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Abstract: As is well-known, defects precisely affect the lives and functions of the machines in which
they occur, and even cause potentially catastrophic casualties. Therefore, quality assessment before
mounting is an indispensable requirement for factories. Apart from the recognition accuracy, current
networks suffer from excessive computing complexity, making it of great difficulty to deploy in
the manufacturing process. To address these issues, this paper introduces binary networks into the
area of surface defect detection for the first time, for the reason that binary networks prohibitively
constrain weight and activation to +1 and −1. The proposed Bi-ShuffleNet and U-BiNet utilize binary
convolution layers and activations in low bitwidth, in order to reach comparable performances
while incurring much less computational cost. Extensive experiments are conducted on real-life
NEU and Magnetic Tile datasets, revealing the least OPs required and little accuracy decline. When
classifying the defects, Bi-ShuffleNet yields comparable results to counterpart networks, with at least
2× inference complexity reduction. Defect segmentation results indicate similar observations. Some
network design rules in defect detection and binary networks are also summarized in this paper.

Keywords: automated defect detection; binary network; binary neural network; efficient network;
automated visual inspection; surface defect detection

1. Introduction

Product defects in production or periodic maintenance [1] are fairly common; however,
any quality problems in products can cause hidden dangers for life and property, and
further adverse impacts in sales and reputation to enterprises, especially in numerous areas
of precise instruments and national industries; for example, aerospace, civil transportation
and infrastructure, and machinery engineering. Naturally, for the reason that defects pose
a serious threat to the durability and quality of products, defect inspection becomes a
key component in both production and maintenance processes. Generally, surface defect
detection is used to guarantee that products are visually free of irregularities or defects
on the surface, which is also known as non-destructive testing [2], automated optical
inspection [3], or optical quality control [4]. Recently, in both industry and academia,
people are paying more attention to the necessity of adequate and careful inspection.

Previously, defect detection was achieved by skilled inspectors, which resulted in
high cost and low efficiency [5]. On the one hand, human-based visual inspection requires
intensive training of laborers, but is still subjective and time-consuming [6], and it can
sometimes be dangerous to perform manual onsite inspection [6]. On the other hand,
experienced workers with long-term continuous work will suffer from vision fatigue,
leading to an inevitable accuracy degradation. In light of this, increasing demand for both
quality assurance and industrial automation is gradually being satisfied by deep learning
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and machine vision technology [3], with low cost, human labor relief, high efficiency, and
high reliability. For example, Cognex ViDi Suite [7], a commercial ready-to-use piece of
software, embeds Red Tool dedicated to irregularity detection, aesthetic visual inspection,
and saliency segmentation.

The difficulties in visual defect detection mainly lie in two parts: characteristics of
defect and model efficiency. Initially, due to the complex production environment, images
may contain various noise [5] caused by high temperature [8], dense mist [3], uneven
illuminations [9–12], aperiodic vibration [3], and other factors. For example, dark spots
(samples are surrounded by red circles) in the first and third columns in Figure 1, and lighter
vertical scratches (samples are framed by red rectangles) in the fourth column and the
column on the far right. As for the defect itself, an inspection may suffer from its tiny scale
(three columns on the right in Figure 1), random distribution (occasionally touching the
boundaries of the images, as shown in the first and fourth columns in Figure 1), background
clustering (due to various and complex surface textures, and low background–foreground
contrast [5], as shown in the second columns of both datasets in Figure 1).

Input 

Image

Ground 

Truth

U-Net

U-BiNet

NEU Magnetic Tile

Figure 1. From top to bottom: input images; pixel-wise annotation of corresponding input image;
prediction of full-precision U-Net and prediction of U-BiNet in binary.

Despite the above difficulties, another urgent demand in the next phase of manufacturing,
namely Industry 4.0 [13], is the efficiency of methods, mainly including requirements on
the storage and inference speed of the model [5]. As for the inference time, in most of the
production phase, the highly mechanized assembly line requires defect detection to be in
strict real-time. Taking steel production as an example, its high-level time cost requirement is
caused by the rapid casting and rolling speed of steel slabs in real-life manufacturing shops.
Therefore, the speed of detection is a constant pursuit of researchers; as stated in [14], an
SVM classifier can take 0.239 s on CPU to recognize defects in a single defect photograph
when testing. In contrast, for convolutional detection networks, imperfections can be detected
in milliseconds with truthful location and scale information of defects. For example, the
YOLO-based method [14] takes only 0.012 s to process a raw defect photograph. All of these
contribute to performance-sufficient and cost-efficient models that can be deployed to realize
strict requirements of speed. Despite this, there have been few tentative attempts to investigate
the network redundancy and efficiency in defect detection.

To remedy this, our main contributions are summarized as follows:
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• First, to the best of our knowledge, this paper provides the first exploration of a binary
network on defect detection tasks;

• Second, we select powerful and even more compact backbones, apply ReActNet in
the application of surface defect detection, and propose U-BiNet and Bi-ShuffleNet to
further improve the efficiency in defect segmentation and classification, respectively.

• Third, we conduct adequate experiments on on-the-spot datasets, in which we
considerably reduce the inference time and computational cost for defect detection,
while remaining faithful and providing promising results.

2. Related Work
2.1. Surface Defect Detection

Surface defect detection is used to ensure the proper quality of a finished product.
In rapidly developing modern industry, the detection procedure can be exceedingly
repetitive and exhausting; thus, computer vision methods have dominated in the automatic
quality assessment of diverse industrial products, covering bolts [15], fasteners [16], LED
chips [17], etc.

Generally, surface defect detection tasks can be coarse-grained or fine-grained
based on the different industrial requirements. Coarse-grained detection [8,18–20] aims
to identify whether there are any defects or not, and the exact defect type, which is
closely related to classification in machine vision; whereas fine-grained [9] detection
aims to recognize defective regions from a normal background and locate the defect
in a pixel-wise or bounding-box manner, which is more likely to be simplified object
detection and segmentation.

In terms of technology in defect detection, we can roughly classify prior work into
traditional methods and deep-learning-based methods. For most traditional methods, they
are mainly based on gray-scale value, gradient edge, and handcrafted optical features
on images; well-known methods include wavelet [10], curvelet [2], and shearlet [21,22]
transformation. For example, Li et al. [23] employed threshold-based approaches with
the assumption that crack pixels are usually darker than their neighbors. However, such
intensity-based methods are no longer appropriate when handling surfaces with strong or
complex textures or noise. Song et al. [8] proposed AECLBPs and introduced an adjacent
evaluation window around the window to modify the threshold scheme of the CLBP,
showing robustness to additive Gaussian noise. However, these methods require the
specification of expert rules, which is only suitable in a particular domain, but may fail
when applied to a new problem set, for the reason that every problem varies in its distinctive
features, only responding to a specific feature extractor. According to the Industry 4.0
paradigm and a wide variety in surface defect categories [5], the tendency is switching
towards flexibility in manufacturing along with higher generalization, where quick transfer
to a different defect is vital [24].

Recently, as a more unified method, deep learning methods, especially CNN [25],
have become dominant in the defect detection area and accomplish state-of-the-art
performance [19,20], with a minimum of human interference or expertise. Masci et al. [19]
demonstrated that for defect classification of surface photographs, a deep-learning-based
method can exceed classical machine-vision methods, where hand-crafted features are
usually merged with support vector machines. However, as these neural networks did not
apply advanced ReLU and batch normalization, their structures are limited to five-layer
and shallow. Then, Faghih et al. [26] embedded ReLU as the activation function and
compared networks in various depths for rail imperfection recognition. As the depth of
CNN increases, on the one hand, it can obtain much higher performance: Cha et al. [18]
applied a CNN to recognize defects on concrete and steel, achieving approximately 98%
accuracy, which shows great robustness in extensively varying real-world situations; on the
other hand, massive computational consumption is behind the stronger results, leading to
redundant parameters, complex calculation, and further, deployment difficulty. In pursuit
of industrial application in real-time scenes, efficient networks are introduced into defect
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detection tasks. For example, Cha et al. [27] applied a faster R-CNN model; Li et al. [14]
modified the YOLO network.

In summary, though extensive research has explored effective defect detection models,
after rounds of technology iteration, as pointed out by Luo et al. [3], a crucial challenge at
present can be a better tradeoff of detection accuracy and computing efficiency. Though
neural networks have considerably reduced the average processing time for each image
compared with traditional methods, neural networks can still be prohibitively energy-
intensive and relatively time-consuming, which is far from meeting the standard of real-
time and portal device deployment. Thus, light-weight and fast models are required for
broader applicability, e.g., embedded systems and mobile devices. However, few attempts
have been made to consider defect inspection in constrained environments.

2.2. Binary Network

Currently, not limited to the field of defect detection as discussed above, a state-of-the-
art DCNN usually has many parameters and high computational complexity, which both
impede its application in hand-held devices and slow down the iteration of its research
and development. In light of this, researchers have made vast inroads into network
compression and acceleration. Representative technologies include network pruning [28],
neural network search [29], quantization [30], etc.

Empirically, real-valued parameters are not necessary when achieving high performance
in DCNNs. To this end, network quantization is proposed to reduce both model size and
computational burden by using low-bitwidth weights and low-bitwidth activations. A
binary network, or 1-bit CNN, is the extreme scenario of a highly quantized network with
the maximum compression ratio of 1 bit. In detail, the 1-bit weight and activation are
obtained by means of a sign function,

xb = Sign(x) =
{
+1 i f x ≥ 0,
−1 otherwise,

(1)

where x is the real-valued variable and xb is the binarized variable (weight or activation),
existing in both the training and inference phases of 1-bit CNN.

In the latest work, weights and activations keep the binary at run-time when
computing the variable gradients during training. Compared to the normal full-precision
DCNN with a 32-bit weight parameter, a binary network enjoys up to 32× memory saving,
in which computationally prohibitive matrix multiplication operations also become cost-
efficient bitwise XNOR operations and bit-counting (accordingly, up to 64× computation
saving [31]). As the pioneering work, both BinaryConnect [32] and BinaryNet [33] achieve
comparable accuracy as real-value CNNs on MNIST and CIFAR-10. The subsequent
ReActNet [34] reduced the top-1 accuracy gap to a full-precision counterpart to at most
3.0% on the ImageNet dataset while realizing considerable memory saving and inference
acceleration. Thus, binary CNN is an effective method to balance the contradiction between
descriptive power and computational complexity. To this end, binary networks have been
widely applied from basic classification [31,34] to some more advanced applications, e.g.,
single-image super-resolution [35] and object detection [36].

3. The Proposed Methods
3.1. Bi-ShuffleNet

Currently, well-known binary networks for feature extraction and classification are
usually on the basis of Resnet [31] and MobileNet [34]. Further compressing more compact
networks would be more convincing and of greater concern for practical application, thus,
we chose ShuffleNet V2 (0.5×) as our binarization backbone, instead of other non-compact
structures. From the practical point of view, ShuffleNet V2 (0.5×) [37] has fewer FLOPs,
memory usage, and parameters, and faster inference time than MobileNet.

For the baseline model, we initially adopted 1-bit convolutions to replace all the
convolution layers in ShuffleNet V2 (0.5×), except the first and the last convolution
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layers in the network and outside the stacking units, which remained in full precision
instead. We also applied ReAct operations (i.e., Rsign and RPReLU) proposed in [34]
to activation binarization and activation function design, which provide channel-wise
shifting and reshaping capacity on the distribution of the activations to learn more
representation, simply by adding small learnable variations to activation distribution
with little computational burden addition. The effect of these subtle shifts is significant
because binary activations are much more sensitive to these small values, mostly leading
to completely different results; in contrast, real-valued activations are robust because the
detailed information will be maintained largely in full precision [34]. As illustrated in [34],
the 1-bit activation is achieved by

ab
i = RSign(ai) =

{
+1 i f ai ≥ γi,
−1 otherwise,

(2)

where ai is the real-valued activation on the i-th channel and ab
i is the binarized output

after RSign, existing in both training and inference stages of the 1-bit CNN. γi is a learnable
coefficient for activation on the i-th channel, controlling the threshold.

In [34], RPReLU is defined as

RPReLU(ai) =

{
ai − ζi + ηi i f ai ≥ ζi,

βi(ai − ζi) + ηi otherwise,
(3)

where ai is the real-valued activation on the i-th channel, and ζi and ηi are learnable shifts
for distributional reshaping. βi is also a learnable coefficient in the original PReLU, in order
to control the slope of the left side. Similar to RSign, all the coefficients are permitted to
vary across channels.

In light of the characteristics of defect detection tasks, the 3×3 depth-wise convolutional
layers in the right branch of both basic unit (Figure 2a) and spatial down-sampling (2×)
unit (Figure 2b) are replaced by 2 consecutive 1-bit 3 × 3 convolutions while the left branch
of down-sampling unit (Figure 2b) is substituted by 1-bit 5 × 5 convolutions, in order to
enjoy a larger receptive field to detect defects of various scales. Applying multiple 3 × 3
convolutions in sequence to enjoy a larger reception field is a common and efficient idea
in object segmentation [38–40] to save parameters in the meantime. Correspondingly, the
kernel size of the first convolution layer is defined to be 9 × 9 as well.

To sufficiently reuse the real-valued activation, which has proven to be crucial for the
accuracy [34], we employed parameter-free identity shortcuts to bypass all the intermediate
convolution layers in the basic unit (Figure 2c) and connected the input by skipping
two convolutional layers at the left branch in the spatial down-sampling unit (Figure 2d),
with near-zero computational cost addition. In terms of spatial mismatch of shortcuts in
spatial downsampling units, we used max pooling to ensure small but important details
survive in downsampling, which is extremely beneficial in defect detection tasks.

Lastly, after incorporating all these ideas above, an efficient channel shuffle was then
applied to encourage information exchange across the two branches. After the shuffling,
the next block starts by repeatedly stacking. Thus, the proposed building blocks, as shown
in Figure 2c,d, as well as the built structures, are named Bi-ShuffleNet. We showed that
the proposed Bi-ShuffleNet achieves comparable or even more superior performance than
existing binary networks with an even lower computational budget.
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Figure 2. Building units of ShuffleNet V2 (a,b) and Bi-ShuffleNet (c,d). For the sake of brevity, the
batch normalization layer after each convolution layer is omitted.

3.2. U-BiNet

In terms of the fine-grained defect segmentation task, we chose the powerful
U-Net [41] as the backbone, whose basic unit is shown in Figure 3a. U-Net was
initially proposed to address problems in the biomedical field, but rapidly developed
to other segmentation areas, due to its strength to re-use multi-scale intermediate feature
maps, which is also of great significance in saliency detection tasks. In order to reduce
parameters and computational consumption, the output channel of each convolution in
the U-Net structure, no matter whether in full precision or binary, in this paper is half
of that in the original U-Net [41], with negligible performance degradation. Similar to
the construction of Bi-ShuffleNet, we initially replaced all vanilla convolutional layers
with binary convolutional layers. However, for the reason that richer semantic feature
representation required by pixel-wise prediction tasks cannot be fully achieved by a 1-bit
CNN, we still kept the intermediate activations as full-precision, and tried to reduce the
bitwidth of activations to as low as possible, by means of

aq =
round((2k − 1)a)

2k − 1
(4)

where full-precision activations a are quantized to aq in k-bit.
In this way, the inference complexity is still improved because multiplication turns

into an efficient addition-subtraction operation, though the increment is certainly less than
that of complete 1-bit CNN. However, its saved model size is the same as 1-bit CNN.

Equally with the motivation of RPReLU, in order to enable explicit learning of the
distribution shape in real-valued networks, we actually modified the SiLU [42], which is
also known as Swish,

SiLU(a) = a ∗ sigmoid(a) = a
1

1 + e−a (5)

to RSiLU, with more flexibility to adaptively learn parameters for distributional reshaping,

RSiLU(ai) = (ai − ζi) ∗ sigmoid(ai − ζi) + ηi = (ai − ζi)
1

1 + e−ai+ζi
+ ηi (6)

where ai is the activation on the i-th channel, and both ζi and ηi are learnable shifts for
distributional reshape. Similar to RPReLU, all the coefficients vary across channels. The
shape comparison between SiLU and RSiLU is shown in Figure 3c,d.
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Therefrom, the basic building unit is as shown in Figure 3b. The further constructed
structure still efficiently utilizes multi-scale features and remains U-shaped, and is
named U-BiNet.

1-bit 33 Conv

1-bit 33 Conv

RSiLU

RSiLU

(a) (b)

33 Conv

SiLU

SiLU

33 Conv

33 Conv

SiLU

SiLU

33 Conv

(c) (d)

Figure 3. (a) Building blocks of U-Net; (b) basic unit for proposed U-BiNet; (c) SiLU activation
function; and (d) proposed RSiLU activation function with learnable coefficients.

4. Experiments
4.1. Datasets

In order to verify the superiority of the proposed model, we utilized real-world
examples in two datasets below, instead of using synthetic ones.

Magnetic Tile (MT) [9] provides 472 surface defect images, with 6 classes for classification.
Due to the scarcity of the data, we augmented the randomly split training set by rotation (0°, 90°,
180°, and 270°) and horizontal flipping, leading to a training set 8× larger than the unaugmented
training set. Though most of the images in MT contain a certain type of rain-streak-like noise
and severe vignette effect in the corner, we still gave up any crop operation, which was applied
in [11] to ensure the most relevant defective regions exist in patches.

The NEU Surface Defect Database [43] is composed of 300 photographs per class and
6 classes (rolled-in scale, patches, crazing, pitted surface, inclusion, scratches) in total with
defects whose size is 200 × 200 for classification; for segmentation, [43] do not provide
pixel-wise labels, but bounding box annotations. Only for patch defects did we obtain
pixel-wise ground truth from [11,12]. For patch defects, there were roughly 22.9% of pixels
labeled as defects, while the other 77.1% were labeled as non-defects. Messy backgrounds
with a low signal-to-noise ratio (SNR) make it a more challenging task.

There is no formal data split for training, validation, and test sets in either dataset;
therefore, we randomly partitioned them in a 7:1:2 fashion. All the performance results
reported in the paper were calculated in 5 independent splits on average for credibility, if
not specified.

4.2. Experimental Details

The training was conducted on the training set initially, and the trained parameters
with the highest validation accuracy across all iterations were adopted for testing. All the
binary networks were trained in two rounds because of RSign, RPReLU, and RSiLU in
proposed networks, as in [34]. At the first stage, we trained the learnable variables of
RSign, RPReLU, or RSiLU with real-valued weight parameters from scratch. Then, at the
second stage, binary networks were initialized by the weights learnt in the first stage, and
fine-tuned with weights in the binary version. It is worth noting that, at both stages, the
backpropagation was guided by cross-entropy loss between the binary network output
and the ground truth. Other details are given below.

Coarse-grained task: In terms of Magnetic Tile, for all real-valued networks, the batch
size was set as 32, training for 200 epochs with the Adam optimizer; the loss calculation is
based on Tversky Loss [44], which is widely applied in defect detection and lesion attribute
segmentation, due to its strength in data imbalances. The initial learning rate was 10−5,
and was adjusted by the One Circle method [45] during training.

As for NEU, for transferred Resnet18, Resnet34, and MobileNet V2, we employed the
Adam optimizer and set the learning rate as 10−3 when training on the target dataset. For
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the real version of ReActNet and BiRealNet, we also applied the Adam optimizer, but set the
learning rate to 10−5. All the hyperparameters above were selected by both experience and
grid search to avoid the training process falling into under-fitted or over-fitted situations.

In terms of all the 1-bit CNNs, the learning rate was decayed with the cosine annealing
strategy and warm-up was applied for the first 5 epochs. The initial learning rates were
10−4 and 5× 10−4, respectively, in step 1 and step 2. In the first round of 1-bit CNN training,
only learnable parameters in RSign and the activation function are optimized in priority,
while both parameters and weights in 1-bit convolutions are optimized together in the
second round, thus, a larger learning rate is required to accelerate. The Adam optimizer
was also selected as it can normally prevent the training of 1-bit CNNs falling into the
situation of local minima [46], compared with other optimizers.

Fine-grained task: For the unaugmented NEU dataset, images were rotated by a
random degree in [0◦, 90◦, 180◦, 270◦], and flipped horizontally or not at a 50/50 probability
in the data pre-processing step. For the original full-precision U-Net, the batch size was
set as 32, training for 200 epochs with the Adam optimizer. The learning rate was set as
10−4 and loss was calculated by the Tversky method. As for the proposed U-BiNet, at
both training steps, we used the Adam optimizer for 200 epochs with batch size as 8 and
learning rate as 10−5. Taking the smaller batch size and learning rate than that of U-Net
into account, we intended to ensure that the training of sensitive binary parameters in
U-BiNet was stable and avoid overfitting.

4.3. Results Analysis
4.3.1. Coarse Task: Defect Classification

Experiment metrics: For classification tasks, the metrics include average recognition
accuracy, standard deviations, and OPs. OPs is a rough sum of binary operations and
floating-point operations, i.e., OPs = BOPs/64 + FLOPs. For the reason that inference
time and computational cost are not measurable in current popular devices, which treat
quantified k-bit values as full precision, OPs is recognized [34] to act as a proxy metric
theoretically to simulate the model efficiency in the research of network binarization.

Coarse-grained Defect Detection on Magnetic Tile: Both MobileNet V2 and Resnet18
were pretrained on over 1.2 million photographs from ImageNet [47] at first and then
transferred to the target dataset, whereas other models were directly trained from scratch on
the target dataset. The BiRealNet reported in this paper is advanced by RSign and RPReLU
with distribution reshape capacity as well. All binary networks, including BiRealNet,
ReActNet, and Bi-ShuffleNet, are only supervised by the ground truth during the whole
training, instead of assigning a well-trained real-valued network as the teacher model in
a knowledge distillation manner, which may lead to unsatisfied feature representation,
and further non-convergence problems otherwise. The OPs was calculated in the situation
where a 224 × 224 RGB image was loaded into the network.

Consequently, the results are displayed in Table 1, showing that the proposed Bi-
ShuffleNet outperforms not only existing 1-bit CNNs, but also full-precision networks, by a
large margin, in the lowest computational budget. A more intuitional demonstration is shown
in Figure 4a, where the radius of the circle represents the standard derivation of the method.
Therefore, the bigger the area of the circle, the less the stability of this method. With a similar
binarization setting, Bi-ShuffleNet exceeds ReActNet, whose backbone is MobileNet V1, by
8.24% in accuracy, with a further 10% OPs reduction. Bi-ShuffleNet also achieves a 6.81%
accuracy improvement over the BiRealNet, and enjoys the benefits of more stability (half the
standard deviations of BiRealNet) and less cost (approximately 2× computational reduction).

Coarse-grained Defect Detection on NEU: We collected the results of ‘LBP+SVM’ and
‘AECLBP+SVM’ in [8]. Both MobileNet V2 and Resnet18 were pretrained on ImageNet at
first and then transferred to NEU, whereas other models were directly trained from scratch.
The OPs was calculated based on a 224 × 224 single-channel image.
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Figure 4. Classification performance on Magnetic Tile and NEU datasets.

Table 1. Coarse-grained defect detection performance on Magnetic Tile.

Method TOP-1 BOPs FLOPs OPs
Accuracy (%) (×109) (×108) (×109)

MobileNet V2 85.10 (±6.08) - 3.20 0.32
Resnet18 80.41 (±4.72) - 18.19 1.82
ReActNet-A (real, MobileNet V1-based) 82.45 (±2.18) - 48.38 4.84
BiRealNet (real, ResNet18-based) 85.51 (±2.18) - 18.19 1.82
ReActNet-A (binary, MobileNet V1-based) 83.06 (±2.78) 4.81 0.27 0.10
BiRealNet (binary, ResNet18-based) 84.49 (±5.71) 1.68 1.45 0.17

Bi-ShuffleNet 91.30 (±2.38) 0.22 0.87 0.09

Accordingly, the results are shown in Table 2. A more intuitional illustration is
shown in Figure 4b. Generally, Bi-ShuffleNet is on par with both real-valued and binary
networks in capability and stability. Specifically, our ShuffleNet-based model outperforms
MobileNet-based ReActNet by 0.19% in accuracy, enjoying roughly 40% OPs reduction.

Table 2. Coarse-grained defect detection performance on NEU.

Method TOP-1 BOPs FLOPs OPs
Accuracy (%) (×109) (×108) (×109)

LBP + SVM 97.93 (±0.66) - - -
AECLBP + SVM 98.93 (±0.63) - - -
MobileNet V2 96.72 (±1.81) - 2.68 0.27
Resnet18 99.69 (±0.38) - 14.97 1.50
Resnet34 99.69 (±0.38) - 30.81 3.08
ShuffleNet V2 98.75 (±0.94) - 0.33 0.03
ReActNet-A (real, MobileNet V1-based) 95.63 (±1.53) - 36.41 3.64
BiRealNet (real, Resnet18-based) 95.78 (±1.45) - 13.36 1.34
BiRealNet (real, Resnet34-based) 97.81 (±1.04) - 27.40 2.74
ReActNet-A (binary, MobileNet V1-based) 99.26 (±0.35) 3.64 0.16 0.07
BiRealNet (binary, Resnet18-based) 99.91 (±0.13) 1.29 0.53 0.07

Bi-ShuffleNet 99.45 (±0.30) 0.22 0.38 0.04

4.3.2. Fined-Grained Task: Defect Segmentation

Experiment metrics: As suggested in previous work [11], we mainly employed accuracy,
precision, recall, false negative rate (FNR), false positive rate (FPR), mean absolute error
(MAE), and Dice similarity coefficient as performance criteria for performance evaluation.
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In detail, FPR is interpreted as the percentage of defect-free pixels that are incorrectly
identified as defects, and FNR measures the proportion of defective pixels that are falsely
identified as non-defects. MAE is another quantitative indicator to assess the dissimilarity
between the prediction and the ground truth.

Obviously, the higher the values of accuracy, precision, recall, and Dice, the lower the
values of FPR, FNR, and MAE, and the closer the prediction is to human subjective feeling.

Fined-grained Defect Detection on Magnetic Tile: In terms of Magnetic Tile, we
trained models on each defect independently to verify the robustness of our model.
As shown in Table 3, U-BiNet reports results on par with the state-of-the-art in full
precision. Conspicuously, with weights in binary and activations in lower bitwidth, U-
BiNet demonstrates faster inference speed and less memory occupied in model saving.
Alternatively, when the bitwidth of activations is controlled to be as low as 2, performances
of U-BiNet show considerable degradation in metrics. A more intuitional demonstration
is shown in Figure 5, where the confusion matrices of U-BiNet, whose activations are
real-valued, on each defect are displayed. Accordingly, ‘crack’ and ‘uneven’ are less likely
to be detected.

Table 3. Fined-grained defect detection performance on Magnetic Tile (in percentage). ‘Pr’ represents
precision and ‘Re’ denotes recall.

Method Bitwidth
(W/A)

Blowhole Break Crack Fray Uneven
Pr Re Pr Re Pr Re Pr Re Pr Re

U-Net 32/32 92.4 83.8 96.2 79.9 84.2 74.3 92.4 95.6 63.4 88.8

U-BiNet 1/32 92.6 80.9 95.5 80.9 90.1 70.0 96.7 80.7 78.4 74.1
U-BiNet 1/16 92.9 81.5 92.5 81.2 88.9 71.3 96.3 91.3 74.5 86.5
U-BiNet 1/8 91.1 78.8 93.2 73.6 84.4 75.0 93.1 94.8 76.4 88.9
U-BiNet 1/4 93.6 79.3 96.8 83.0 83.2 70.3 92.7 92.7 73.4 89.6
U-BiNet 1/2 84.2 52.3 90.3 55.0 85.8 35.2 89.1 52.8 68.0 66.6
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Figure 5. Confusion matrix of U-BiNet on the test set of Magnetic Tile. The figure is best viewed in
color and zoomed in.

Fined-grained Defect Detection on NEU Patches: The results are indicated in Table 4,
where the performances of CAT, SSD, and ESP are reported in [11]. For the reason that
there is no recognized formula to calculate the OPs of the network whose activation in
inference is quantized, we have simply listed the inference complexity introduced in [48].
Obviously, U-BiNet achieves superior performance than most existing methods, and shows
a good balance among accuracy, inference complexity, and model size.
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Table 4. Fined-grained defect detection performance on NEU Patches. ‘−’ indicates that the
information was not reported or is not known to us.

Method Bitwidth Dice Accuracy FPR FNR MAE Inference
(W/A) Complexity

CAT [49] - - - 0.116 0.030 0.105 -
SSD [50] - - - 0.041 0.677 0.200 -
ESP [11] - - - 0.088 0.266 0.143 -

U-Net [41] 32/32 0.897 0.953 0.013 0.160 0.047 -

U-BiNet 1/32 0.882 0.945 0.008 0.118 0.055 32
U-BiNet 1/8 0.880 0.944 0.012 0.184 0.056 8
U-BiNet 1/4 0.875 0.942 0.012 0.190 0.058 4
U-BiNet 1/2 0.879 0.941 0.013 0.183 0.060 2

4.4. Ablation Study

We conducted ablation experiments to classify each component’s exclusive contribution
and the collaborative contribution of each unique combination towards the overall performance.

Initially, we analyzed the individual effects of the following modifications on the
binarized ShuffleNet V2 0.5× at the very beginning. The abbreviations of modifications
used in this section are as below:

BL: The baseline model, where RSign and RPReLU are introduced in Shufflenet V2
0.5× while all convolutions in the repeated units are replaced with 1-bit convolutions.

Sbasic: Add shortcuts in the right branch of the basic unit.
Sdown: Add shortcuts in the left branch of the down-sampling unit.
ksDWl : Reset the kernel size of the 1-bit convolution layer that substitutes the

depthwise convolution layer in the left branch of the down-sampling unit. In addition,
2 × ksDWl = 3 denotes 2 consecutive 3 × 3 convolution layers on the left branch to obtain
the same receptive field as a single 5 × 5 convolution layer.

ksDWr : Reset the kernel size of the 1-bit convolution layer that substitutes the
depthwise convolution layer in the right branch of both basic and down-sampling units.
Similarly, 2 × ksDWr = 3 denotes 2 consecutive 3 × 3 convolution layers on right branch.

ksconv1: Reset the kernel size of the first vanilla convolution layer in Bi-ShuffleNet.
mp: Substitute the average pooling with max pooling in the shortcut in the down-

sampling unit.
Experiments were carried out on Magnetic Tile and NEU datasets, as shown in

Tables 5 and 6, respectively, where we found that those proposed modifications are
independent and can contribute collectively towards improving the overall accuracy.
Besides, we can also draw some conclusions, which are beneficial for the design of networks
in defect detection and construction of binary networks.

As for defect detection tasks, these turn out to be more efficient when enlarging the
kernel size of convolution layers, no matter whether in building units (i.e., ksDWr and ksDWl )
or ahead of basic units (i.e., ksconv1). When extending ksDWr to 5, the accuracy increases
by 3.05% (II and III in Table 6) and 7.75% (III and IV in Table 5), respectively, in NEU
and MT, without hurting stability. When ksconv1 grows from 3 to 9, the accuracy jumps
by 0.22% (III and VI in Table 6) and 10% (VI and VIII in Table 5) in NEU and MT, with
comparable stability. When decomposing the 5 × 5 convolution into 2 consecutive 3 × 3
convolutions, considerable improvements can also be seen in IX, X, and XI in Table 5, which
is expected as they can enhance the nonlinear representation capacity [51]. In addition, max
pooling does function in downsampling when shortcuts are introduced in defect detectors.
The intermediate networks with max pooling in shortcuts witness a growth of 0.95% (III
and IV in Table 6) and 2.25% (V and VI in Table 5) in NEU and MT, and at most a 2×
stability enhancement.
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Table 5. The effects of different components in Bi-ShuffleNet on the final accuracy of the Magnetic
Tile dataset.

Method TOP-1 OPs
Accuracy (%) (×107)

I BL 45.51 (±4.01) 2.25
II BL + (Sdown) 47.96 (±2.04) 2.25
III BL + (Sdown, Sbasic) 61.23 (±3.71) 2.25
IV BL + (Sdown, Sbasic, ksDWr = 5) 68.98 (±3.69) 2.40
V BL + (Sdown, Sbasic, ksDWl ,DWr = 5) 72.04 (±4.00) 2.47
VI BL + (Sdown, Sbasic, ksDWl ,DWr = 5, mp) 74.29 (±2.92) 2.47
VII BL + (Sdown, Sbasic, ksDWl ,DWr = 5, mp, ksconv1 = 5) 75.10 (±3.07) 3.92
VIII BL + (Sdown, Sbasic, ksDWl ,DWr = 5, mp, ksconv1 = 9) 84.29 (±2.63) 8.88
IX BL + (Sdown, Sbasic, ksDWr = 5, 2 × ksDWl = 3, mp, ksconv1 = 9) 88.26 (±1.07) 9.01
X BL + (Sdown, Sbasic, ksDWl = 5, 2 × ksDWr = 3, mp, ksconv1 = 9) 91.30 (±2.38) 8.99
XI BL + (Sdown, Sbasic, 2 × ksDWl ,DWr = 3, mp, ksconv1 = 9) 90.87 (±1.63) 8.86

Table 6. Ablation study on NEU.

Method TOP-1 OPs
Accuracy (%) (×107)

I BL 91.11 (±1.07) 1.75
II BL + (Sdown, Sbasic) 95.56 (±0.70) 1.75
III BL + (Sdown, Sbasic, ksDWr = 5) 98.61 (±0.50) 1.90
IV BL + (Sdown, Sbasic, ksDWl ,DWr = 5, mp) 99.56 (±0.22) 1.93
V BL + (Sdown, Sbasic, ksDWl ,DWr = 5, mp, ksconv1 = 5) 99.22 (±0.27) 2.42
VI BL + (Sdown, Sbasic, ksDWl ,DWr = 5, mp, ksconv1 = 9) 99.78 (±0.21) 5.41
VII BL + (Sdown, Sbasic, ksDWr = 5, 2 × ksDWl = 3, mp, ksconv1 = 9) 99.28 (±0.67) 4.14
VIII BL + (Sdown, Sbasic, ksDWl = 5, 2 × ksDWr = 3, mp, ksconv1 = 9) 99.45 (±0.30) 4.12
IX BL + (Sdown, Sbasic, 2 × ksDWl ,DWr = 3, mp, ksconv1 = 9) 99.22 (±0.37) 4.23

In terms of the design of a 1-bit CNN, real-valued shortcuts are of great importance for
the contribution to the final accuracy. Intrinsically, a shortcut inspires the potential of the
deep network by avoiding accuracy degradation [52]. Besides, as shown in Figure 2c,d, the
shortcut normally connects the previous real-valued activations after activation functions
to the later output of binary convolution; thus, it preserves the intermediate real-valued
activations as much as possible, facilitating the network to approach the representation
of networks in full precision, which is difficult and constantly pursued in the field of
network binarization [53,54]. As verified in the tables, after adding shortcuts in basic and
down-sampling units, the network beat the baselines by an obvious margin of 4.45% (I and
II in Table 6) and 15.72% (I and III in Table 5) in NEU and MT datasets, respectively, with
better stability and negligible extra computational cost.

The effectiveness of RSiLU in U-BiNet is also demonstrated in Table 7. In NEU Patches,
U-BiNet with RSiLU shows overwhelming performance in each indicator. However, in MT,
U-BiNet without RSiLU possesses relatively high FNR and MAE, but lower FPR, which
demonstrates that it is prone to producing pseudo-results. Therefore, a logical deduction is
that the addition of learnable variables on binary activations to explicitly shift activation
distribution is simple yet helpful.

Table 7. Ablation study on RSiLU. All the activations are full-precision (32-bits).

Dataset Method Dice Acc. FPR FNR MAE

Magnetic Tile U-BiNet (SiLU) 0.827 0.999 0.242 (×10−3) 0.318 0.927 (×10−3)
U-BiNet (RSiLU) 0.814 0.999 0.274 (×10−3) 0.260 0.863 (×10−3)

NEU Patches U-BiNet (SiLU) 0.874 0.940 0.008 0.202 0.060
U-BiNet (RSiLU) 0.882 0.954 0.008 0.188 0.055
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5. Discussion

On the whole, the binary models proposed in this paper have the advantages of
deep learning to reduce human involvement, promote the development of intelligent
manufacturing, and accelerate the landing of Industry 4.0 [13]. In comparison with
previous 1-bit CNNs or even classic real-valued networks, the purpose-built 1-bit CNNs
in this paper show comparable or even overwhelming performances in surface defect
detection. Empirically, with the increasing scale of defect datasets, the performance of
our networks can even be further improved. Compared with prior methods based on
handcrafted features, our methods are data-driven with salutary robustness to various
defects; among learning-based approaches, our binary models reduce inference time and
save model size without compromising the performance. Facilitated by binary networks,
automated inspection systems can be deployed in every corner of working shops and
embedded in edge devices or other carriers to execute quality assessments with acceptable
power consumption.

However, there still exist some defects that both U-Net and U-BiNet fail to detect, e.g.,
crack and uneven, especially when the defects are too small and take little proportion in
the dataset, or the defect itself shows little dissimilarity to the background texture. Further,
our binary models should be examined in broader industrial scenarios where there exist
richer defects in assembly, geometry, etc. However, this assumption is currently impeded
by the lack of relevant datasets.

In addition, as the bitwidth of activations in U-BiNet can still be higher than 2, there
is still plenty of reduction space in computational complexity for object segmentation
tasks. Incidentally, the quantitative indicators of the efficiency in neural network
quantization can be further explored to obtain a quantified comparison with networks
before quantization.

Additionally, the research trends of both defect detection and network binarization have
gradually switched from theoretical study to on-site application. For further investigations
in the future, experiments on specific hardware and production lines should be carried out
for direct inference complexity measurement instead of proxy metrics and more on-site
images with noise, respectively, contributing to a broader range of benefits in both industry
and academia.

6. Conclusions

In this paper, we showed the potential of the binary network in industrial applications.
Firstly, we binarized a classification network by means of ReActNet and proposed
Bi-ShuffleNet, a new binary network based on a compact backbone, which is the
first exploration of a binary network in defect detection, leading to an efficient defect
perception. Secondly, we introduced a customized binary network named U-BiNet for
defect segmentation, demonstrating the effectiveness and striking computational saving.
Lastly, we conducted extensive experiments on the NEU and Magnetic Tile datasets, and
found some inspiration for both accurate and robust defect detection.
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