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Abstract: Mobile devices and sensors have limited battery lifespans, limiting their feasibility for
context recognition applications. As a result, there is a need to provide mechanisms for energy-
efficient operation of sensors in settings where multiple contexts are monitored simultaneously.
Past methods for efficient sensing operation have been hierarchical by first selecting the sensors
with the least energy consumption, and then devising individual sensing schedules that trade-off
energy and delays. The main limitation of the hierarchical approach is that it does not consider
the combined impact of sensor scheduling and sensor selection. We aimed at addressing this
limitation by considering the problem holistically and devising an optimization formulation that
can simultaneously select the group of sensors while also considering the impact of their triggering
schedule. The optimization solution is framed as a Viterbi algorithm that includes mathematical
representations for multi-sensor reward functions and modeling of user behavior. Experiment results
showed an average improvement of 31% compared to a hierarchical approach.

Keywords: energy efficiency; Mobile Sensing; context-awareness

1. Introduction

The advances in pervasive computing, such as smart wearables and sensor networks,
have provided opportunities for health monitoring and human-centered context-aware
systems. Mobile devices with sensory capabilities are commonly used to recognize the
contexts of the user and provide appropriate assistance and services. Context relates to
numerous areas of human-centric activities, such as health-care monitoring [1,2], activity
recognition [3], social networking [4], location [5,6], and emotion recognition [7,8]. A con-
text state describes one of many possible depictions of an entity within a context. States
from separate contexts are mutually disjoint; for example, in the context activity, the user
can be walking, sitting, or running. On the other hand, in the context of emotion, the states
can be happy, sad, or angry. Context states are typically recognized by processing data
collected from smartphone sensors (accelerometer, gyroscopes, GPS, etc.), wearable sensors
(electrocardiograms (ECG), heart rate sensors, or body temperature sensors), or wearable
devices (smartwatches and headsets).

A key issue with context-aware applications is the large demand on battery energy
attributed to sensors’ power consumption [9], and algorithms that increase computational
workload [10]. To minimize delays in context recognition, sensors would need to operate
continuously, which in turn would cause larger energy consumption. It would be more
energy-efficient to use the sensors intermittently, by turning them off when a state remains
unchanged and then back on when a new state is expected to be encountered. Unfortunately,
the time of state change cannot be perfectly predicted beforehand, since anticipation
of state changes is not deterministic and is still a challenge in the field of anticipatory
mobile computing [11]. As a result, the sensor operation problem can be formulated as
an optimization problem that tries to balance between minimal delays in the detection of
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change and energy consumption while taking into account the expected timing of a new
context change.

Furthermore, with the proliferation of context recognition applications, there is an
opportunity for synergy across choices of sensors when multiple contexts are operating. In
such cases, the choice of sensors should minimize the energy consumption for all contexts
simultaneously, not just for each context separately.

There has been active research to devise efficient sensing mechanisms for context
recognition. Some methods work for individual sensors or single contexts [12,13], while
focusing on sensor selection and sensor scheduling. Other methods [14–16] consider the
trade-off in energy, accuracy, and delays for multiple groups of sensors and multiple
contexts. The proposed hierarchical approaches first select groups of sensors and then
determine individual sensing schedules. Their main limitation is their lack of account-
ing for potential synergy across contexts, which results in impacts on sensor selection
and scheduling.

The aim of this work was to address this limitation by proposing a holistic optimiza-
tion approach that can simultaneously consider sensor selection and sensing schedules
towards the optimal trade-off between overall energy consumption and delays in detecting
desired contexts. The solution is framed as a Viterbi algorithm with personalized capture of
user behavior that reflects the most probable instances for change in context. The Viterbi al-
gorithm operates offline to generate sensing schedules, modeled according to personalized
user behavior, for sensor groups categorized by the associated context recognition model.
After that, the sensors are selected in real-time by solving a multi-objective optimization
problem considering the energy and delay components of the combined operation, follow-
ing the related sensing schedules of different sensor combinations. Moreover, we take into
consideration the synergistic effects of different sensor combinations by taking advantage
of sensors used in different context recognition models. The contributions of this work are:

• A holistic optimization formulation for simultaneous decisions on both sensor choices
and sensor schedules as opposed to a hierarchical optimization scheme.

• The definition of holistic reward functions for sensor scheduling that account for
energy, accuracy, and delay for the complete set of contexts simultaneously.

• A user behavioral model that estimates the probability of context state change cus-
tomized to the user’s behavioral pattern.

The rest of the paper is organized as follows: Section 2 reviews related work in the
literature for energy efficiency techniques. Section 3 describes the optimization problem
and the mathematical formulation, and the notation used. Section 4 presents an overview
of the proposed system that solves the optimization problem. Section 5 showcases the
experiments conducted to evaluate the proposed solution in comparison to the state-of-the-
art. Section 6 presents and discuss the practical aspects of our solution approach. Finally,
Section 7 presents the conclusion.

2. Literature Review

Related previous work on efficient sensors’ operations for context recognition can be
categorized into work that has considered sensor selection only, sensor scheduling, or both.

2.1. Sensor Selection

Taleb et al. [17] presented an algorithm that uses a heuristic that consists of choosing
the sensors that maximize the ratio of the accuracy divided by the energy consumption
with constrains based on sensor availability and battery level. Gao et al. in [18] proposed a
framework that selects a set of sensors to reduce energy consumption attributed by selecting
a subset of the initial sensors based on the context state and relying on expert knowledge.
Convex optimization is used to minimize a trade-off between transmission energy and
the probability context misrecognition. A framework presented by Kang et al. [19], called
SeeMon, selects a set of sensors named the essential sensor set (ESS) by solving a variation
of the minimum set cover problem by greedily selecting the most cost-effective sensors
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iteratively capable of recognizing the context while trading-off computational complexity
and energy savings in terms of data transmission rate. The ESS updates either continuously
or periodically based on the available battery levels.

Dynamic sensor selection, by Zappi et al. [20], trades-off power consumption with
recognition accuracy by adapting the set of sensors once the energy of sensor nodes (smart-
phone, smart-watch, etc.) depletes. The approach either selects the sensor cluster that
gives the highest accuracy after enumerating all the possibilities, or selects the sensor
cluster that first meets an accuracy threshold during enumeration. Another approach by
Gordon et al. [21] selects sensors based on the predicted future activity state of the user
using a first-order Markov chain. The approach evaluates a weighted mapping of each
activity to the sensors in terms of the loss in accuracy compared to other sensors. The
weighted map is generated using a nearest neighbor classifier for all training vectors for
each state and simulating different feature combinations, where each feature combina-
tion is linked to a sensor group, and then seeing the varying effect on the accuracy of
different combinations.

In a recent approach, Janko et al. [13] selected a sensor and their sampling frequency
through an iterative approach with a multi-objective optimization for a trade-off between
energy and accuracy. The optimization problem is solved using a genetic algorithm (NSGA-II).
The sensors and their settings are specified according to the currently recognized context state
and the most likely up-coming state, assuming the Markov property holds. Moreover, the
same authors introduced in [22] a cost-sensitive decision tree to detect context states with finer
granularity in terms of feature data, e.g., running fast vs. running slow, as each one could
have a different optimal choice of sensors. Each node of the tree is a pair of a context classifier
and set of sensors, as such, the method traverses the tree from the node (default setting) until
a leaf is reached that yields the highest value calculated as the accurate classification minus
a weighted energy cost. Jaimes et al. [12] proposed a method that cycles through different
sensors and weighs the information with each sensor feature versus the energy cost of using
the sensor. The drawback of the approach is that it cannot handle quick changes in context
state and is prone to delays due to the cycling mechanism. Starliper et al. [23] presented an
approach where power consuming physiological response sensors are activated or deactivated
depending on the activity recognized.

2.2. Sensor Scheduling

Some approaches aim to reduce energy consumption not by scheduling sensor oper-
ation, but by scheduling data communications to reduce energy consumption and delay.
Such approaches, [24,25] for example, use a smart-update policy in which sensor data is
continuously collected and communicated to a central system once sensor readings change
or are predicted to change. However, the continuous operation of sensors drains the battery
supply of mobile devices quickly. So the challenge is to derive a schedule that minimizes
energy consumption while avoiding delays in detecting changes in context state.

Taleb et al. [14] presented a dynamic means of generating a sensing schedule by
maximizing a cumulative reward function that accounts for the energy consumption and
delay of individual sensors. Rachuri et al. [26,27] proposed an adaptive sensor triggering
method that uses a feedback mechanism to decrease or increase sensor inactivity time by
a multiplicative function based on the current classification of the context state. Context
states are classified as either missable or unmissable using a Gaussian mixture model
classifier linear reward-inaction algorithm. A missable event corresponds to no change in
the state or state change that was not of interest leading to an increase in the period sensor
inactivity, whereas an unmissable event corresponds to a state change of interest leading to
a decrease in the period. Yurur et al. [28] presented a framework to recognize activity with
a generalized expectation-maximization algorithm to achieve a trade-off between energy
consumption and accuracy. The state transition probabilities of a hidden Markov model
update, i.e., the sensors trigger, when an entropy rate of the user state transition matrix
converges on a stable value.



Sensors 2021, 21, 6862 4 of 33

In a recent approach, Janko et al. [29] used the same method introduced in [13] to select
the duration after which to turn off the sensors, to match the calculated length of time spent
in each context state from the steady-state condition of the Markov Chain. As such, when a
context state is detected, the method turns off the sensors until the context state is expected
to change. Another approach called ESGeo by Liu et al. [30] reduces energy consumption
by scheduling mobile device scanning for crowdsourcing applications. The scheduling is
based on a user’s historical trajectory and geographic grid information, by adapting the
scanning operation in areas of probable encounter with other devices. Lastly, Tal et al. [31]
determined a sampling policy dynamically for a combination of sensors by solving a
convex optimization formulation combining sensor sampling costs and information loss.
The sensor sampling costs are formulated in relation to energy consumption, and the
information loss based on the KL-divergence between the actual context state and a latent
context vector.

2.3. Sensor Selection and Scheduling

A few works of research aimed to combine both techniques in one framework; how-
ever, they all followed a hierarchical structure. Wang et al. [32] presented a hierarchical
sensor management system called the Energy Efficient Mobile Sensing System (EEMSS)
that first selects the sensors and then schedules sensing while minimizing a trade-off among
accuracy, delay, and energy consumption. The framework consists of a sensor management
scheme that manually links the user’s states with specific sensors by deciding which sensors
to activate based on the currently recognized state. When a state transition gets detected,
the next set of sensors in the sequence is activated. Moreover, a sensing schedule is manu-
ally generated through empirical tests to address the energy, accuracy, and latency trade-off.
This approach does not allow for adaptability and finding the Pareto optimal trade-off.
Lee et al. [33] presented a framework called Orchestrator, which is a resource coordination
system that satisfies the resource demands of the multiple applications and system-wide
policies, and meets the resource availability of devices. A processing planner generates
multiple plans, pre-defined by developers, which specify the combinations of sensors with
the associated accuracy in context recognition. Only some plans are selected based on
whether they support the context recognition requests, minimize energy consumption, and
maximize recognition accuracy with available resources. Furthermore, sensor triggering
and data transmission are performed periodically at fixed time intervals, according to the
estimated energy level availability and accuracy requirement. Sarker et al. [15] presented a
hierarchical scheme for selecting and scheduling sensors. A k-means clustering algorithm
is used to differentiate redundant and useful data from sensors and calculate the number
of samples required to accurately detect a context. For the sensor selection mechanism, the
authors suggested the use of an accelerometer by default. In the sensor scheduling stage,
a multiplicative increase and multiplicative decrease (MIMD) algorithm is applied for
duty-cycling each selected sensor according to the required number of samples calculated.

More recently, Mehdi et al. [34] proposed two methods to reduce energy consumption.
The first is to only turn on the sensors once a monitoring watchdog sensor detects sudden
changes in patient condition, and the second is a sampling rate adaptation method using
chi-square test and Lagrange interpolation while maintaining accurate context recognition.
Moreover, the authors in the authors in [35] expanded on the multi-objective optimization
problem introduced in [13] that trades off between accuracy and energy consumption,
by adding constraints to solve it with a combination of NSGA-II and constraint handling
techniques. The constraints introduced to ensure the accuracy of important context states
do not deviate significantly from the maximum, keep the accuracy of each context state
within a certain range of one another, increase sensor operation if the accuracy is below a
threshold, and use as few sensors as possible. The authors of [36] proposed to combine the
methods in [13], called the setting-to-context assignment (SCA), and in [29], called the duty-
cycle-to-context assignment (DCA) and the model trees (MT) method in [22]. The combined
method first selects the sensors using the MT on the current context, thus each context has
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a different MT, then uses SCA to evaluate assigning the selected sensors to the context and
uses the result as input to the DCA method to evaluate the obtained duty-cycle. The final
assignment is selected based on the combination of evaluation from the SCA and DCA
methods that result in minimal overall energy consumption and classification accuracy.

Taleb et al. [16] also considered decisions by both sensor selection and scheduling.
The method relies on an ontology that contains specifications such as sensors and machine
learning parameters. The approach filters out combinations of sensor groups that do not
meet manually set accuracy and energy budget constraints. The group with the minimum
energy consumption per trigger is selected. The framework uses a Viterbi algorithm [14]
to generate the sensing schedules of the selected sensors. The sensing schedule based
on a user state behavioral model predicts when the user may change state. The last step
in the algorithm is to synchronize the schedules of multiple sensors that are common
across different context recognition requests. The limitation of that approach is that it does
not take into account how the operation of the chosen sensor groups will impact energy
consumption and delay in state change detection. Our work proposes a holistic approach
that takes into account the energy and delay to recognize multiple contexts simultaneously.

3. Problem Description and Formulation

The problem addressed by the holistic optimization approach is the excessive energy
consumption and delay in context state change detection associated with sensor usage in
multi-context recognition applications. This follows the need to select sensors to conduct
requested multi-context recognition while scheduling the sensor’s operation with the aim
of reducing both energy and delay. The inputs and outputs of the system are illustrated
in Figure 1. As input, the approach assumes the availability of a knowledge base called a
context recognition knowledge base (CRM KB) that contains information about context
recognition models, the sensors they can use, and accuracies that can be achieved along
with sensors’ specifications. Another input is the current state of the user as detected by
the running multi-context recognition models. Last is a behavioral model that represents
the user’s behavior in the recognizable states of each context, in terms of how long a user
is likely to remain in a state before changing to another. The outputs of the system are
the sensors selected to recognize each requested context and the sensing schedules for
each sensor. Sensors that are common to multiple contexts have multiple corresponding
schedules for the different context recognition models using them. The multiple sensing
schedules of the common sensors are merged, as represented by the union symbol in
Figure 1, through a synchronization process to take advantage of synergistic effects.

  Behavioral Model

      Current States
Holistic

Optimization
Approach

Chosen Sensors 
Corresponding

Sensing SchedulesInputs to System

CRM KB

Schedule 1 
U 

Schedule 2
U

Schedule 3

Sensor 2

Sensor 1
Context 1

Context 2

Context 3

Sensor 4

Sensor 3

Sensor 5

Schedule 1 
U 

Schedule 3

Schedule 2

Schedule 3

Figure 1. System description. The inputs are the user’s current context states, the behavior model,
and a context recognition knowledge base (CRM KB). The outputs are the selected sensors and the
sensing schedules for each context. The notation presented is described in Section 3.1.
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For a particular context state, sensing switches to continuous once the time interval
exceeds the maximum time a user spends in a particular context state. Continuous sensing
is applied because past the maximum time the user’s behavior is unpredictable, due to the
lack of data. Thus, the approach cannot adapt the sensor schedule to fit the user’s behavior
appropriately. Continuous sensing would certainly increase energy consumption; however,
the alternative is to schedule sensor operation without any information on user behavior,
which would lead to inappropriate operation of the context recognition application and
delays. We assume that during continuous sensing there are minimal delays in context
recognition that cannot be reduced due to the fuzzy event boundaries, as described in [37].

For the rest of this paper, we adopt the notation cl to represent a context with
l = 1, . . . , L, where L is the total number of contexts that can be recognized by the system.
For each context cl , the states are denoted by xj

l , where j indicates the specific context state
such that j = 1, . . . , Jl , and Jl is the number of states for context cl . For example, the activity
context can be of the following states: walking, sitting, or working. The location context can
be at home, work, or a cafe. The emotion context can have the following states: happy, sad,
and neutral. Each context cl requires sensory data accessible by the mobile and wearable
devices handling the computations required for the recognition. Hereafter, when l appears
as an index for a term. It means that that term is related to context cl . Moreover, a table
summarizing all the notation used is provided in Appendix A.

The following subsections provide a detailed description of the input requirements for
our approach and the outputs. Section 3.1 describes the CRM KB by providing the design
and the notation used. Section 3.2 explains the history of past user behavior or the behavior
model, the sensing schedules, and their synchronization. Finally, Section 3.3 presents the
mathematical formulation.

3.1. Knowledge Base for Context Recognition Models

Our solution makes use of the wealth of past knowledge in the field of context
recognition stored in a context recognition models knowledge base (CRM KB). The CRM KB
may be in the form of a database, as used by our approach, or an ontology, as used in [16].
For this research, the information used in the database was collected from established
context recognition applications published in peer-reviewed papers in addition to sensor
specification manuals made available by manufacturers. The CRM KB illustrated in
Figure 2 contains:

• A context table containing the primary key, the names of contexts that may be recog-
nized (C_Name), and the different possible context states (C_State).

• A recognition model table containing the target context for the model (RM_Context), the
machine learning model (RM_Model), the parameters of the model (RM_Parameters),
the features required by the model (RM_Features), and the sensors used by the model
(RM_SensorGroups).

• A sensors and specifications table containing several features for each sensor: the
instantaneous power consumption (S_PowerCon-sumption) used to pre-compute the
energy consumption for a duration of sensor operation or trigger, the energy per sensor
trigger (S_EnergyPerSensingDuration), the sampling frequency (S_SamplingFrequency),
and the sampling window size (S_SamplingWindowSize).

• A context recognition model relationship table associating the models and sensors to
use with each context. The table contains has links (foreign keys) to the other three
entity tables. The table also shown the accuracy achieved by each combination (model,
context, sensors) and the sensing duration during triggers.
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CRM

 CRM_IDPK
 C_IDFK1
 RM_IDFK2
 S_IDFK3
 Group_Accuracy

 Sensing_Duration

Recognition Model

RM_IDPK
RM_Context
RM_Model
RM_Parameters
RM_Feautres

RM_SensorGroups

Context Recognition Model Knowledge Base (CRM KB)

Sensors and Specifications

S_IDPK
S_EnergyPerSensingDuration
S_PowerConsumption
S_SamplingWindowSize

S_SamplingFrequency

Context

C_IDPK
C_Name
C_State

Figure 2. The context recognition model knowledge base (CRM KB), containing the information
relevant to context recognition: (1) context; (2) sensors and specifications; (3) recognition model;
(4) the associations of the three together to recognize a context.

The information used for solving the optimization problem is extracted for the pro-
posed solution by querying the knowledge base. The information is presented with its
respective notation, which is explained in the mathematical formulations below.

• The set of possible sensor groups for each context is denoted by πl .
• Each sensor group within πl is represented by G l

n, where n represents one of the
possible groups of sensors to recognize cl such that n = 1, . . . , Nl , and Nl is the total
number of groups in πl . To simplify the notation, we use G in place of G l

n where
possible henceforth.

• Each sensor is denoted by Sm, where m indicates the specific sensor. Assuming the
availability of M embedded and wearable sensors, m = 1, . . . , M. A sensor can belong
to different sensor groups. The sensors that make up a group are typically available in
mobile and wearable devices, such as a smartphone and smartwatch. Examples of
sensors are a GPS, accelerometer, and a gyroscope.

• The energy consumption for each sensor group G is denoted by EG . This energy is
generated from sensor operation, CPU processing, and data transmission as in the
case of a wearable sensor.

• The one-vs.-all classification percentage accuracy, specifically, the percentage of true

positives achieved by each sensor group G when detecting contextual state xj
l , is

denoted by Aj
G .

• The time to recognize a state xj
l is denoted by δG . δG includes the time to turn the

sensors on and collect enough sensory data to recognize a context state.
• The specifications needed to recognize a particular context include: possible states xj

l
in a given context cl , ML models that can be used with a given choice of sensors, and
data features collected for each ML model.

3.2. Time Spent in Each Context State

Our solution makes use of the user’s past behavior to derive sensing schedules
customized for particular users’ habits and behaviors in particular states. A previous
approach [14] modeled user behavior by assuming a single pattern of behavior for each
state represented by a single derived time limit for the user in those states. A time limit
is a point in time at which the user is most likely to change their state, so the pattern of
behavior modeled with the time limit is based on when the user switches context states.
We propose an alternative method that makes a more realistic assumption of the user’s
behavior by accounting for the variations in the user’s behavioral pattern within each
state. The variations are due situation specific changes, such as the day of the week or
the time of day. The previous approach would take the average of all the historic record,
whereas in our approach multiple times are set as time limits to account for behavior
variability. For example, the user may usually walk around 5 min every day in the morning
or around 25 min some days in the evening. In other cases, the user may engage in an
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activity several times a day and for various periods of time, from minutes to hours, such
as resting, which includes sleeping, napping, and lying down. Such variations cannot be
modeled accurately by a single time limit. Accordingly, the assumption we make is that
the user changes their context state at a certain time, and if not, the state will change at
another time in the future. As a result, a user can have multiple time limits within each
state to account for multiple patterns of behavior, instead of assuming a single pattern of
behavior, as modeled by one time limit. To illustrate the difference between the resulting
time limits of the two methods, Figure 3 illustrates the durations spent in the two activity
states “Walk” and “Rest”, obtained from the dataset used in our experiments, with the red
dashed-line representing a single time limit obtained by the method of [14], and the yellow
lines representing the multiple time limits obtained by our method. As such, the multiple
time limits enable our method to capture multiple behaviors of the user for the same state.

Our proposed method uses a frequent pattern mining approach to derive these mul-
tiple time limits. We capture the most frequent times spent in each state. The method
requires two parameters to be specified: (1) the size of the histogram bins reflecting the
desired granularity for the patterns of time limits and (2) the threshold of counts within
a bin to consider the pattern frequent enough. These two parameters can be set based
on the desired time resolution and what the system designer deems as frequent. For the
purpose of our experimentation, a histogram of the different values with bin sizes equal to
10% of the longest duration for the state was made. The threshold of counts was selected
to be 5% of the durations recorded for the state. The time limits are then computed by
taking the middle duration of the bins that exceeded the threshold of counts. Additionally,
if there are four or more consecutive highly populated bins, the time limit calculation
method combines two consecutive bins into a single highly populated bin, which is then
used to compute the time limit. This is done to avoid having too many consecutive time
limits, which might impact energy consumption unnecessarily. The duration of the bin
in the middle is taken as a time limit. In Figure 3b there are four highly populated bins,
which are the first four that are captured by the two time limits represented by the yellow
lines. The red dashed line in both figures indicates the time limit obtained by averaging all
the durations.

(a) (b)

Figure 3. Distribution of durations spent in (a) “Walk” and (b) “Rest” states in the activity context.

Since the system tracks the time spent in each state, the behavioral model adapts to
changes in user behavior. The model adapts by creating a new time limit, modifying an old
one for a new behavior, or removing an invalid time limit, though incremental changes in
recorded behavior. When the count of a bin changes around the 5% threshold, the list of time
patterns or time limits for each state is updated. The updates come in the form of (1) the
addition of a new time limit if the count for a bin increases above the 5% threshold, (2) the
merging of two time limits if a new time limit is obtained adjacent to an old one, (3) the
removal of a time limit if the count for a bin decreases below the 5% threshold, and (4) the
adjustment of a time limit formed by the merging two adjacent time limits after one of the
corresponding bins drops below the 5% threshold. For example, going back to Figure 3a,
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if the user records even more time walking under 15 min (the first bar), so that the count
exceeds 95% of all the count, the time limit associated with the second bar would be dropped
due to not meeting the 5% threshold.

The resulting time limits for each state xj
l are denoted by T j

l,h, where the h index
represents the time limit in ascending order, where h = 1, . . . , H. H is the total number of
time limits for a state and T j

l,H is the time limit with the longest duration. The time limits,

T j
l,h, are used to generate a sensing schedule, denoted by ai

G , for a sensor group G, where a
sensing decision is made every δG seconds, and the each particular time instance is referred
to as ti

G , where i = 1, . . . , IG , and IG is the last decision instance before sensing becomes
continuous and is computed as shown in (1).

IG =
T j

l,H

δG
(1)

We provide the following practical example to illustrate the use of sensing schedules
in our approach. A user with a smartphone and smartwatch, each having a corresponding
set of sensors, ran a context recognition application while at home that required samples
from sensors to recognize the state of the location context c1 and activity context c3. After
having selected the sensors to be used for multi-context recognition, the selected sensor
groups recognized that the user was walking, denoted by state x1

1, at home, denoted by x1
3.

The sensing schedule was generated in such a way as to activate the sensors most often
when the user was most likely to change from a walking state to another state x2

1 at the
time limits T1

3,1 and T1
3,2, or changes location to x2

3 around time limit T2
1 . Once the T2

1 and
T1

3,2 passed, i.e., the last time limit of each context state, the sensors ran continuously until
a new state was detected. After detecting the new state, the same process occurred again.

Figure 4 illustrates the two associated sensing schedules (ai
G1

1
and ai

G3
1
) of the preceding

example, for sensor groups (G1
1 and G3

1 ) when recognizing context c1 and c3, respectively.
ai
G1

1
has a triggering decision period of δG1

1
and ai

G3
1

has a period of δG3
1
. The user’s behavior

model captures the historical patterns of the user’s behavior in different context states.
These patterns are represented by time limits denoted by T j

l,h that indicate when there is a
likelihood of change in a context state. On the top of Figure 4, the behavior model is shown
for each context state xj

l with the corresponding time limits T j
l,h. The time limits influence

the triggering decisions, as seen for ai
G1

1
and ai

G3
1
; sensor triggering becomes more frequent

when approaching a time limit, and sparser otherwise. Moreover, if sensor groups G1
1 and

G3
1 have common sensors, then the schedule of the common sensor is ai

G1
1
∪ ai
G3

1
, which is

the synchronization of the two sensing schedules ai
G1

1
and ai

G3
1
, as illustrated as the bottom

sensing schedule in Figure 4. The synchronization process creates a single sensing schedule
formed as a union of different schedules and is applied to the common sensors in the
corresponding sensor groups. Moreover, if there are sensor triggers that are relatively close,
e.g., δG seconds apart or less, then they are combined into one trigger in the synchronized
schedule. Examples for the combination of proximate triggers are shown in Figure 4 for
the first two triggers in the synchronized schedule at the bottom.
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Figure 4. An illustration of the triggering decision interval, sensing schedules, and synchronization
procedure of 2 sensor groups used to recognize different contexts while having a common sensor.

3.3. Mathematical Formulation

Mathematically, we formulate the optimization problem as a weighted sum of two
objectives, minimizing energy consumption and delay. The formulation has two additional
constraints. The first family of constraints ensures that a selected sensor must have the
needed energy to operate. In other words, a sensor’s required energy (Em) is less than the
sensor’s energy budget (Em

B ). The second family of constraints ensures that not more than
one group of sensors can be used to recognize a specific context at any time. The specific
choices of sensor groups and their schedules are obtained by aiming to achieve an optimal
trade-off between energy and delay. In this section, we use G in place of G to simplify the
notation and to highlight the more relevant concepts.

The formulation is expressed in terms of the combination of energy consumption of
the union of sensor groups Ej

∪lG and cumulative delays for all contexts in contextual state

detection Dj
∪lG . The energy and delay components in the sum are normalized by their

respective maximum possible values of energy Ej
∪lG,max and delay Dj

l,max. The terms are
weighted by a weighting factor ωl multiplied by the boolean decision variable yG , which
has a value of either 1 or 0. The boolean decision variable represents the system’s choice
of sensor group to recognize its associated context; thus, multiplying by yG ensures that
only the sensor groups being considered to have their associated energy and delay values
factored into the objective function value to enable proper comparison of different sensor
group combinations.

min
yG , ai

Sm
∑
G

ωl
Ej
∪lG

E∪lG,max
+ (1−ωl)

Dj
∪lG

Dj
l,max

(∏
l

yG

)
(2)

with the following constraints:

Em ≤ Em
B , Sm ∈ ∪lG∏

l
yG ∀ cl (3)

∑
n

yG ≤ 1, ∀ cl (4)

• Ej
∪lG is the total energy consumption resulting from triggering the union of sensors

∪lG. Ej
∪lG is computed as the count of sensor triggers, where triggers are the sensor

activations with all associated operations, multiplied by the energy consumption per
trigger E∪lG for the sensor groups recognizing each context state according to the
respective sensing schedules. Since the user does not always spend the same amount
of time in each context state, the energy term is averaged over multiple scenarios of
times spent by a user in a particular context.
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• Dj
∪lG represents the delays incurred in using the selected sensors for context recog-

nition of the different states xj
l . Dj

∪lG is computed as the difference in time between
when the state changes and the sensor trigger following the change. Just like the
energy term, the delay term is also averaged over multiple scenarios.

• yG is a boolean decision variable denoting the selection of sensor group G. yG is 1
when the groups of sensors are being considered in the computations; otherwise, yG
is 0 when the sensor group’s energy is not included in the minimization term.

• ai
Sm is a vector of boolean decision variables denoting the sensing schedule for the

sensors belonging to the selected combination of sensor groups Sm ∈ ∪lG∏l yG at
different instances ti

G as follows:

ai
Sm =

{
1, when sensor Sm is triggered at ti

G
0, otherwise

(5)

• ωl is a weighting factor that provides a balance between the two objectives and is
user-specified depending on the application. For example, in the health context delay
in state change might be more important than the energy consumption; thus, it should
have a smaller value of ωl .

• Ej
∪lG,max is the maximum energy consumption value, which is equal to the largest

time limit T j
l,H multiplied by Ω∪lG , where Ω∪lG is the power consumption value of

the union of sensor groups ∪lG when the sensors are operating continuously.

Ej
∪lG,max = Ω∪lG × T j

l,H (6)

• Dj
l,max is the maximum delay value, which is equivalent to the largest time limit T j

l,H
since it represents the case when the generated sensing schedule does not decide to
sense until ti

G = T j
l,H .

Dj
l,max = T j

l,H (7)

• Em
B is the energy budget value, which is equivalent to the energy available in the

relevant power source of the sensors belonging to the selected combination of sensor
groups; i.e., Sm ∈ ∪lG∏l yG . The sensors’ power source could be a smartphone or
smartwatch battery, or a dedicated rechargeable battery.

Equation (2) exploits the synergy between the selected groups of sensors by consider-
ing the total energy cost consumed by the union of sensors ∪lG of the selected groups to
recognize the different contexts. Constraint (3) enforces an energy budget Em

B , specific to
each sensor Sm belonging to the candidate sensor groups, on the sensor of the candidate
sensor groups. This is to ensure that the system can only choose sensors that have not
depleted their energy supplies. If for a specific context the energy required by a group
of sensors to recognize a context exceeds the energy budget, then an alternative group
is selected. If there are no alternatives, then the recognition of that particular context is
discontinued. Constraint (4) states that exactly one group of sensors for each context is to
be chosen. The objective function (2) takes the form of a mixed-integer linear programming
(MILP) problem, where the one variable is a boolean variable for the choice of sensor
groups and the other is a vector of boolean variables of varying size representing the
sensing schedule of a selected sensor. The solution is guaranteed to converge to a global
minimum because of the convexity of linear problems [38]. The optimization problem is
solved by choosing sensors to recognize the requested context with the respective sequence
of sensing decisions for each sensor that minimizes the objective function (2).

4. Overview of the Proposed System

Here we present our solution to the problem described in the previous section. The
solution to the optimization problem needs to be used in real-time by context recognition
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systems to decide on the groups of sensors and when to trigger them to consume the
least energy and achieve minimal delay in multi-context recognition. To achieve real-time
performance, we propose to pre-compute optimized sensing schedules and recognition
delays for different possible combinations of sensor groups and context states and make
decisions among these choices online. As a result, the approach is split into two stages, an
online stage and an offline stage, as illustrated in Figure 5.

CRM KB

Specifications for Context
Recognition Models and

Required Sensors
Sensing

Schedule
for each
Sensor

Sensor
Choices

Look-Up Table
containing

pre-computed
Schedules

Model Update

Recording of
Time Durations

in Context
States

Schedule
Synchronization

and
Sensor SelectionViterbi -

Based
Sensor

Scheduling
Approach

(Offline) Alg. 2 Current
Context
States

Behavioral
Model

(Online) Alg. 1

Figure 5. The proposed holistic optimization approach is split into two stages: an online stage (red)
which determines the best combinations of sensors and their sensing schedules obtained directly
from the LUT according to Algorithm 1, and an offline stage (blue) which provides the best sensing
schedule for a particular context state and a group of sensors and stores them in a look-up table
(LUT) according to Algorithm 2.

The offline stage addresses the problem of determining the optimized sensing schedule
that provides the best trade-off between energy consumption and delay for each particular
context. These combinations are then stored in a look-up-table (LUT) that is used online.
The entries in the LUT have the form [<context state, group of sensors> : sensing schedule].
The online stage addresses the problem of finding the groups of sensors and their schedules
to achieve the best synergy between sensor options for the simultaneous recognition of
multiple contexts. The online system provides a multi-context trade-off between energy
and delay.

The following subsections provide detailed descriptions of the two components of
our approach. Section 4.1 describes the online system which selects the sensors and
synchronizes the sensing schedules obtained from the LUT. Section 4.2 describes the offline
system, which pre-computes the sensing schedules and stores them in the LUT, and is
further decomposed into three sub-subsections, which further detail parts of the Viterbi
based algorithm.

4.1. Online System

To select the groups of sensors and their schedules, the system takes in as inputs in
the online stage (1) the current context states of the user, (2) a knowledge base for context
recognition models (CRM KB) with the models’ accuracy and sensor specifications, and
(3) a look-up-table (LUT) produced by the Viterbi offline system capturing pre-computed
optimized sensing schedules for each combination of context state and related group of
sensors. The outputs of the online system are their choices of sensors for the current context
states and their sensing schedules. A sensing schedule is composed of a sequence of sensing
decisions that directs the sensor operations during the recognition of a particular context
state. The system also records the actual times spent by the user in particular context states.
These times are fed back to the offline system for updates to the user’s behavioral model.
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Algorithm 1, found on the following page, details the procedure for the online system
that runs every time a context state changes, i.e., when the sensors’ latest measurements lead
to a different inference than the state that was inferred from the previous measurements.
The approach starts by computing combinations of sensor groups ∪lG from the set of
sensor groups πl capable of recognizing the desired contexts. For each possible sensor
group combination ∪lG, the sensing schedules are extracted from the LUT for each sensor
group G. The sensing schedules are then synchronized for sensors that are common across
multiple sensor groups.

Algorithm 1 Online algorithm for sensor selection with sensing schedules.

Inputs: xj
l , πl , Sm, Em, Ej

G , Dj
G ai
G

xj
l : the current context state of the user contexts ∀ l = 1, 2, . . . , L

From CRM KB:
πl : the set of possible sensor groups G for each of the requested L contexts
Sm: the available sensors
Em: the energy consumption by each sensor Sm

From LUT:
Ej
G : the pre-computed energy consumption for each group of sensors G in

recognizing context state xj
l

Dj
G : the pre-computed delay of each sensor group G in recognizing context state xj

l
ai
G : the pre-computed optimized sensing schedules for the sensor groups in πl in

recognizing each context state.
Output: yG , ai

G
yG : The boolean variable representing the selected sensor groups to recognize

multiple contexts states xj
l

ai
Sm : Sensing schedules corresponding to the sensors of the selected group including

the synchronized schedules

1: Derive all the possible union of sensor groups ∪lG available in πl
2: for each ∪lG do
3: for each Sm ∈ ∪lG do
4: if Sm ∈ G then
5: Assign ai

G obtained from the LUT to Sm of group G as ai
Sm

6: else if Sm ∈ G l
w & G l

q for w 6= q then
7: Synchronize sensing schedules ai

G l
w

& ai
G l

q
and assign to Sm as ai

Sm

8: end if
9: end for

10: Calculate objective function values according to equation (2)
11: Track sensors Sm ∈ ∪lG and sensing schedules ai

Sm with minimum objective
function value according to equation (2)

12: end for
13: Return sensors Sm ∈ ∪lG with yG = 1 and the corresponding sensing schedules ai

Sm

having the minimum objective value

14: if state xj
l changes to xj

l then

15: Record time spent in changed context state xj
l

16: end if

For each unique sensor Sm in G, the LUT sensing schedule is assigned to it ai
Sm = ai

G .
For the common sensors, the schedules are synchronized by taking the union of the
schedules. Using the schedule for every sensor, the energy and delay values are computed
to determine the objective function of Equation (2). For sensors that are unique to a
context, the energy is computed based on the sensing schedule extracted from the LUT
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without additional modifications. For sensors that are common, the energy is computed
based on the synchronized union of sensing schedules from different contexts. Finally, the
combination of sensor groups with the minimum objective function is selected. When a
new context state is detected, the time spent in the previous context state is fed back to the
offline system for updating the behavior model.

For the experiments, we chose the value of the weighting parameter ωl described in
Equation (2) as ωl = 0.5. We provided the energy and delay terms equal weight. However,
the user may choose to have a different value for ωl depending on the priority of energy
reduction versus delay.

An example of how to calculate the objective function for a given group of sensors
with their sensing schedule is given in Appendix B.

4.2. Offline System: Viterbi-Based Sensing Schedules

To generate the sensing schedules in the offline stage, the Viterbi algorithm is applied
to each combination of context state and sensor group. The process takes into account the
user’s behavioral model, which captures the likelihood of changing to a new context state.
The schedules and the associated energy consumption and delay values are stored in the
LUT that is used in the online stage. An optimized sensing schedule balances energy and
delay, since triggering the sensors too often leads to excessive energy consumption, and too
seldom leads to increased delays. We propose to reformulate the optimization as a Viterbi
formulation [39], with the aim of maximizing the utility of the possible combinations of
sensors in recognizing multiple contexts concurrently. A key factor in Viterbi formulation
is the definition of a reward function for the target problem.

In determining an efficient reward function and deriving an optimized sensing sched-
ule there are two aspects that are useful. The first aspect is knowing at any time the
likelihood of state change, called state survival probability. The survival probability would
be high when it is unlikely that the user will have a state change. On the other hand,
the probability would be low when it is imminent that the user will change state. For
example, if a user is likely to spend a lot of time in a particular state, there would be no
need to trigger the sensors often until the state is expected to change. The second aspect
is the times spent by a user in each state. The users may have different habits, resulting
in different possible times spent in given states. These times, called time limits, help in
assessing the state survival probabilities. The largest time limit for each state determines
when the system should switch to continuous sensing.

Section 4.2.1 describes the survival probability, which represents the likely hood of
remaining in a context state at any time, in an illustrative manner. Appendix C provides
the corresponding mathematical representations. Section 4.2.2 describes a reward function
used by the Viterbi algorithm to determine sensing decisions at each decision period that
form the sensing schedules.

4.2.1. User Behavior State Survival Probability

Different patterns of behavior may be followed by each user for each context state,
which has to be accounted for by the sensing schedule. The same functions apply to both
single time limits and multiple time limits, but here we show the functions for a single time
limit for simplicity. The influence of the time limits on the behavior model is represented
by the survival probability of the user remaining in the state, pj(tG , T j

l,h). The likelihood
of staying in the state correlates with the length of time t the user spends in the state.
When the duration reaches the time limit T j

l,h, the survival probability reaches a near-zero
value, where a state change is expected with a probability of nearly 1. We used a value
close to zero, denoted by ε, for implementation purposes. During the time preceding the
time limits, the behavior of the survival probability is subject to the distribution of the
durations found in the statistical record for each state. For example, if the user is less
likely to change state at any time, the survival probability may be modeled as a linear or
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exponential function. Exponential decay in the survival probability would reflect a faster
increase in the probability of state change.

Figure 6a illustrates an example of the survival probability with a linear decay rate,
while Figure 6b illustrates an example of the survival probability with an exponential decay
rate. Another example of survival probability may be represented by a constant for the
case when the user has an equal probability of changing to a new state independent of
when the state changed. As an example, the user may have only one particular time limit
for a state. Once the user is in that state, they will not change state until the time limit
elapses. Figure 6c illustrates an example of the survival probability with a constant or
uniform representation.

(a) (b)

(c)

Figure 6. Illustration of the survival probability using the (a) linear function, (b) exponential function,
(c) uniform function.

Another way to derive the survival probability is by first creating a histogram of
the user’s behavior in every state, then taking the compliment of the density of each bin
in the histogram as the value of the survival probability at the time corresponding to
each bin. Figure 7a shows the distribution of durations for the “walk” activity with the
corresponding time limits, and the resulting survival probability is illustrated in Figure 7b.
We discuss the mathematical representation of the different possible survival probabilities
in the following section. Their impacts are further evaluated in Section 5.2.4, and the
corresponding mathematical notation is provided in Appendix C.

(a) (b)

Figure 7. (a) Histogram of duration spent in a state found in the user historical record; (b) survival
probability using the distribution function for the survival probability.

4.2.2. Reward Function

To generate a sensing schedule, the Viterbi based algorithm makes decisions at each
time instant ti

G : whether to trigger the sensors or not to trigger, based on a reward metric.
The possible sequential decisions form a path of decision nodes of sensing or non-sensing
nodes, linked by edges arriving at the final node at ti

G = T j
l,H , where the user is most likely



Sensors 2021, 21, 6862 16 of 33

to transition into another context state. The utility of transition between nodes, or the
sensor triggering decision, is measured by a metric called reward function R(), with each
edge having its own defined metric. The Viterbi algorithm aims at finding the sensing
schedule decisions that maximize the accumulated reward function over the entire schedule.
Each sensing decision has an associated value and maximizes the accumulated reward
results by consuming less energy and incurring less delay. Mathematically, the Viterbi
objective function aims to find the sequence of triggering decisions ai

G that maximizes the
accumulated reward function as follows:

argmax
ai
G

IG

∑
i=1

R
(

ai
G , ∆ti+1

G , Aj
G , pj(ti

G , T j
l,h)
)

(8)

• ai
G represents the sensing schedule, where index i represents the sensor triggering

decision at time ti
G .

• IG is the last decision instance before sensing becomes continuous, where IG =
T j

l,H
δG

.

• ∆ti+1
G is the time elapsed since the preceding sensor “Sense” decision.

• Aj
G the accuracy achieved by sensor group G in detecting contextual state xj

l

• pj(ti
G , T j

l,h) is the state survival probability.

We propose a reward function that takes into account the energy consumption of the
sensors relative to each other and the accuracy of the sensor group in recognizing context
state. The reward function also accounts for accuracy, since an incorrectly recognized
context state would lead to additional delays due to the time that would elapse until
the state is correctly recognized. An incorrect recognition, either a false positive or a
false negative, is not explicitly identified by the system, so the delays caused by incorrect
detection are not precisely measured. To deal with this type of delay, the reward function
prompts sensing to increase when the accuracy is low to minimize reduce delay attributed to
misclassification and to decrease when the accuracy is high to reduce energy consumption.

The function also takes into account the possible delay, based on the time period since
the preceding sensor activation decision, i.e., when the sensing schedule last turned the
sensor on. The state of the user is not known before triggering the sensors, so the reward
function is probabilistic and depends on the likelihood of having transitioned into a new
state, which is captured by the survival probability pj(ti

G , T j
l,h). For ti

G = T j
l,h, the survival

probability reduces to near zero, i.e., ε, and sensing switches to continuous.
As a result, the value of the reward function depends on the combination of the

decision taken and the survival probability value. The reward function is divided into two
instantaneous rewards r(). The first instantaneous reward represents the case where a state
does not change at the new time instance, and the second instantaneous reward is when a
state change occurs. Mathematically, the reward function can be derived from the expected
value of the instantaneous rewards as follows:

R
(

ai
G , ∆ti+1

G , Aj
G , pj(ti

G , T j
l,h)
)
= Es

[
r
(

xj
l , ai+1
G , ∆ti+1

G , Aj
G

)]
= pj(ti

G , T j
l,h) · r

(
xj

l , ai+1
G , ∆ti+1

G , Aj
G

)
+
(

1− pj(ti
G , T j

l,h)
)
· r
(

xj
l , ai+1
G , ∆ti+1

G , Aj
G

) (9)

Es is the expected reward that depends on whether the current state being recognized

has changed or not, i.e., xj
l or xj

l , respectively. At each time instant ti
G there is a corre-

sponding probability pj(ti
G , T j

l,H). To make decisions at each step on whether to trigger the
sensors or not, a value is attributed to the instantaneous reward r(), to calculate the best
triggering decision for the next step, i.e., ai+1

G . To penalize long periods of inactivity of the
sensors that might lead to delays, and to reward quick recognition of a state change, we
measure the difference in time between the next decision and the last triggering instance
as ∆ti+1

G .
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The instantaneous reward reflects the impact of a sensing decision on consumed
energy and delay in detecting a state change. The energy reward component is computed
as follows:

−
Ej
G

EG,max
(10)

where EG is the energy cost of triggering sensor group G, and it is normalized by the
maximum instantaneous energy value EG,max of the available sensor groups to recognize
the requested context. The delay component is reflected in the combination of two terms:
the probability of recognition captured by the accuracy of the model AG and the amount of
delay captured by time elapsed ∆ti+1

G since the last sensing decision as follows:

− α.(∆ti+1
G ) + β.

AG
(∆ti+1
G )

(11)

Depending on the combination of triggering decisions made (“Sense” or “Do not

Sense”) and user state xj
l or xj

l (“No State Change” or “State Change”), the instantaneous
reward is a weighted sum of the two components: (1) energy and (2) time elapsed. Figure 8
shows the instantaneous reward values with the state change to triggering action conditions.
The triggering decision is represented in the figure by a line for the “Sense” decision and a
dashed line for the “Do not Sense” decision.

r = 0

r = 

r = 

r = 

No State
Change

State
Change

Current
Context State

Sense
Don't Sense

Figure 8. State transition diagram showing the instantaneous reward values for the different condi-
tions of “Sense” and “Do not Sense” sensor triggering decision, depending on whether the state has
changed or not.

When the decision is to sense and the state does not change (xj
l), then the instantaneous

reward is represented by the energy cost penalty. However, if the state has indeed changed

(xj
l), then in addition to the energy penalty, the time elapsed component is added. The

time elapsed component is composed of two terms, a delay penalty weighted by α, and
a state recognition reward weighted by β. The delay term penalizes the instantaneous
reward in proportion to the time elapsed ∆ti+1

G . The state recognition term is inversely
proportional to ∆ti+1

G to reward recognizing the change in state as soon as possible and is

proportional to the accuracy of the sensor group Aj
G in recognizing state xj

l to account for
the chance of incorrect recognition of the context state. α and β are weighting factors, and
their combination is specified by finding the optimal Pareto solution to an optimization
formulation (12), as applied to a single sensor group takes the form:

argmin
(α,β)

ωl
Ej
G

Ej
G,max

+ (1−ωl)
Dj
G

Dj
l,max

(12)
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The terms in the formulation are the same as those found in Equation (2), only they
are related to a single sensor group (Ej

G ), rather than the union of multiple groups (∪lE
j
G ).

Once the optimal combination of α and β is obtained, they are applied to the reward
function to find the optimal sensing schedule for each sensor group, following the steps
described in Algorithm 2, found on the following page, to fill the LUT with the generated
sensing schedules.

Algorithm 2 Offline algorithm for sensor scheduling.

Input: πl , AG , Em, T j
l,h

From CRM KB:
πl : the choices of groups of sensors G for each of the requested L contexts
AG : the accuracy of group G
Em: the energy consumption by each sensor Sm

From User Behavior:
T j

l,h: the time limits of the context states xj
l

Output: ai
G , Ej

G , Dj
G

ai
G : the sensing schedules for the sensor groups in πl recognizing each context.

Ej
G : the energy consumption for each group of sensors G recognizing context state xj

l

Dj
G : the delay of each sensor group G in recognizing context state xj

l

1: for each sensor group G ∈ πl do
2: Calculate EG as the sum of Em of Sm ∈ G
3: for each context state xj

l do
4: for each (α, β) pair do
5: Run Viterbi algorithm to determine sensing schedule for G in recognizing

state xj
l

6: Compute the objective function value according to (12)
7: Track the resulting energy consumption, delay, and the (α, β) pair for the

derived sensing schedule.
8: end for
9: Store the sensing schedule with the minimum objective function value

according to (12) and the associated energy consumption (Ej
G ), delay (Dj

G ),
and (α, β) pair in the Look-Up Table (LUT)

10: end for
11: end for

5. Experiments and Results

We conducted a set of experiments to evaluate the performance of the proposed
method. The experiments included the evaluation of three aspects: the holistic approach
that simultaneously determines the optimized group of sensors and their schedules, the
behavior model, and the survival probability. The holistic approach was compared to
the state-of-the-art [16], which used a single pattern of time spent in a given state and
was based on a hierarchical approach—selecting the groups and then determining the
sensing schedules. As such, in the following subsections we provide the setup and system
parameters used in the experiments (Section 5.1); the results of the experiments, including
the evaluations of the three aspects, in addition to corresponding performance analysis
(Section 5.2); and lastly, the computational complexity of our approach (Section 5.3).

5.1. Experimental Setup
5.1.1. Dataset

The sensors’ specifications used in the experiments are listed in Table 1, along with
the related references. The accuracy values obtained from the references are for the best-
case outcomes. To reflect a practicals scenario of using relatively accurate recognition
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models, we selected the sensor groups that achieved recognition accuracy above 70%.
The information found in the CRM KB was obtained from published research papers on
energy-efficient context recognition systems. In the experiments, we conducted we used
the information found in [40–45].

Table 1. CRM KB sensor groups’ data.

Context Ref. (G) Sensors (Sm) (EG ) (mJ) (AG )

Activity
[40] G1

1 Accelerometer, Gyroscope, Microphone 0.55 83%

[41] G1
2 Accelerometer, Bluetooth Low Energy 0.4 89%

Location
[42] G2

1 Bluetooth Low Energy, WiFi 0.35 89%

[43] G2
2 Accelerometer, Proximity, Light, GSM, Magnetometer 0.84 78%

Health
[44] G3

1 Accelerometer, Electrocardiogram, Skin Temperature 0.62 91%

[45] G3
2 Electrocardiogram, Electrodermal Activity 0.2 92%

To simulate context scenarios, we generated a dataset using a third-party application
called “Smarter Time” that ran on a real device and tracked time spent on activities of daily
life, location, and fitness/health. The application initially requires the user to self-report
context states until enough sensor data are collected, allowing the application’s context
recognition system to automatically recognize the context states. The collection period
was two months for a volunteer, following the user’s daily behavior without intrusion.
Three categories of context were recorded: “Activity”, “Location”, and “Health”. The
tracked states for the activity context included walking, eating, driving, reading, resting,
etc.; and the monitored locations were home, work, gym, shop, parents, friends, etc. For
the experiments, we focused on a subset of the available context states. Activity states were
“Walk,” “Sit,” and “Jog”. Location states included “Home” and “Work”. Health states
included “Healthy” and “Unhealthy”.

At any time a user could be in any combination of states in the monitored contexts. For
example, a multi-context scenario may have consisted of the case where the user was sitting
at home and was healthy. The user would have been in the “Sit” state for activity context,
the “Home” state for location context, and the “Healthy” for state health context. The
frequent time limits representing the user’s behavior in the different states were calculated
as described in Section 3.2 and are summarized in Table 2. If a state was not recognized,
it remained unlabeled until it was labeled by the user. All unlabeled data were placed
in a distinct context state labeled “No Category”, and so the approach operates with an
unlabeled state as it would with a recognized state.

Table 2. User behavior time limits for different context states.

Context State (xj
l) Single Time Limit (T j

l ) Multiple Time Limits (T j
l,h)

Activity

x1
1 = “Walk” T1

1 = 2675 T1
1,1 = 3431, T1

1,2 = 10,274

x2
1 = “Sit” T2

1 = 612 T2
1,1 = 696, T2

1,2 = 2065, T2
1,3 = 3433

x3
1 =“Jog” T3

1 = 825 T3
1,1 = 880, T3

1,2 = 2619, T3
1,3 = 4357

Location
x1

2 = “Home” T1
2 = 1929 T1

2,1 = 1720, T1
2,2 = 1481, T1

2,3 = 5142

x2
2 = “Work” T2

2 = 1548 T2
2,1 = 503, T2

2,2 = 1481, T2
2,3 = 2460

Health
x1

3 = “Healthy” T1
3 = 2334 T1

3,1 = 2295

x2
3 = “Unhealthy” T2

3 = 403 T2
3,1 = 521

5.1.2. System Parameters

The Pareto optimal (α, β) combination was selected by enumerating the different possi-
ble combinations to find the pair that gave the minimum point according to Equation (12).
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As shown in Figure 9, it was observed that values of α + β > 1 led to a sudden increase
in objective function and divergence from the global optimal. Furthermore, the choice of
α = 0 led to no sensing, which is to be avoided. As a result, the values of (α, β) were limited
to satisfy the condition:

α + β ≤ 1 & α > 0 (13)

Figure 9. Sample plot of the parameters alpha and beta vs. the resulting objective value, resulting
from the sensing schedules for different combinations of (α, β).

In Figure 9, the red dot represents the chosen optimal combination (α, β) and the black
lines represent a boundary condition of (α, β) beyond which the objective function value
increases exponentially, and the values of (α, β) beyond the boundary were not tested. In
the sensing schedules in Figure 10a,c, where values of (α, β) are within the bounds of search
space, the sensing schedule alternates between “Sense” and “Do not Sense” up to each time
limit. On the other hand, the sensing schedules in Figure 10b,d, where (α, β) are outside
the bounds of the search space, show a consistent “Sense” decision without alternating
back to “Do not Sense” long before reaching the time limits. For the experiments, we set
δ = 10 s for all contexts to simplify the experiments. Moreover, the exponential function
for the survival probability was used for both the holistic and hierarchical approaches.
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Figure 10. Sensing schedules for (α, β) combinations showing the continuous sensor triggering
phenomenon for values of (a) α = 0.3, β = 0.7; (b) α = 0.3, β = 0.8; (c) α = 0.8, β = 0.2; and (d)
α = 0.8, β = 0.3.

5.2. A Comparison to a Prior Hierarchical Approach

In this section, we compare our proposed holistic approach to sensor selection and
scheduling from prior work (EGO [16]) based on a hierarchical decision that first selects
sensors then decides on their schedule. We considered all possible combinations of states
for the three monitored contexts detailed in Table 2, making up 12 context scenarios.

5.2.1. Effect of Holistic Approach Versus Hierarchical

To test the merit of the holistic versus the hierarchical approach without other im-
provements, we assumed all other conditions were the same for both approaches. This
included using the same sensor information and the same behavioral model for both. In
particular, we used the proposed behavior model of multiple time limits for both methods.
The results of the experiments are shown in Figure 11.

For each of the 12 context scenarios, Figure 11a shows the normalized energy values
obtained for both holistic and hierarchical approach (EGO). Figure 11c shows the nor-
malized delay values. For all the cases, the holistic approach performed better than the
hierarchical in both delay and energy consumption. The actual energy consumption values
in Joules and delay in seconds can be obtained by multiplying the normalized values with
the maximum values, as previously illustrated in computations of energy and delay. In
Figure 11b, the holistic approach resulted in a normalized energy value of 0.512 (104 mJ),
and the average normalized energy value for EGO was 0.559 (132 mJ), meaning the holistic
approach showed an average improvement of 8.4% in normalized energy. In Figure 11d,
the holistic approach resulted in a normalized delay value of 0.04 (15 s), while the average
delay value for EGO was 0.059 (20 s), meaning the holistic approach showed an average
improvement of 32% in normalized delay. When summing the delay and energy, the
cumulative improvement was 10.7% in the objective function. Additionally, the standard
deviation of the normalized energy value for the holistic approach was smaller than the
standard deviation of EGO, as can be seen by the black line at the center of the bars in
Figure 11b, indicating a more stable performance.

Figure 10. Sensing schedules for (α, β) combinations showing the continuous sensor triggering
phenomenon for values of (a) α = 0.3, β = 0.7; (b) α = 0.3, β = 0.8; (c) α = 0.8, β = 0.2; and
(d) α = 0.8, β = 0.3.

5.2. A Comparison to a Prior Hierarchical Approach

In this section, we compare our proposed holistic approach to sensor selection and
scheduling from prior work (EGO [16]) based on a hierarchical decision that first selects
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sensors then decides on their schedule. We considered all possible combinations of states
for the three monitored contexts detailed in Table 2, making up 12 context scenarios.

5.2.1. Effect of Holistic Approach Versus Hierarchical

To test the merit of the holistic versus the hierarchical approach without other im-
provements, we assumed all other conditions were the same for both approaches. This
included using the same sensor information and the same behavioral model for both. In
particular, we used the proposed behavior model of multiple time limits for both methods.
The results of the experiments are shown in Figure 11.

For each of the 12 context scenarios, Figure 11a shows the normalized energy values
obtained for both holistic and hierarchical approach (EGO). Figure 11c shows the nor-
malized delay values. For all the cases, the holistic approach performed better than the
hierarchical in both delay and energy consumption. The actual energy consumption values
in Joules and delay in seconds can be obtained by multiplying the normalized values with
the maximum values, as previously illustrated in computations of energy and delay. In
Figure 11b, the holistic approach resulted in a normalized energy value of 0.512 (104 mJ),
and the average normalized energy value for EGO was 0.559 (132 mJ), meaning the holistic
approach showed an average improvement of 8.4% in normalized energy. In Figure 11d,
the holistic approach resulted in a normalized delay value of 0.04 (15 s), while the average
delay value for EGO was 0.059 (20 s), meaning the holistic approach showed an average
improvement of 32% in normalized delay. When summing the delay and energy, the
cumulative improvement was 10.7% in the objective function. Additionally, the standard
deviation of the normalized energy value for the holistic approach was smaller than the
standard deviation of EGO, as can be seen by the black line at the center of the bars in
Figure 11b, indicating a more stable performance.
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Figure 11. A comparison between EGO and the holistic approach both using the new behavioral
model for (a) normalized energy and (c) normalized delay for each state’s combination scenario;
(b) average normalized energy and (d) average normalized delay for all states’ combination scenarios.

5.2.2. Performance Analysis

To study more closely the effect of using the holistic approach, we examined one of
the context scenarios to find out why the holistic approach performed better: the first state
combination, where the states were, “Jog,” “Work,” and “Unhealthy,” i.e., the scenario
for the bar in Figure 11a labeled “01.” As such, we looked at all the possible sensor
group combinations with their respective normalized energy and normalized delay values,
as shown in Figure 12, which represents all the sensor group combinations, with their
respective normalized delay and energy values. The black dots are for sensor combinations
that were not selected by either method, the blue square is for the group combination
selected by the holistic approach, and the red triangle is for the groups selected by EGO [16].
Additionally, the figure shows the sensor group combination chosen by EGO, but from
the application of the Viterbi algorithm used in the holistic approach represented by the
green cross.

Figure 11. A comparison between EGO and the holistic approach both using the new behavioral
model for (a) normalized energy and (c) normalized delay for each state’s combination scenario;
(b) average normalized energy and (d) average normalized delay for all states’ combination scenarios.
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5.2.2. Performance Analysis

To study more closely the effect of using the holistic approach, we examined one of
the context scenarios to find out why the holistic approach performed better: the first state
combination, where the states were, “Jog,” “Work,” and “Unhealthy,” i.e., the scenario
for the bar in Figure 11a labeled “01.” As such, we looked at all the possible sensor
group combinations with their respective normalized energy and normalized delay values,
as shown in Figure 12, which represents all the sensor group combinations, with their
respective normalized delay and energy values. The black dots are for sensor combinations
that were not selected by either method, the blue square is for the group combination
selected by the holistic approach, and the red triangle is for the groups selected by EGO [16].
Additionally, the figure shows the sensor group combination chosen by EGO, but from
the application of the Viterbi algorithm used in the holistic approach represented by the
green cross.

Figure 12. Representations of all sensor group combinations with their respective normalized delay
and energy values.

The groups selected by the holistic approach were G1
1 (G11), G2

1 (G21), and G3
2 (G32);

the groups selected by EGO were G1
2 (G12), G2

1 (G21), and G3
2 (G32). Both methods selected

the same groups, G2
1 and G3

2 , for the location and health contexts, but different groups,
G1

1 and G1
2 , for the activity context for the holistic approach and EGO, respectively. The

combination selected by the holistic approach has a lower objective function value (0.48),
whereas the combination selected by EGO has a greater value (0.55). As reflected in Table 1,
when considering the combinations selected by the holistic approach, group G1

1 had the
accelerometer sensor, with energy consumption per trigger of 0.3 mJ, in common with
group G2

1 , and the total instantaneous energy consumption was 1.2 mJ. When considering
the combinations selected by EGO, G1

1 had Bluetooth Low Energy (BLE), with energy con-
sumption per trigger of being 0.1 mJ, in common with group G2

1 ; and the total instantaneous
energy consumption was 0.85 mJ. Although the total instantaneous energy consumption
for the group selected by EGO was less than the holistic approach’s choice, the energy
consumption per trigger of the common sensor was different, 0.3 mJ for the accelerometer
and 0.1 mJ for the BLE. Thus, after synchronizing the sensing schedules for the common
sensors, ai

G1
1

and ai
G2

1
for the accelerometer and ai

G1
2

and ai
G2

1
for the BLE, the total energy

consumption of the combination selected by the holistic approach results fell behind the
overall energy consumption of the combination selected by EGO.

In addition to energy improvements, Figure 12 shows an improvement in delay. The
improvement is attributed to improved representation of the energy consumption of the
sensor groups in the instantaneous reward of the Viterbi algorithm. In EGO the energy
is represented in terms of a constant and does not account for the differences in energy
consumption between possible selections of sensor groups to recognize a context. Figure 13



Sensors 2021, 21, 6862 23 of 33

illustrates the difference in the sensing schedules between EGO, Figure 13a, and the holistic
approach, Figure 13b, for the same selection sensor group G3

2 . More frequent sensor
triggering led to more energy consumption but a lower delay value. The increased energy
consumption was compensated by the selection of additional common sensors, leading to
reduced energy consumption overall the expected operation time.

(a) (b)

Figure 13. Sensing schedule generated using the Viterbi algorithm for sensor group G3
2 with the

reward functions of (a) EGO and (b) the holistic approach.

5.2.3. Impact of Multiple Time Limits in the Behavioral Model

Here we compare the proposed solution with both aspects of holistic optimization
and the improved behavioral model against the original state-of-the-art (EGO) using their
own behavioral model, which averages the historical duration data spent in each state
and adds a fraction of the standard deviation to compute a single time limit per state.
The normalized energy, normalized delay, and resulting objective function values for the
12 combinations of states and the average values are examined for the holistic approach and
EGO in Figure 14. To keep the comparison fair, the maximum values in the denominators
used for normalization were kept the same across both approaches, because the maximum
values of energy and delay were different for the two approaches due to the difference in
behavior modeling.
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Figure 14. A comparison between the holistic approach using the new behavioral model and EGO
with its own behavior model for (a) normalized energy and (c) normalized delay for each state’s
combination scenario; (b) average normalized energy and (d) average normalized delay for all states’
combination scenarios.

The use of the different modeling techniques, i.e., the binning technique and the
averaging technique, resulted in different sensing schedules applied to a sensor group when
detecting a state. To illustrate the difference, Figure 15a has three time limits, obtained using
the binning technique. Each time a time limit is approached, more sensing is encouraged
by the Viterbi algorithm, but once it is passed, sensing triggers become scarcer. Figure 15b
shows the result of the previous method in the literature [14] that relies on only one time
limit. Note that at the last time limit T j

l,H , continuous sensing is applied until a change in
state is detected.

(a) (b)

Figure 15. Sensing schedules using the same sensor group to detect the same state, (a) using the
binning technique or (b) using the VCAMS [14] method for modeling the behavior of the user.

For each of the 12 context scenarios, Figure 14a, shows the normalized energy values
obtained for both holistic and hierarchical approaches (EGO). Figure 14c shows the normal-
ized delay values. As before, the holistic approach performed better than the hierarchical in
both delay in state change detection and energy consumption for all the cases. As shown in

Figure 14. A comparison between the holistic approach using the new behavioral model and EGO
with its own behavior model for (a) normalized energy and (c) normalized delay for each state’s
combination scenario; (b) average normalized energy and (d) average normalized delay for all states’
combination scenarios.
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The use of the different modeling techniques, i.e., the binning technique and the
averaging technique, resulted in different sensing schedules applied to a sensor group when
detecting a state. To illustrate the difference, Figure 15a has three time limits, obtained using
the binning technique. Each time a time limit is approached, more sensing is encouraged
by the Viterbi algorithm, but once it is passed, sensing triggers become scarcer. Figure 15b
shows the result of the previous method in the literature [14] that relies on only one time
limit. Note that at the last time limit T j

l,H , continuous sensing is applied until a change in
state is detected.

(a) (b)

Figure 15. Sensing schedules using the same sensor group to detect the same state, (a) using the
binning technique or (b) using the VCAMS [14] method for modeling the behavior of the user.

For each of the 12 context scenarios, Figure 14a, shows the normalized energy values
obtained for both holistic and hierarchical approaches (EGO). Figure 14c shows the normal-
ized delay values. As before, the holistic approach performed better than the hierarchical in
both delay in state change detection and energy consumption for all the cases. As shown in
Figure 14b, the holistic approach resulted in an average reduction of 31.1% in normalized
energy. As shown in Figure 14d, the holistic approach showed an average reduction of
34.4% in normalized delay, which is the same as before, meaning the modified behavioral
model reduces energy consumption while maintaining the same levels of delay. Taking the
sum of the energy and delay terms, the holistic approach showed an average reduction of
31.3% for the objective function value using the holistic approach compared to EGO. In
summary, the improvements attributed to the use of the binning technique are 22% for the
normalized energy and 2.4% for the normalized delay.

5.2.4. Impact of Survival Probability

Finally, we tested the impact of the survival probability function on the sensing
schedule generated by the Viterbi algorithm, as illustrated in Figure 16. The uniform
function in Figure 16a shows sensing decisions at the start of the schedule and around
the time limits. The uniform function may lead to optimized results in cases of high
confidence in which the user only changes their state near the obtained time limits, as that
would reduce the delays obtained while reducing energy consumption drastically. For
this experiment, the uniform function performed poorly because the user’s data are more
stochastic and less determinable; i.e., we could not know for sure that the state of the user
will change exactly according to the behavioral model. Therefore, the distribution of the
duration data needs to be taken into consideration when choosing the function modeling
the survival probability of context states. The linear function in Figure 16b shows sensing
decisions in the schedule that gradually become more frequent until reaching the time
limits. The exponential function in Figure 16c shows sensing decisions in the schedule
that quickly become more frequent, faster than that of the linear function, until reaching
the time limits. The distribution function in Figure 16d shows sensing decisions in the
schedule of a constant frequency, starting at the lowest point in the survival probability.
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(a) (b)

(c) (d)

Figure 16. Illustration of impacts on the sensing schedule generated by the Viterbi algorithm using
the (a) uniform function, (b) linear function, (c) exponential function, (d) distribution function.

The results for all context scenarios of the average normalized energy consumption
and average normalized delay are shown in Figure 17a,b, respectively. In Figure 17a,
the best result in terms of energy consumption is the uniform function, followed by the
distribution function, and the worst is the exponential function, followed by the linear
function. In Figure 17b, the best results in terms of delay are for the exponential and the
distribution functions, and the worst is the uniform function. From these results, it appears
that having the sensing schedules formed of a periodic triggering, as is the case when the
distribution function is used, gives the best trade-off between energy consumption and
state change detection delay. However, that might not always be the case, as it would
depend on the circumstances of the context recognition application and user behavior.
Thus, the choice of survival probability function will impact the overall outcome, so it
is beneficial to have an accurate representation of state survival probability to ensure
optimized sensing decisions.

(a) (b)

Figure 17. (a) Average normalized energy consumption values for all context scenarios using the
different survival probabilities: (b) average normalized delay values for all context scenarios using
the different survival probabilities.
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5.3. Computational Complexity

In the offline stage, the holistic Viterbi algorithm is applied repeatedly to find the
Pareto optimal weighting parameters. The number of times the algorithm is applied
depends on how many combinations of (α, β) are to be examined; i.e., complexity is O(N2).
We note that because of the (α, β) boundary conditions, as opposed to the previous work in
VCAMS [14], the complexity becomes O( 1

2 N2). Additionally, since each iteration of (α, β)
combination is independent of the others, the process of finding the optimal combination
is parallelizable. The complexity of applying the Viterbi algorithm is O(I.A2), where I is
the total number of instances in which triggering decisions are made, and A is the number
of distinct actions that can possibly be taken which are to sense or not to sense. As for the
complexity in the online stage, the computational complexity is dominated by the number
of possible combinations ΠL

l=1G
′

for sensor groups to recognize the requested contexts.
Thus, the complexity is O(L.N), where N is the number of groups per context and L is the
number of requested contexts.

6. Procedural Guide and Discussion

We present here a guide for practitioners to follow when implementing our approach
and discuss the feasibility of it. To properly implement our approach first requires the
collection and ordering of two sets of information. The first set of information is that
which is found in the CRM knowledge base; the second set is the data collected from the
user’s historic behavior in different context states, which could in be the context of activity,
location, health, body-posture, emotion, etc. In order to feasibly define the CRM knowledge
base, there are two credible sources: industry provided sensor specification manuals and
peer-reviewed research papers of context recognition models. Sensor specification manuals
provide the information required by our approach about sensor power consumption and
the range of sampling frequency. The sensor’s power consumption may be derived from
the manual’s voltage or current information, in combination with the voltage or current
information of the respective power supply, which the sampling frequency range is usually
directly given. It is also worth noting that our approach may use virtual sensors as well.
By definition, a virtual sensor is an emulation of a sensor that obtains its measurements
from a physical sensor and can be used for context recognition to take advantage of its
sensor-fusion capabilities [46,47]. Such virtual sensors can be used by our approach as long
as the required information can be collected.

On the other hand, peer-reviewed papers provide the information required by our
approach about the context recognition models, such as the required sensor group, one-
vs.-all classification accuracy, duration needed to recognize a state otherwise known as the
sampling window size, the states that can be detected by the context recognition model,
and the model’s associated features, parameters, and implementations. The accuracy is
determined by the designers of the context recognition application during their experi-
ments evaluating their methods using the training/testing/validation methodology. The
sampling window size is either given directly or can be derived as the number of samples
required to calculate a feature divided by the minimum sampling frequency. Moreover,
some approaches use the overlap between sampling windows; in such cases, the sampling
window should be at least two sampling periods. The context states and group of sensors
used are usually listed in the paper, or in the associated datasets. As for implementations of
the context recognition models, they are provided online by the authors, can be requested
from the authors, or recreated based on the information about the models found in the
associated peer-reviewed papers, such as the required features, parameters, and archi-
tecture. A general CRM knowledge base would contain the information extracted from
a plethora of context recognition models, and this is valid as similar approaches, such
as the state-of-the-art hierarchical approach presented in EGO [16], define a knowledge
base in the form of an ontology. Accordingly, a personalized on-device CRM knowledge
base would be derived from the general CRM knowledge base for each user based on the
available sensors and devices.
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The second set of information, the user’s historic behavior in different context states, is
collected by monitoring the duration spent by the user in each context state. The monitoring
process implies some initial manual specification, by the user of the windows of time spent
in context states, as sensor readings are collected throughout his/her daily life. For instance,
the method followed by Vaizman et al. [48], who developed a mobile application deployed
on smartphones to collect in-the-wild data via sensor measurements, requires past and near-
future self-reporting of combinations of relevant context-labels. The application captures
user contexts state durations, which can be used to represent user behavior, as confirmed
by [49]. For example, after getting up from rest, the user indicates that the duration spent
in that state, which the application does not yet recognize is in fact the “Rest” state, and
afterward the application automatically recognizes whenever the user is in the rest state.
The self-reporting of labels is done only in the cases where the context recognition models
are still unable to directly recognize the context states of the user. For example, a new
location may be detected, but the system does not know what the state of the location
context is, whether it is home or work, which needs to be defined by the user. Most of the
states are registered within the first week, as in the data collection method followed by [48],
which lasted for 1 week. In some cases, there are states that do not show up during the first
week. For example, the user might visit a new location after the first week; however, this
location may be visited consistently, so it should be classified. Thus, the approach cannot
accurately personalize to users without first collecting enough information about their
historic behavior. In fact, the monitoring period is related to an issue known in the industry
as the cold start problem, which is faced by, for example, recommender systems [50]. This
issue can be overcome by utilizing one of the two following methods:

• A personalized configuration setup to obtain a rough estimate of the user’s behavior
model to be used initially until more accurate data have been collected.

• A generalized configuration setup obtained from a pool of users; for example, it may
average the time limits of different users, or it may use the most common pattern of
behavior found across users.

The configuration setup would prompt the user to enter information about the time
spent in states, giving multiple entry options, to generate the time limits, in addition
to prompts that inquire about the user’s current state in the requested contexts. These
solutions would allow the system to start immediately and then slowly becoming more
accurate as more information is gathered.

Finally, to conclude the guide and to better understand the scope of our approach,
we reiterate our assumptions: (1) during continuous sensing, there are minimal delays
in context recognition which cannot be reduced due to the fuzzy event boundaries, as
described in [37]; (2) the availability of a knowledge base that contains information about
context recognition models; and (3) a user has multiple behavioral patterns associated with
context states which may be taken advantage of by our approach. Moreover, the limitations
of our approach are (1) the inability to detect incorrect context recognition and (2) absence
of accuracy as an objective of the multi-objective optimization formula. To address the
first limitation, an ensemble decision technique may be applied that takes into account
multiple sensor readings to decide on the states of the recognized contexts. As for the
second limitation, a multi-objective optimization problem may be formulated to include
accuracy by adding an error term and thus maintain the minimization form.

7. Conclusions

This paper described a holistic optimization approach to minimize energy consump-
tion and delays in the simultaneous detection of multiple context states. The problem
was formulated as an optimization problem to decide on the sensors and their sensing
schedules simultaneously. The contributions included a new user behavioral model based
on capturing the user’s frequent patterns in every context state and the Viterbi instanta-
neous reward functions captured normalized energies allowing comparison across groups
of sensors and the accuracy in context recognition as it impacts delays. Compared to the
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previous state-of-the-art, the proposed solution showed an improvement of 31% in energy
reduction and was 34% faster in state change detection. We were able to reduce the number
of computations needed to find the optimal parameters for the Viterbi algorithm. Moreover,
we showed the adaptation of the method to different state survival probabilities and the
importance of accurately representing the user’s behavior. For future work, the problem
can be extended to find the group of sensors that can not only trade off energy and delay
but also achieve a balance with the best accuracy in multi-context recognition.
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Appendix A

On the next page is a table containing all the notation used in our approach.

Table A1. Table of notation.

Groups’ Notation Descriptions

Sets

L Set of contexts

M Set of available sensors Sm

Nl Set of sensor groups capable of recognizing context l

Jl Set of total states in context cl

H Set of time limits in state xj
l

πl Set of sensor groups

Parameters

cl Particular context out of L total requested contexts

xj
l

Particular state in context cl

G l
n

Set of sensor groups that can detect context cl , where n corresponds to each
sensor group, such that n = 1, . . . , Nl

Ω∪lG
Power consumption for continuous sensing of a union of multiple sensor groups

∪lG over requested contexts

Sm Sensor indexed by m

δG Time duration to recognize a state xj
l by sensor group G

Em
B Energy budget of sensor Sm

https://github.com/RuslanKain/optimization-multi-context-recognition
https://github.com/RuslanKain/optimization-multi-context-recognition
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Table A1. Cont.

Groups’ Notation Descriptions

Optimization
Values

ωl Energy and delay weighting factor, where 0 < ωl < 1

Em Energy consumption by sensor Sm

Ej
∪lG

Energy consumption by the union of multiple sensor groups ∪lG as operated by
each group’s sensing schedule

Aj
G One-vs.-all accuracy of group G in recognizing state xj

l

Dj
∪lG

Delay recognizing state xj
l using the union of multiple sensor groups ∪lG as

operated by each group’s sensing schedule

Decision Variables

yG Binary variable variable representing selection of group G

ai
G

Sensing schedule as a vector of boolean decision variables denoting the trigger
decisions for group G: 1 for “Sense” and 0 for “Do not Sense”

ai
Sm Sensing schedule of sensor Sm

Variables

ti
G Time instants related to sensor group G

T j
l,h

Time limit representing the most frequent time a user spends in-state xj
l , where h

is the number of time limits such that h = 1, . . . , H and T j
l,H is the last time limit

IG
Last decision instance before sensing becomes continuous, computed as

IG =
T j

l,H
δG

Dj
l,max Maximum delay value equal to the largest time limit T j

l,H

Ej
∪lG Maximum energy consumption value equal to T j

l,H by Ω∪lG

Appendix B

To illustrate how we calculate the objective function for a given group of sensors with
their sensing schedule, we give an example using the data shown in Table A2 showing
three hypothetical scenarios of recognizing an activity state “Walk”. The context state
is recognized using an accelerometer sensor that forms the group G1

2 , which consumes
EG1

2
= 0.3 mJ of energy per trigger over δG1

2
= 10 s. The hypothetical scenarios include only

a single context and sensor, rather than multiple, to simplify the presentation and focus
on the calculation steps. However, the calculations can be easily expanded to multiple
contexts by summing the objective function values for each sensor group recognizing a
context, as described in the optimization formula of Equation (2).

Table A2. Three scenarios in “Walk” state detection with time limits of T1
1,1 = 3431 and T1

1,2 = 10, 274 s.

Walk Activity
Scenarios

Time of State
Change

Trigger Time
Nearest to State

Change

Count of Sensor
Triggers

Time to
Recognize a

State

(1) 2000 1990, 2020 40 10

(2) 5000 4980, 5050 90 10

(3) 12,000 10,274 1 350 10
1 Maximum time limit.

We assume that the user has the habit of spending either T1
1,1 = 3431 or T1

1,2 = 10,274 s
in this particular context. Once the time elapsed since the context state was first detected
exceeds T1

1,2, sensing switches to continuous. T1
1,1 does not cause the sensors to operate

continuously. However, T1
1,1 does affect the sensing schedule, i.e., when the sensor is

triggered and how often. The scenarios were selected to show the cases where (1) the state
changes before T1

1,1, (2) the state changes between T1
1,1 and T1

1,2, and (3) the state changes
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after T1
1,2. Three scenarios are presented, capturing the energy, delay, and objective function

values by taking the average values over the three scenarios and then normalizing by
the maximum possible values. We note that past the time instance equivalent to the time
limit T1

1,2, for example, at time interval ti
G1

2
= 12,000 s, we assumed there was no delay in

detection of context state change because continuous sensing was applied.

Normalized Energy =
Ej
G

Ej
G,max

=
1
3
·

3

∑
Scenario=1

E1
G1

2

T1
1,2 · EG1

2
/δG1

2

=
1
3
·

3

∑
1

# of Triggers× EG1
2

T1
1,2 · EG1

2
/δG1

2

=
1
3
· 40× 0.3 + 90× 0.3 + 350× 0.3

10274× 0.3/10
∼= 0.47

Normalized Delay =
Dj
G

Dj
l,max

=
1
3
·

3

∑
Scenario=1

D1
G l

2

T1
1,2

=
1
3
·

3

∑
1

(Trigger After Change− Trigger Before Change)
T1

1,2

=
1
3
· (2020− 1990) + (5050− 4980) + 0

10274
∼= 0.01

Objective Value = ωl
Ej
G

Ej
G,max

+ (1−ωl)
Dj
G

Dj
l,max

= 0.47 + 0.01 = 0.48

Appendix C

To compute the survival probability at any time during the context recognition appli-
cation, we provide the equations used to compute the values. The state survival probability
typically decays until a time limit is reached, then the survival probability is reset to 1. Note
that just before the state change, the survival probability is assumed to reach a near-zero
value. When the maximum time limit is surpassed, sensing switches to continuous; i.e., the
survival probability remains near zero (ε), and we do not have information about the behav-
ior of the user. The exponential function survival probability is described mathematically
as following:

pj
(

ti
G , T j

l,h

)
= e

ln(ε).
tiG

Tj
l,h (A1)

An example of the constant uniform function can be described as follows: Anytime ti
G

is not near a time limit, the value is set to a constant, which we represent as 1. When the
time ti

G reaches a time limit or is within a fraction η of a time limit, the survival probability
is set to ε. The uniform function (constant function) is described mathematically as follows:

pj
(

ti
G , T j

l,h

)
=

{
1, if η × T j

l,h < ti
G < (1− η)× T j

l,h
ε, otherwise

(A2)

The linear function is a linearly decaying survival probability, starting at 1 and reduc-
ing to ε when a time limit is reached, and resetting to 1 if the time limit reached is not the
final time limit T j

l,H , following the below equation:

pj
(

ti
G , T j

l,h

)
=

 −1 + ε

T j
l,h − T j

l,h−1

 ∗ ti
G + 1 (A3)
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The survival probability can be derived from the distribution of durations to produce
what we call the distribution function. The function does not require all the time limits; it
only requires the last time limit T j

l,H as follows:

1. Sort in increasing order the durations in the historical record for a given state.
2. Group the durations into 30 bins, with each bin representing 3.3% of the longest

duration in the historical record.
3. Count the number of durations per bin.
4. Calculate the survival probability assigned to each bin range, using the following for-

mulation:
pj
(

ti
G , T j

l,H

)
= 1− # of occurrences

Largest # of occurrences ∀ bins
(A4)

where ti
G ∈ is the bin range. Moreover, we tested multiple bin sizes, 1%, 2%, 3.3%, 5%,

6.6%, and 10% of the longest duration in the historical record, with 3.3% corresponding
to 30 bins, giving the best result.
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