each specific railway administration regulations, there are several types
of infrastructure (railway) faults, or defects that involve significant safety concerns. The
safety compliance is even more drastic when the maximum allowed speed of the train
is increasing; therefore, high-speed lines have a distinct corridor, points for these lines
have a longer tangent and double mechanical locking, and specific requirements are set for
the catenary and vibrations. From this point of view, high-speed lines need an intensive
process of maintenance, starting with the visual inspection and ending with dedicated
measurements for mechanical integrity, locking of points and deformations. Even detection
of foreign objects that might fall between the lines, or between the point switches arms
is important. On the other side, for subway lines the same restrictions apply, with the
specification that early visual detection of a foreign object on the rails might be delayed
due to low intensity of light in tunnels. In addition, subway lines use in general a third rail
for power supplying, and this one also needs constant monitoring for defect detection.

Usual infrastructure defects that might occur in the normal railway exploitation (both
for surface and underground lines) include:

- Rail fracturing (might be early detected employing ultrasonic and/or video solutions).
In case of complete fracture, the track circuits might be also able to detect this type of
defect via electric control and interdict the entrance of a train on the specific section
via the covering signal;

- Intensive burring of insulating joints from neighboring rail coupons might induce
short-circuits between adjacent track circuits, producing delaying in trains operations;

- Mechanical deformations of gauges (between parallel rails, or between elements
of a switching point, or a crossing)—this can be caused by exceeding the allowed
weight per axle, mud under the rails, or other types of phenomena. It can also be
caused by falling of heavy objects on the respective parts, especially from freight
trains. In intense and prolonged warm summers, the temperature on the rails level
might exceed 50 ◦C, causing mechanical deformations due to dilatation. This is a
very dangerous defect, that must be early detected. Therefore, in very hot summers
railway administrations impose speed and weight restrictions;

- Intensive erosion, rust, or wear of the rail rolling surface. This type of defect might
be considered from two points of view: firstly, if the line is intensively eroded, the
electrical contact between the rail and the train wheel is imperfect and might cause
malfunctioning of the track circuit, which might also trigger false response on the
railway signaling, with possible catastrophic effects leading to trains collisions. It is
very important to use safe track circuits from this point of view (based on high voltage
pulses) on such lines, or to perform regular traffic to reduce erosion by mechanical
friction. On the other hand, if the rails exhibit intensively wear, the surface becomes
irregular, or with undulations, causing vibrations on the rolling stock or possible
loss of electrical contact at high speeds. Therefore, also these types of mechanical
deformations should be detected and resolved in due time.

For determining such specific mechanical and geometrical defects, usually regular
observations are performed by railway personnel, traveling by foot distances between
railway stations and noting where observed such anomalies. In addition, semi-automated
measurements of higher precision are performed with dedicated cars (wagons) that are
periodically traveled along the rails. These methods are more difficult to perform to
underground railways, however, due to lower visibility conditions and very short times of
operating breaks, especially during night.

From these points of view, we consider that the development of an automated platform
able to displace, collect and transmit relevant information regarding the infrastructure
integrity is highly necessary.
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3.2. Rail Diagnostics Techniques. Description of Hardware

The proposed solution for mobile autonomous data collection for railway applications
is composed of a set of sensors mounted on a self-driving cart, enabled with self-locating
techniques (including indoor positioning, powered by a combination of odometry and INS
combination in the first phase). The first version was initially conceived mainly for subway
applications, including analysis of external gauges limits, testing of on-board/ground
communications and EM beacons, obstacle and/or foreign objects detection, and early fire
discovery and warning. The block diagram of the first version is depicted in Figure 1.

Figure 1. General functional blocks diagram of the autonomous cart.

In the first version, the hardware equipment encompasses several functional compo-
nents, such as:

• Central processing unit (CPU) based on myRIO—holds all the controls and commands
for the mobile platform, programmable via a notebook;

• Odometry module (OM)—responsible with counting pulses from the wheels, mea-
suring traveled distance, speed and updating the information about position of the
automated platform to the CPU. For computing traveled distance and speed, a NPN
Hall-Effect sensor has been employed. The following formula is employed for deter-
mining velocity:

V
[m

s

]
= n·2πR

60
(1)

where n—count number of pulses transmitted from the Hall sensor, R—radius of the flange
that ensures counting pulses.

• Obstacle detection module (ODM)—it is composed of an infrared sensor and an
ultrasonic sensor combination mounted in the front of the mobile platform for rapidly
detecting and/or identifying obstacles on tracks. The detection of obstacles that are
present in the front of the platform is performed through an IR sensor type Sharp
GP2YOA710KOF and an ultrasonic sensor XL Maxbotix EZ0. Sharp GP2YOA710KOF
is an integrated distance sensor for front obstacles, that ensures IR LED detection at
λ = 850 nm. Operating distance is comprised between 100 and 550 cm. Its sensitivity
diagram is presented in Figure 2. A 90% reflection coefficient was considered for the
white paper set as a reference target. The dimensions, quality, and ease of use of the
ultrasonic sensor XL Maxbotix EZ0 also allow high accuracy readings from 0 to 765 cm
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with a resolution of 1 cm. The sensor can be supplied with a voltage between 3.3 and
5 V D.C.

Figure 2. Sensitivity over distance for the obstacle detection sensor (reference target: white paper).

• Gauge assessment module (GAM)—composed of ultrasonic and laser sensors to check
the dimensions of the external gauge of tunnels, detect and locate eventual obstacles,
or protruding objects. For a much more precise gauge check, an RPLIDAR A1M8-360
laser kit with a maximum reading frequency of 10 Hz and a detection distance of
approximately 6 m was also introduced. The Bucharest underground free pass gauge
shape is presented in Figure 3.

• Fire detection module (FDM)—composed of dedicated IR sensor and cooperating
with GAM for fire detection, heated cabling location and alarming.

Figure 3. Shape and main dimensions for the Bucharest Underground Gauge (transversal section, a
typical section of a tunnel, semi-rectangular section. There are also ovoidal and circular sections).

For the software design the LabVIEW program has been employed, whose source code
was executed by the NI myRIO data acquisition module, using a combination of modular
hardware and software to transform the personal computer (tablet, laptop, smartphone)
into a user-defined remote-control system.

Below are some images with the real equipment tested in subway tunnels.
In Figure 4 in the central part, the white box represents the gas/smoke detection

module, in the upper right corner is the Wi-Fi router, the central unit is in the center of
the image.
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Figure 4. Frontal view of the equipment.

Figures 4–6 present some physical details of the experimental robotic cart. The move-
ment of the cart is ensured by the motors mounted in each axle of wheels (not visible in the
presented images). It is possible to regulate the displacement speed and to set the sampling
speed of the set of sensors.

Figure 5. Detail with lateral view: web camera above, obstacle and fire/smoke detection modules.
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Figure 6. Detail for gauge assessment module with LIDAR scanner and obstacle detection
module (ultrasonic).

4. Test Bed Setup and Results
4.1. Introduction

For most tasks assigned to a mobile system for detecting path defects, the use of a
single type of sensor may not give satisfactory results. For example, in navigation, some
objects in the environment can only be detected by IR sensors, lasers, and others only by
ultrasonic sensors, and only few by all types of sensors. The problem is, therefore, to find a
method that effectively combines information from a multitude of sensors with different
categories and characteristics. The most common term in literature for this process is
“sensor fusion”. However, in the context of mobile systems, the merging of data must cope
with the following challenges:

- Merging sensor measurements of different categories;
- Merging measurements from different positions and angles;
- Merging measurements taken at different time intervals.

For the experimental tests, the robotic platform was mounted on the Bucharest subway
near Straulesti station in the tunnel, with the purpose of determining by measurements the
gauge to the third rail (used for power supplying the trains by a patina). The test bed setup
is presented in Figure 7 below.

Figure 7. Test bed setup, placement of sensors and elements measured.
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Using the measurement and data acquisition system presented in Figure 1, the results
presented in Table 1 were obtained. A sample of direct data exit from the 3 XL-Maxsonar
EZ sensor, one from the set of sensors installed on that platform, is presented in Figure 8.

Table 1. Measurements on the subway rail (ambient temperature: 24 ◦C).

Sample Interval
[mm]

Measured Distance
[mm]

RP Lidar A1

Measured Distance
[mm]

XL-Maxsonar EZ *

Measured Distance
[mm]

BOSCH Professional
GLM 50C

100 1403.1 1340 1391
200 1401.0 1350 1390
300 1400.0 1360 1390
400 1400.2 1350 1394
500 1395.8 1350 1394
600 1401.1 1340 1394
700 1403.2 1340 1392
800 1404.1 1340 1394
900 1401.4 1400 1393
1000 1402.8 1350 1393
1100 1403.1 1340 1392
1200 1397.6 1400 1390
1300 1398.3 1350 1390
1400 1400.1 1340 1390
1500 1404.6 1340 1391
1600 1403.6 1350 1390
1700 1402.8 1350 1393
1800 1398.7 1360 1393
1900 1402.3 1340 1390
2000 1400.0 1340 1394
2100 1398.1 1350 1391
2200 1401.2 1350 1391
2300 1399.0 1348 1394
2400 1405.9 1360 1394
2500 1406.3 1340 1393
2600 1404.1 1350 1394
2700 1400.2 1340 1391
2800 1399.1 1350 1392
2900 1401.0 1350 1392
3000 1406.0 1360 1394

Figure 8. Direct data sampling from XL Maxsonar EX sensor measurements.
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Figure 9 represents the shape of the lateral gauge captured live with the Lidar. Details
of different elements monitored are described in the figure: overall transversal gauge
Figure 9a third rail used for DC power supplying the trains Figure 9b, and Figure 9c the
lineside equipment box mounted in a certain longitudinal position on the tunnel wall. The
complete set of data collected in the experimental test is presented in Table 1.

Figure 9. Gauge measurement with LIDAR, (a) tunnel gauge profiling, (b) third rail (used in subway
for power supplying), (c) lineside box equipment (LDE) gauge measurement (LDE is mounted on the
tunnel wall, round-shaped subway tunnel profile between stations).

As it can be noticed in Table 1, the results for longer railway paths involve collection
of large quantities of data, exhibiting a relatively large variation, fact that requires reducing
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the size without losing the relevant features, in order to remain usable in the architecture
of supervised machine learning.

The resulting variation of the distance measured to the third rail has been transposed
in the diagram below (Figure 10). It can be observed that the XL Maxsonar sensor exhibits
the largest variations in precision, while the RP Lidar A1 sensor is more constant in
precision. The GLM 50C laser measurement instrument was used as reference for additional
comparation. It is obvious that in the data fusion problem there are some elements that are
to be considered, amongst which is the precision, delaying, position of measurement and
timing. All these factors should be harmonized by the data fusion process. In the case of
a mobile platform, the mechanical structure where the sensors are installed, its stability
to vibrations and overall inclination are also additional factors that should be taken into
consideration or compensated. Vibrations might be reduced in a practical application by
installing the most sensitive sensors on a gyroscopic stabilized platform.

Figure 10. Diagram showing the variation of distance measurements between three sensors.

For data fusion and detection of defects (anomalies) it is proposed the development of
a machine learning algorithm based on principal component analysis (PCA).

PCA is an algorithm for reducing the linear dimensionality and the detection of
anomalies. The kernel PCA (KPCA) is the nonlinear representation of the PCA, which can
be successfully applied to complex spatial structures, and the kernel function is associated
with the nonlinear transformations applied on the common PCA algorithm.

Application of KPCA requires high computing power and significant memory, es-
pecially if applied to large drive data sets. To apply the KPCA for large sets of training
data, we propose using a reduced version of KPCA in the process of structural anomalies
detection inside subway tunnels.

4.2. Development of the Machine Learning Model with PCA T2Q

The suggested methodology will be employed for reducing the dimensions of the
collected data obtained with the system shown in Figure 1, still maintaining its relevant
features. Based on the proposed reduced KPCA algorithm, a machine learning system was
developed to combine the training and testing the process of dimensional data reduction,
the supervised learning, and the possibility to choose the core function. For detecting
defects (anomalies), the T2 model and the square predictive error Q (Q statistics) are
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employed. The combination of T2Q results is then used as a defect detection value (index).
The T2-statistic measures the variation in each sample and indicates the distance of each
sample from the center of the PCA model. The Q-statistic indicates how well each sample
conforms to the PCA model by measuring the distance that a data point falls from the
PCA model.

In the first stage, the dimensions are reduced using the KPCA algorithm. To achieve
this, the algorithm was implemented in LabVIEW programming language. Figure 11
presents the feature manipulation algorithm.

Figure 11. Implementation of the KPCA algorithm for feature manipulation.

The results obtained for reducing the database size using the KPCA algorithm are
shown in Figure 12. The drive file was saved in “json” format.
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Figure 12. The results obtained for reducing the database size using the KPCA algorithm.

To construct the PCA T2Q model, the input matrix was divided into a training set (for
developing the model), and a test set, in an odd-even manner. The input matrix was mean-
centered and scaled to a unit variance. This is necessary for the PCA model development.
PCA functions in LabVIEW and MATLAB were used to calculate the principal components,
the eigenvalues, and the amount of variance explained by each PCA component.

In the second stage, the machine learning architecture was implemented based on the
PCA T2Q algorithm, the training, and defect detection applications.

Figure 13 shows the implementation of the PCA T2Q training algorithm, and Figure 14
shows the results of the training templates.

Figure 13. Software implementation of the PCA T2Q training algorithm.
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Figure 14. Results of the training templates using PCA T2Q.

4.3. Simulation and Experimental Verification of the Model

In this experimental research a machine learning algorithm is proposed with the
principal component analysis (PCA), used to develop a predictive estimator based on the
load state model.

Detection of structural damages using principal components analysis and failure
indices is based on the development of an initial basic model for undamaged structure.
This one is constructed by applying principal components analysis to data collected via
several experiments, and after the current structure (damaged or not) is subjected to
the same experiments, and the collected data are projected into the main component
analysis models. Two of these projections and four damage indices (T2 statistic, Q statistic,
combined index and I2 index) of each actuation phase are used to determine the presence
of an anomaly and to distinguish between them. These indices are calculated based on the
analysis of the residual data matrix to represent the variability of the projected data in the
residual subspace and the new space of the main components.

Figure 15 presents the software architecture for structural anomaly detection. The
actual data are compared to a reference model, which is formulated as covariance matrices
and mean values of the measured variables.
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Figure 15. The software architecture for the detection of defects and anomalies.

4.4. Case Study

- Rail defect detection techniques based on ultrasonic waves analysis and machine learning.
Experimental research on the behavior of ultrasonic sensors in the detection process.

In order to extend the measurement capabilities for the detection of internal and/or
mechanical deformations and cracks in the rails, the research was also pointed to test
the efficiency of using higher frequency ultrasounding in anomalies defectoscopy. This
involves some challenges, though:

• The placement of the sensor very close to the target for minimizing air attenuation;
• Placing the sensory assembly on a stabilized platform, or with good mechanical

attenuation to vibrations is required;
• A deeper experimental analysis of the performances that higher-frequency ultransonic

scanner has on different materials, in different conditions is required.

The performances of mobile platforms depend not only on the purpose and objectives
they have to fulfill, but also on the space in which they carry out their activity. Choosing the
right sensory system requires a serious analysis of the space in which the mobile platform
will operate and its particularities, i.e., propagation medium attenuation, obstacles (objects),
which can be either mobile or fixed. Following the measurements performed with different
ultrasonic sensors on multiple types of obstacles, the dependencies between them and the
different detection possibilities must be established.

- Measurement errors

For the measurements made with ultrasonic sensors, as for any other measurement
technique, a certain amount of errors affects in the results. Performing measurement
produces errors that have the same amplitudes when the process measurement is per-
formed under identical conditions, or errors that have variable amplitudes, their variation
depending on certain laws. Errors resulting from the measurement processes may be
classified into:

• Gross errors that result from misreading or inattention and must be eliminated;
• Systematic errors that occur due to some constructive characteristics of equipment, or

may be caused by external factors (temperature, pressure, humidity, noise etc);
• Random errors that occur as a result of the diversity of processes and phenomena as

well as a the interactions of the experiment with other processes and phenomena that
take place simultaneously.
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In the process of analyzing the data from the measurements performed with the
ultrasonic sensors it is necessary to calculate the absolute error, the relative error and to
determine the maximum admissible error. The absolute error is given by the relation:

∆x = |xm − xr| (2)

where xm is the value obtained by measurement and xr is the real value.
The relative error is given by the relation:

ε =
∆x
xr
× 100 (3)

where ∆x is the absolute error and xr is the real value. The relative error is expressed as
a percentage. The maximum permissible error is determined by choosing the maximum
value of the absolute error.

∆xper = ∆xmax (4)

Thus, for distance measurements performed with ultrasonic sensors the absolute error
will take the form:

∆d = |dm − dr| (5)

where dm is the value of the distance obtained by measurement and dr is the real value of
the distance. The relative error will be:

ε =
∆d
dr
× 100 (6)

where ∆d is the absolute error and dr is the real value of the distance.
The maximum permissible error will be noted as follows:

∆dper = ∆dmax (7)

- Determining the distance to obstacles of different sizes

Another problem with sensors is the detection of small obstacles. Likewise, ultrasonic
sensors do not detect objects of very small dimensions—depending on the frequency of the
sounding—(Figure 16b) and if they detect them, the determined distance may have values
different from the actual distance from the sensor.

Figure 16. Ultrasonic sensors for detection of small obstacles. Reflection received from
targets larger than the wavelength (a), and error of detection for smaller objects than the
wavelength (b).

The XL Maxbotix EZ0 ultrasonic sensor was used to determine the distance from
obstacles of different sizes, in conditions of atmospheric pressure of 714.5 mmHg and
temperature of 22.5 ◦C (295.65 K). In this case, the speed of sound propagation has the
value cair = 345.16 m/s.

The XL Maxbotix EZ0 sensor line provides high accuracy and high resolution ultra-
sonic proximity detection and ranging in air, in a package less than one cubic inch. This
sensor line features 1-mm resolution, target-size compensation for improved accuracy,
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superior rejection of outside noise sources, internal speed-of-sound temperature compensa-
tion. This ultrasonic sensor detects objects from 1-mm to 5-m, senses range to objects from
30-cm to 5-m. Sensor operates at 42 kHz. The obstacles used to test the ultrasonic sensor
were mounted on the mobile platform and a linear potentiometer guide subassembly was
used for tuning the generated sounding intensity. Flat obstacles made of aluminum with a
height of 150 mm and a width of 20 mm, 40 mm and 60 mm respectively were used. The
distances at which the obstacle was positioned vary from 100 mm to 1000 mm, from 100 to
100 mm.

Figure 17 shows the variations of the relative error for obstacles of different sizes: (a)
the variation of the relative error for obstacles with a width of 60 mm; (b) the variation of
the relative error for obstacles with a width of 40 mm; and (c) the variation of the relative
error for obstacles with a width of 20 mm.

Figure 17. Variations of the relative error for obstacles of different sizes. Error of detection for objects
60 mm wide (a), 40mm wide (b) and 20 mm (c). Error increases inversely with the object width.

It is observed that the average value of the relative error increases inversely with
the width of the obstacle, which is twice as large at the obstacle with a width of 20 mm
compared to that with a width of 60 mm.
- Determining the distance from obstacles of different shapes

The detection of the railway equipment in subway lines may involve objects with
different sizes and shapes, with different textures. As in the cases presented above, one
another problem with the ultrasonic sensing occurs in the detection of obstacles having dif-
ferent shapes. The measured distance between the sensor and the obstacle may experience
different values, depending on the shape of the obstacle.

To observe the influence of the shape of the obstacle, distance measurements were
performed between the ultrasonic sensor XL Maxbotix EZ0 and three obstacles with
different cross sections having the dimensions shown in Figure 18. They were positioned
in turn at the same distances between 0.2 m and 2 m from the ultrasonic sensor.

Figure 18. Obstacles of various forms.
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To simplify the expression, the obstacle with rectangular section was named Obstacle
1, one with triangular section was labeled Obstacle 2 and the cylindrical obstacle was called
Obstacle 3.

Figure 19 shows the measuring the distance to such obstacles of different shapes:
Figure 19a the variation of the relative error for Obstacle 1; Figure 19b the variation of the
relative error for Obstacle 2; Figure 19c the variation of the relative error for Obstacle 3.

Figure 19. Measuring the distance to obstacles of different shapes. (a): variation error for rectangular
objects, (b): variation error for triangular prism, (c): variation error for cylindrical object.

Measurements with the XL Maxbotix EZ0 ultrasonic sensor were performed at atmo-
spheric pressure of 711.4 mmHg and temperature of 20.6 ◦C (293.75 K). In this case, the
speed of sound propagation has the value cair = 344 m/s.

It can be noted that the average value of the relative error is the highest in the case of
Obstacle 2. In addition, the values of the measured distance are the highest in the case of
Obstacle 2, which is detected at a greater distance than the actual distance. In the case of
cylindrical Obstacle 3, the measured distance values do not differ much from the values
obtained for Obstacle 1.

- Determining the distance to obstacles from materials with different textures

In addition to the size and shape of the obstacles, the detection of the ultrasonic sensor
can also be influenced by the texture of the material from which the obstacle is made.

To observe the influence of the texture of the material from which the obstacle is made,
distance measurements were performed between the XL Maxbotix EZ0 ultrasonic sensor
and six obstacles made of different sample materials. These were positioned in turn at the
same distances between 50 mm and 250 mm from the ultrasonic sensor. The materials of
which the obstacles used for the determinations are made were:

1. Stainless steel;
2. Aluminum;
3. Copper;
4. Wood;
5. Rubber;
6. Plastic.

The field measurements with the XL Maxbotix EZ0 ultrasonic sensor were performed
under atmospheric pressure of 705.6 mmHg and temperature of 21.3 ◦C (294.45 K). In this
case, the speed of sound propagation has the value cair = 344.43 m/s.

Figure 20 shows the relative error variation for different materials.
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Figure 20. Relative error variation for different materials.

When measuring the distance from obstacles made of metals, it can be observed that
the values are higher than the actual distance for steel and copper (shiny surface metals)
and smaller for aluminum (matt surface metal).

When measuring the distance from obstacles made of non-metals, it can be noticed
that the measured values are higher than the actual distance for plastic (glossy surface
material) and smaller for wood and rubber (matt surface materials).

- Determining the distance with a sensor mounted on a rotating platform (radar)

To simulate a rotary sensor, measurements were performed with the ultrasonic sensor
XL Maxbotix EZ0 located on a mobile platform, which has the possibility to rotate by a
maximum of 90 degrees from a fixed point. The experiment was run for 12 s for each
obstacle and the sampling rate was 10 samples per second. The first set of measurements
was performed without obstacles, determining the dimensions of the workspace.

To simplify the expression, the obstacle with section a rectangle was called Obstacle 1,
the one with section a rectangular triangle was called Obstacle 2 and the cylindrical obstacle
was called Obstacle 3 (see Figure 18). The obstacles were positioned at the same distance
from the ultrasonic sensor.

Following the measurements, the shape of the workspace was determined with each
obstacle, as perceived by the ultrasonic sensor. Figure 21 shows the differences in perception
of the ultrasonic sensor.

Figure 21. The difference between the real shapes (right) and those determined by the radar (left).
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By analysing the three diagrams in Figure 21, one can observe that larger differences
in distance measurement occur in case of Obstacle 2 with the section of a right triangle
(Prediction 1—blue signal for Obstacle 2). Following experiments with ultrasonic sensors
Maxbotix EZ0, it can be said that the accuracy of determining the distance between the sen-
sor and an object is influenced by an object’s size, texture and shape, but also atmospheric
parameters, especially temperature and air pressure [53]. However, at the ground level
the latter influences are minimal, and the errors determined by the measurements are not
large, we recommend the use of ultrasonic sensors for this type of mobile carts.

Figure 22 shows the pre-processing diagram for acquires ultrasound signals.

Figure 22. Pre-processing steps of the acquires ultrasound signals.

Based on the laboratory tests presented above, we simultaneously analyzed the two
subway tracks using an area of ultrasonic sensors based on the analysis of received sig-
nals and the representation of ultrasound imaging, to determine the rail profile and the
possibilty of identifying mechanical defects inside the rails. The results are shown in
Figures 23 and 24.

Figure 23. Determining the mechanical deformations of rails based on ultrasonic sensors.
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Figure 24. Ultrasonic measurement technique (a); data acquisition amplitude modulated scan; (b)
ultrasonic imaging for the analysis of rail fracturing inside the subway line.

To construct the PCA T2Q model, the input matrix was divided into a training set
(for developing the model), and a test set in an odd-even manner. Ultrasonic imaging was
employed for detecting subway rail surface quality and/or fracturing.

In Subchapter 3.1 we described the implementation of the machine learning model
with the PCA T2Q algorithm. During the development and laboratory tests we simulated
the model with four ultrasonic sensors that work independently, thus using four compo-
nents for the PCA T2Q algorithm. According to the tests performed to detect subway rail
defects, we performed two configurations of ultrasound sensors: the four sensors worked
independently and the analysis was performed on PCA 4 components or the grouping
of the four sensors in groups of two sensors and PCA analysis was performed with two
components. The best results were obtained by grouping the ultrasound sensors in pairs of
two sensors each.

Figure 25 shows the diagram of the proposed algorithm.
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Figure 25. The flow chart of the proposed algorithm.

The algorithm proposed in this research was used to validate the analysis. The results
are presented in Figures 26 and 27. Figure 26 shows the feature manipulation reducing the
database size using the KPCA algorithm results obtained for the shape of the workspace
with each obstacle (see Figure 21) using the ultrasonic sensor.

Figure 26. Feature manipulation reducing the database size using the KPCA algorithm.

Figure 27 shows the results obtained for the analysis of defects in the running tracks
of the subway using air ultrasonic sensors and the machine learning algorithm with PCA
T2Q. The prediction results were obtained by correlating the data obtained from ultrasound
imaging and determining the running line profile.
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Figure 27. Estimation of rails anomaly detection and predicted result—machine learning modeling
using PCA with T2Q and ultrasonic sensors.

5. Discussion

To construct the PCA T2Q model, the input matrix was divided into a training set (for
developing the model), and a test set in an odd-even manner, for enabling the possibility to
carry out ultrasonic investigations of metal parts with different geometries and sizes. As a
result of the measurements obtained with this system, in repeated experiments, it can be
stated that the device met the conditions for which it was designed.

Based on the above considerations, during the laboratory tests, we detected a specific
influence of the target edges on the accuracy of the analysis of mechanical deformations at
the surface of steel, especially at sound speed measurements. Therefore, the hypothesis is
that the margin effect influences the measurements of sound speed, and new experiments
must be performed to find solutions that avoid or reduce the effect of edges’ sound
reflections.

Although it is necessary to consider the beam propagation when performing an
ultrasonic inspection, it is important to note that in the remote field, the maximum sound
pressure is always along the sound axis (center line) of the transducer. Therefore, the
strongest reflections are likely to come from the front area of the transducer.

The scientific work carried out under the article allowed the analysis of a vast and
complex field, the ultrasound investigation, from an applicative-technological perspective.
From this perspective, the theoretical research has been further continued experimentally
in the field and the results allowed the formulation of the following hypotheses:

• Ultrasonic investigations allow the evaluation of the amplitude in volume, in metal
components, with an acceptable accuracy. To obtain the stress values, it is necessary to
consider the elastic constants of the material. Further investigations and field tests are
necessary in this direction, to also determine the feasibility of using high-frequency
ultrasound imaging for subway practical applications.

• Some manufacturing and/or operating and stressing processes (casting, plastic defor-
mation, welding, machining) might introduce into the material of the parts residual
stresses that substantially change their operating performance. These are difficult
to detect with classic setup of ultrasonic sensors, a deeper investigation is necessary,
probably using closer ultrasonic sensing and higher frequencies.
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• The great advantages of ultrasonic techniques are the fast data collection, portability
of instrumentation, radiation-free control, the possibility of measuring the geometric
location of points or continuous time and the low costs. However, to obtain quan-
titative values of signal amplitude, ultrasonic techniques require the evaluation of
elastic properties. Therefore, it is important to precisely know the mission of sound
amplitude state analysis.

• Ultrasonic techniques allow the estimation of surface and volume stresses of the parts
under investigation.

• The ultrasonic investigation method can be applied to metallic and non-metallic
materials, capable of propagating ultrasonic waves with frequencies up to 20 MHz.

• In the analysis of internal structure stresses, decreased propagation time can be in-
terpreted as a decrease in tension or an increase in compression stresses, the change
in stress can be approximated using the relative change in time and the appropriate
elastic constants.

The algorithm proposed in this article responds well to the instability and to the upper
or lower constraints imposed by the characteristics of the train rails during the analysis of
the possible defects.

6. Conclusions

The scientific approaches presented in this research allowed the analysis of the complex
field of ultrasonic investigation, from an applicative—technological perspective.

To make reliable the detection of geometrical defects in the mechanical structure of
rails, in this article we proposed a method based on the feature manipulation algorithm with
KPCA, and a machine learning structure based on the PCA T2Q algorithm to determine
generalization characteristics. The main conclusions are as follows:

(1) The proposed method avoids the instability, upper or lower constraints caused by
the characteristics of the rails during the processing of anomaly detection. The
experimental results showed that the proposed method can work better than similar
methods presented, with an accuracy of 98.65% and an average detection time of 0.15 s.
However, for better results, the speed of the automated cart should be limited and
sampling intervals shortened (for 100 mm sampling intervals, a speed of 0.36 km/h
is recommended);

(2) The PCA T2Q method is used to group the generalized characteristics constrained
after size reduction using KPCA. In addition, the kurtosis index, and the accuracy of
the PCA T2Q algorithm are used to evaluate the results, and the detection results are
obtained with an accuracy of over 95%;

(3) The experimental results show that the proposed method has a higher detection
accuracy for rails defects (fracturing, mechanical deformation, and intensive erosion
due to rust) and present better application perspectives than the methods reported in
the literature.

Future field experiments are still necessary for the development of the integrated
solution, which will focus on integrating data from ultrasonic and acoustic sensors with
video cameras to detect defects outside and inside the rails using deep learning post-
processing. We also seek to investigate the possibility of using closer, higher-frequency
ultrasonic sensors for analyzing the rails internal integrity.
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