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Abstract: In this study, we aimed to develop a new automated method for kidney volume measure-
ment in children using ultrasonography (US) with image pre-processing and hybrid learning and 
to formulate an equation to calculate the expected kidney volume. The volumes of 282 kidneys (141 
subjects, <19 years old) with normal function and structure were measured using US. The volumes 
of 58 kidneys in 29 subjects who underwent US and computed tomography (CT) were determined 
by image segmentation and compared to those calculated by the conventional ellipsoidal method 
and CT using intraclass correlation coefficients (ICCs). An expected kidney volume equation was 
developed using multivariate regression analysis. Manual image segmentation was automated us-
ing hybrid learning to calculate the kidney volume. The ICCs for volume determined by image 
segmentation and ellipsoidal method were significantly different, while that for volume calculated 
by hybrid learning was significantly higher than that for ellipsoidal method. Volume determined 
by image segmentation was significantly correlated with weight, body surface area, and height. 
Expected kidney volume was calculated as (2.22 × weight (kg) + 0.252 × height (cm) + 5.138). This 
method will be valuable in establishing an age-matched normal kidney growth chart through the 
accumulation and analysis of large-scale data. 

Keywords: kidney volume measurement; ultrasonography; image segmentation; artificial  
intelligence; hybrid learning 
 

1. Introduction 
Kidney size is well correlated with renal function, and a change in kidney size is an 

important factor for evaluating renal condition in patients with kidney disease [1–3]. In 
chronic kidney disease, the kidney’s size decreases with disease progression due to a re-
duction in nephron mass, whereas in polycystic kidney disease, it increases with the func-
tional decline due to the growth of cysts [4–6]. Therefore, reliable reference data based on 
accurate kidney size measurements are essential for evaluating the course of renal disease 
and anomalies in children [7–9]. The renal length shows a linear correlation with the kid-
ney size and is usually used as a clinical indicator of kidney size changes due to the sim-
plicity of the measurement. However, given that kidney length is a poor predictor of renal 
parenchymal volume and renal function, kidney volume is a better indicator of kidney 
size change [10–12]. 
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There are several methods for measuring kidney volumes, such as computed tomog-
raphy (CT), magnetic resonance imaging (MRI), and ultrasonography (US) [13]. Even 
though CT and MRI provide greater accuracy than US, they have limitations for clinical 
use in children due to sedation and exposure to radioactivity [14–16]. Therefore, US is the 
most appropriate method for children’s studies since it is relatively reliable and noninva-
sive [16,17]. The ellipsoidal method was a common kidney volume US measurement 
method in children, based on the ellipsoidal equation (kidney volume = depth × width × 
length × π/6) [17]. However, since this equation is based on geometric assumptions, the 
calculation does not reflect the actual kidney size. Previous studies have reported an un-
derestimation of kidney volume when using this equation [15,18]. 

A new US-based kidney volume measurement method that reflects the actual kidney 
structure was necessary to overcome the problems of the ellipsoidal equation. Some pre-
vious studies have attempted the image segmentation process [19,20] using cross-sec-
tional US images to calculate the kidney volume. A manual calibration process is essential 
for the segmentation of US images; however, it is time-consuming, labor-intensive, and 
highly prone to inter-observer variability. For these reasons, automatic segmentation 
methods for US kidney images using artificial intelligence have been proposed in previ-
ous studies [21–25]. Recently, hybrid learning, which combines deep learning and ma-
chine learning, has been applied as a learning method that can increase the accuracy of 
the automated segmentation process [26]. Thus, we combined the deep learning-based U-
net model and the machine learning-based localizing region-based active-contour method 
for hybrid learning. To our knowledge, no previous study has proved that an automated 
segmentation process using US images could calculate the exact kidney volume in chil-
dren by hybrid learning compared to the reference volume obtained by CT or MRI. We 
applied hybrid learning to automated segmentation and calculated the kidney volume 
with automatically segmented US images. 

The purpose of this study was to develop an advanced automated method for accu-
rate kidney volume measurement using US image segmentation and to establish an equa-
tion for the expected kidney volume (EKV) in healthy children. We have automated this 
method by applying artificial intelligence-based hybrid learning (deep and machine learn-
ing) and validated the accuracy of the automated segmentation. We have also proved the 
reliability of the kidney volume calculation using the proposed process by comparing it 
to the gold standard kidney volume measurement methods using CT or MRI. 

2. Materials and Methods 
2.1. Subject Analysis 

This retrospective study was approved, and the requirement for informed consent 
was waived by the Gangnam Severance Hospital, Institutional Review Board (IRB No. 3-
2020-0079). Patient records and information were anonymized and deidentified before 
analysis. This study was carried out in accordance with the Gangnam Severance Research 
Policies, the Bioethics and Safety Act, the International Conference on Harmonization 
(ICH) guidelines and the Declaration of Helsinki. US images of subjects under 19 years of 
age who visited the Gangnam Severance Hospital from July 2006 to February 2020 were 
reviewed. Among the subjects who underwent abdominal US to screen for abdominal 
disease, those who showed decreased renal function, abnormal urinalysis findings, renal 
parenchymal abnormalities, and anomalies in the kidney and urinary tract were excluded 
from the study. 

Using US images, the volumes of 282 kidneys (141 left and 141 right kidneys) in 141 
subjects were measured. The average age of the subjects was 6.3 years. The subjects were 
divided into the following groups based on age: 0–5 years (48.9%), 6–12 years (32.6%), and 
13–18 years (18.4%). The ratio of boys to girls was 59:41. Of the 141 subjects, kidney US 
and CT were performed simultaneously in 29 subjects (Table 1). 
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Table 1. Classification and distribution of subjects. 

 Group No. of Subjects (%) 

Sex 
Boys 83 (58.9) 
Girls 58 (41.1) 
Total 141 (100.0) 

Age group (years) 

0–5 69 (48.9) 
6–12 46 (32.6) 

13–18 26 (18.4) 
Total 141 (100.0) 

Imaging study 
US only 112 (79.4) 
CT + US 29 (20.6) 

Total 141 (100.0) 
CT: computed tomography; US: ultrasonography. 

2.2. Statistical Analysis 
Statistical analyses were performed using SPSS (version 25; IBM, Armonk, NY, USA). 

Kidney volumes were compared based on sex and side using the paired t-test. Univariate 
regression analysis was applied to evaluate the relationships between kidney volume and 
the various parameters affecting it. Multivariate regression analysis was used to develop 
the EKV equation. The accuracy of each volume measurement method was evaluated 
based on ICCs.  

2.3. Kidney Volume Measurement 
2.3.1. US Images and Ellipsoidal Method 

In the ellipsoidal method, the three orthogonal axes of the kidney were measured by 
US, and the kidney volume was calculated using the ellipsoidal equation [27]: 

ELLIP_Vol = depth (X) (cm) × width (Y) (cm) × length (Z) (cm) × π/6,  

where the length of the kidney (Z, maximum bipolar length) was measured in the coronal 
plane, while the depth (X, maximum length parallel to the hilum) and the width (Y, max-
imum length perpendicular to X) were measured in the transverse hilar region (Figure 1). 

 
Figure 1. Ultrasound image of a kidney. (A) Transverse section. X is the maximum depth of the 
kidney parallel to the hilum, and Y is the maximum width perpendicular to X. (B) Coronal section. 
Z is the maximum bipolar length. 

2.3.2. US Images and Image Processing Program 
MATLAB is multi-purpose engineering image processing software [28]. We designed 

the volume measurement process with this software to segment the kidney’s border based 
on the contrast gradient in the US images by the active contour method and to calculate 
the kidney volume [29].  
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The kidney boundaries were manually drawn by a pediatric nephrologist with 20 
years of experience to obtain the ground truth of the kidney US image. The kidneys have 
a smooth appearance and clear boundaries with the surrounding blood vessels and or-
gans; hence, it is straightforward to draw an accurate outline manually from two-dimen-
sional (2D) US images. However, in some cases, when the kidney boundaries were am-
biguous, they were determined in consideration of the anatomical appearance of the nor-
mal kidney. The starting point of the ureter from the hilum was the area where the inter-
observer variability during manual editing may have increased. Therefore, we defined 
some calibration standards for this region. In the transverse section of the hilar region, the 
outline was manually drawn by connecting two contact points where the ureter emerges 
from the hilum. The coronal section was obtained by turning the transducer 90° at the 
transverse plane, and the kidney outline was manually drawn based on the contrast gra-
dient and anatomical appearance of the normal kidney. The kidney boundaries were pri-
marily determined by a pediatric nephrologist and then re-evaluated by a pediatric radi-
ologist with 25 years of experience. The manually edited kidney structure was segmented 
by the active contour method. In the case of kidneys with an abnormal structure, inter-
observer discrepancies may have occurred because it is challenging to identify the kidney 
boundaries accurately in areas with an unclear outline. However, we assume that the er-
rors were minimized because only cases with a typical kidney structure, as confirmed by 
US, were included in this study. 

The number of pixels inside the kidney border was summed up to calculate the trans-
verse section’s area automatically. Since the kidney’s hilum is anatomically likely to be 
located near its center [30], the hilar region was designated as the standard point for cal-
culating the transverse section area. After calculating the area of the hilar region’s trans-
verse section based on image segmentation, the area along the longitudinal axis (ab) of 
the coronal section was integrated to reconstruct the three-dimensional (3D) shape of the 
kidney, and its volume (IMGSEG_Vol) was calculated (Figure 2). 

 
Figure 2. Measurement of kidney volume using an image processing program. (A) The central 
renal transverse section’s area captured by ultrasonography was segmented and calculated using 
MATLAB. (B) The transverse plane was automatically integrated along the coronary plane of the 
kidney and the length of the long axis (ab). One-way arrow(←) indicates mid cross-section of hilar 
region. 

2.3.3. CT Images and Volume Calculation 
We determined the kidney volume (CT_Vol) by CT and a volume-calculating pro-

gram (Aquarius iNtuition Viewer; TeraRecon, Durham, NC). CT_Vol was defined as the 
standard reference volume. Aquarius iNtuition viewer is helpful software for volumetric 
analysis; previous studies have used it for several organs, such as the liver, heart, and 
kidney [31–34]. 

2.4. Automation of Volume Measurement by Hybrid Learning 
The kidney’s cross-sectional area, according to the contrast gradient in a US image, 

can be extracted using active contour image segmentation by machine learning. Since the 
contrast gradient is often unclear along the kidney borders due to the characteristics of US 
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images, the border should be determined through manual calibration. Thus, we applied 
hybrid learning to automate the image segmentation process, which combines machine 
learning and deep learning to maximize the function of the conventional machine and 
deep learning [26,35,36]. 

2.4.1. Datasets 
Both renal US and CT imaging were performed in 29 subjects. The renal segmentation 

dataset is consisted of the coronal and transverse sections, and the left and right kidneys 
were not distinct. The details are reported in Table 2. 

Table 2. Datasets (coronal and transverse planes). 

 
Coronal Plane Transverse Plane 

No. of Data 
Points 

No. of Subjects No. of Data 
Points 

No. of Subjects 

Train 255 137 256 139 
Validation 36 18 36 18 

Test 35 18 35 18 
Total 326 173 327 175 

The coronal plane data included 173 patients and 326 data points. The transverse 
plane data included 175 patients and 327 data points. The data were divided into train, 
validation, and test sets with an 8:1:1 ratio. The data from the 29 patients who underwent 
both US and CT imaging were placed into the validation and test sets. 

2.4.2. Data Augmentation Using Thin-Plate Spline Transformation 
We had relatively little data on the transverse and coronal kidney US images to apply 

to the deep learning model; therefore, we applied thin-plate spline (TPS) transformation 
to increase the data [37]. The TPS model is mainly used for image transformation and 
shape matching. It is a spline interpolation method that allows for adjusting the smooth-
ing level and calculating the coordinate transformation coefficient for any point. This is 
performed using a moving image M and a fixed image F. For example, given an image of 
the kidney US in the coronal plane, image M is registered in image F to generate a trans-
formed image. 

The TPS model used for a 2D coordinate transformation can be expressed as follows: 

 
𝑓𝑓𝑥𝑥′  (𝑥𝑥,𝑦𝑦) = 𝑎𝑎1 + 𝑎𝑎𝑥𝑥𝑥𝑥 + 𝑎𝑎𝑦𝑦𝑦𝑦 + �𝜔𝜔𝑥𝑥𝑥𝑥𝑈𝑈(‖(𝑥𝑥𝑥𝑥 ,𝑦𝑦𝑥𝑥) − (𝑥𝑥,𝑦𝑦)‖)  

𝑝𝑝

𝑥𝑥=1

 (1) 

𝑓𝑓𝑦𝑦′  (𝑥𝑥,𝑦𝑦) = 𝑏𝑏1 + 𝑏𝑏𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑦𝑦𝑦𝑦 + �𝜔𝜔𝑦𝑦𝑥𝑥𝑈𝑈(‖(𝑥𝑥𝑥𝑥 ,𝑦𝑦𝑥𝑥) − (𝑥𝑥,𝑦𝑦)‖)  
𝑝𝑝

𝑥𝑥=1

 (2) 

(𝑥𝑥𝑥𝑥′,𝑦𝑦𝑥𝑥′) represents the target function value in the (𝑥𝑥𝑥𝑥 ,𝑦𝑦𝑥𝑥) planes where 𝑖𝑖 = 1, 2, … ,𝑝𝑝. 
It is assumed that the positions (𝑥𝑥𝑥𝑥 ,𝑦𝑦𝑥𝑥)  are all different and are not collinear. 
𝑎𝑎1,𝑎𝑎𝑥𝑥,𝑎𝑎𝑦𝑦,𝑏𝑏1,𝑏𝑏𝑥𝑥, 𝑏𝑏𝑦𝑦,𝜔𝜔𝑥𝑥𝑥𝑥 ,𝜔𝜔𝑦𝑦𝑥𝑥  represents the transformation parameter and 𝑈𝑈(𝑟𝑟) = 𝑟𝑟2log𝑟𝑟. 
For 𝑓𝑓(𝑥𝑥,𝑦𝑦) to have a squared integral second derivative, we need the following:  

�𝜔𝜔𝑥𝑥 = 0
𝑝𝑝

𝑥𝑥=1

 𝑎𝑎𝑎𝑎𝑎𝑎 �𝜔𝜔𝑥𝑥𝑥𝑥𝑥𝑥 = �𝜔𝜔𝑥𝑥𝑦𝑦𝑥𝑥

𝑝𝑝

𝑥𝑥=1

= 0  
𝑝𝑝

𝑥𝑥=1

 (3) 

First, the kidney boundary of the ground truth image of the moving image M and the 
fixed image F is modeled and approximated as an ellipse. It is then identified as the feature 
points of the four vertices of the ellipse of the moving image M and the fixed image F. 
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Then, the TPS operation 𝑂𝑂 is obtained by registering the feature points of the moving 
image M to the feature points of the fixed image F. The landmarks of the moving image 
M and the fixed image F are represented by 𝑄𝑄𝑀𝑀 = [𝑥𝑥𝑥𝑥 ,𝑦𝑦𝑥𝑥]𝑇𝑇 ∈ 𝑅𝑅2×4 and 𝑄𝑄𝐹𝐹 = [𝑥𝑥𝑥𝑥′,𝑦𝑦𝑥𝑥′]𝑇𝑇 ∈
𝑅𝑅2×4, respectively. TPS operation 𝑂𝑂 is defined as follows: 

𝑂𝑂 = �𝜔𝜔
4×2

𝑎𝑎3×2 � = �𝐾𝐾 𝑃𝑃𝑇𝑇
𝑃𝑃 𝐿𝐿3×3�

−1
� 𝑄𝑄𝑀𝑀

𝑇𝑇

𝐿𝐿3×2� (4) 

𝐾𝐾𝑥𝑥𝑖𝑖 = 𝑈𝑈(�(𝑥𝑥𝑥𝑥 ,𝑦𝑦𝑥𝑥) − (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)� and 𝑃𝑃 = [𝐼𝐼4×1 𝑄𝑄𝑀𝑀𝑇𝑇 ]𝑇𝑇 ∈ 𝑅𝑅3×4  is the homogeneous coor-
dinate of 𝑄𝑄𝑀𝑀 , and 𝑎𝑎  is the column vector with elements 𝑎𝑎1,𝑎𝑎𝑥𝑥,𝑎𝑎𝑦𝑦,𝑏𝑏1,𝑏𝑏𝑥𝑥, 𝑏𝑏𝑦𝑦 . 𝐿𝐿3×3  is a 
3 × 3 matrix of zeros, and 𝐿𝐿3×2 is a 3 × 2 vector of zeros. A warped image was created 
using the calculated TPS parameter. Given n training images, we can obtain 𝑘𝑘(𝑘𝑘 −
1)/𝑟𝑟𝑎𝑎𝑟𝑟𝑖𝑖𝑟𝑟) + 𝑘𝑘 augmented training images with boundaries, where k is the number of raw 
train datasets. To prevent the data from increasing too much, the ratio was set to 16 in the 
coronal and transverse trainset images. Figure 3 shows the above TPS transformation pro-
cess. 

 
Figure 3. The TPS transformation process. The moving image M is transformed using the TPS pa-
rameters obtained from the relationship between the moving image M and the fixed image F. Green 
line: Ellipse Approximate to Ground Truth, Red line: Ground Truth. 

2.4.3. Deep Learning Network and Loss Function 
U-net is an artificial neural network that was proposed for deep learning to deal with 

medical image segmentation [38]. This architecture is called U-net because it has a U-
shaped structure. For accurate localization, it is composed of a network to obtain the over-
all context information of an image and a symmetrical network. There is an encoding part 
for extracting the features of the image and a decoding part for detailed localization. The 
up-convolution feature map for each decoding step is concatenated with the encoding 
step’s cropped feature map to segment multi-scale objects effectively. The model we used 
was constructed by modifying the bottom part of the conventional U-Net. It was fixed to 
512 channels at the bottom and reduced to a quarter of the connected channels. 

The loss function calculates the difference between the resulting image obtained 
through the deep learning model and the ground truth image and then updates the 
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weights to reduce the loss. We combined the following three loss functions (BCEwithLo-
gitsLoss, dice loss, and focal loss) to get a more precise stretch segmentation result [39]. 

BCEwithLogitsLoss is a combination of BCE loss and sigmoid layer and can be ex-
pressed as follows: 

ℓ𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝,𝑦𝑦) = 𝐿𝐿 = {𝑙𝑙1, … , 𝑙𝑙𝑁𝑁}𝑇𝑇 , 

𝑙𝑙𝑛𝑛 = −𝜔𝜔𝑛𝑛[𝑦𝑦𝑛𝑛 ⋅ log𝜎𝜎(𝑝𝑝𝑛𝑛) + (1 − 𝑦𝑦𝑛𝑛) ⋅ log (1 − 𝜎𝜎(𝑝𝑝𝑛𝑛))] 
(5) 

𝑦𝑦 is the ground truth, 𝑝𝑝 has a value between 0 and 1, and the probability of 𝑦𝑦 = 1 
is estimated from the model. 𝑁𝑁 is the batch size, 𝑎𝑎 is the number of the sample in the 
batch, and 𝜎𝜎 is the sigmoid function. 

The dice score coefficient is a widely used overlapping measure to evaluate the seg-
mentation performance when the ground truth is available. The dice loss can be expressed 
as the following: 

𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 𝐷𝐷𝑟𝑟𝐷𝐷𝑓𝑓𝑓𝑓𝑖𝑖𝐷𝐷𝑖𝑖𝐷𝐷𝑎𝑎𝑟𝑟 =
2|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴| + |𝐵𝐵|, 

ℓ𝑑𝑑𝑥𝑥𝑏𝑏𝑏𝑏 = 1 − 𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 𝐷𝐷𝑟𝑟𝐷𝐷𝑓𝑓𝑓𝑓𝑖𝑖𝐷𝐷𝑖𝑖𝐷𝐷𝑎𝑎𝑟𝑟 
(6) 

|𝐴𝐴 ∩ 𝐵𝐵| represents the common element between sets A and B, |𝐴𝐴| represents the 
number of elements in set A (also for set B). |𝐴𝐴 ∩ 𝐵𝐵| is computed as a pixel-wise multipli-
cation between the prediction result and the ground truth. 

Focal loss is introduced as an extension of cross-entropy loss designed for focused 
learning of hard-to-classify parts by lowering the weight on easily classified parts. It is 
defined as follows: 

𝐶𝐶𝐶𝐶(𝑝𝑝,𝑦𝑦) = � −log (𝑝𝑝) 𝑖𝑖𝑓𝑓 𝑦𝑦 = 1
−log (1 − 𝑝𝑝) 𝑟𝑟𝑟𝑟ℎ𝐷𝐷𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝐷𝐷 (7) 

Here, regardless of y, 𝑝𝑝𝑡𝑡 > 0.5 significantly reduces the loss value due to high model 
confidence, but the problem is easily classified and tends to exceed 0.5 and reduces the 
loss value too much. This can overwhelm the impact of difficulty to classify on loss. There-
fore, a weighting factor 𝛼𝛼 was proposed. When 𝑦𝑦 = −1, the weight of (1 − 𝛼𝛼) is given 
to loss, and when 𝑦𝑦 = 1, the weight of 𝛼𝛼 is given. Cross-entropy with a weighting factor 
added is expressed as follows: 

𝐶𝐶𝐶𝐶(𝑝𝑝,𝑦𝑦) = −𝛼𝛼𝑡𝑡log (𝑝𝑝𝑡𝑡) 

If 𝛼𝛼 = 0.7, it can be expressed as follows: 

𝐶𝐶𝐶𝐶(𝑝𝑝,𝑦𝑦) = � −0.7log (𝑝𝑝) 𝑖𝑖𝑓𝑓 𝑦𝑦 = 1
−0.3log (1 − 𝑝𝑝) 𝑟𝑟𝑟𝑟ℎ𝐷𝐷𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝐷𝐷 

(8) 

The weighting factor 𝛼𝛼 was used to adjust the effect of positive and negative sam-
ples on losses, but the degree of reflection of losses on easy or hard samples was not ad-
justed. This is resolved by the following scaling factor (1 − 𝑝𝑝𝑡𝑡)𝛾𝛾, which is called focal loss 
[40]. 

ℓ𝑓𝑓𝑓𝑓𝑏𝑏𝑓𝑓𝑓𝑓(𝑝𝑝𝑡𝑡) = −(1 − 𝑝𝑝𝑡𝑡)𝛾𝛾 log(𝑝𝑝𝑡𝑡) , 

ℓ𝑓𝑓𝑓𝑓𝑏𝑏𝑓𝑓𝑓𝑓(𝑝𝑝,𝑦𝑦) = � −(1 − 𝑝𝑝)𝛾𝛾log (𝑝𝑝) 𝑖𝑖𝑓𝑓 𝑦𝑦 = 1
−(1 − (1 − 𝑝𝑝))𝛾𝛾log (1 − 𝑝𝑝) 𝑟𝑟𝑟𝑟ℎ𝐷𝐷𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝐷𝐷 (9) 

where 𝛾𝛾 is the focus parameter that controls weight reduction in easily classified exam-
ples. When 𝛾𝛾 = 0, the focal loss is equal to the cross-entropy loss. As the value of 𝛾𝛾 in-
creases, the greater the value of 𝑝𝑝, and the smaller the loss function. 

We were able to acquire a more precise segmentation result by combining the three 
loss functions mentioned above. 

ℓ = 𝑎𝑎 ⋅ ℓ𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑏𝑏 ⋅ ℓ𝑑𝑑𝑥𝑥𝑏𝑏𝑏𝑏 + 𝐷𝐷 ⋅ ℓ𝑓𝑓𝑓𝑓𝑏𝑏𝑓𝑓𝑓𝑓 (10) 
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Pixel-wise classification with BCE loss, shape adjustment with dice loss, and data 
imbalance problem with focal loss has been improved. 

Figure 4 shows the training of a U-Net model with an augmented dataset using TPS 
transformation. We trained the U-Net models for coronal and transverse images separately. 

 
Figure 4. Training of a U-Net model. U-Net models for coronal and transverse images were trained separately. (A) Input 
data for the U-Net model are original and ground truth coronal images of the training dataset. After training, output 
images are obtained from the original coronal images of the test dataset via trained U-Net. (B) The same process as above 
is repeated in transverse images. (C) Architecture of U-Net training model. We modified the bottom part of the conven-
tional U-Net. It was fixed to 512 channels at the bottom and reduced to a quarter of the connected channels. 

We repeatedly input the original US image and manually calibrated ground truth 
images into U-net. U-net automatically segmented the images to produce the final seg-
mentation images without manual calibration. After that, the image segmented through 
U-net was set as the initial mask of the localizing region-based active contour model, 
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resulting in smoother results [29]. Thus, we combined the deep learning-based U-net 
model and the machine learning-based localizing region-based active contour method for 
hybrid learning so that the image processing program could determine kidney borders 
automatically without manual calibration (Figure 5). 

 
Figure 5. Flowchart of the automated volume measurement process with hybrid learning. US: Ultrasonography. 

We trained the model on each dataset of the coronal and transverse sections using 
the loss function described above and weighted BCE, dice, and focal loss by 0.8, 1.0, and 
1.0, respectively. The image has been resized to a size of 321 × 321. An Adam optimizer 
was used as the optimizer. The learning rate was set to 5e-4, and an early-stopping tech-
nique was applied to prevent overfitting. In addition, the focus parameter 𝛾𝛾 of focal loss 
was set to 0.5. 

3. Results 
3.1. Comparison of Kidney Volumes Based on Sex, Age, and Position of the Kidney 

Paired t-tests were performed to compare the average kidney volume measured by 
image segmentation (IMGSEG_Vol) between left and right kidneys in each age group and 
sex. The age groups 0–5, 6–12, and 13–18 years showed no significant volume differences 
between the right and left kidneys (p > 0.05). In addition, there were no significant sex 
differences among the right or left kidney volumes (p > 0.05, Table 3). 
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Table 3. Comparison of kidney volumes based on the position of the kidney, age, and sex. 

Age Group (Years) 
IMGSEG_Vol 

p-Value Right Kidney Left Kidney 
Mean (Error Measure) Mean (Error Measure) 

0–5 44.8 ± 23.0 † 45.6 ± 22.7 † 0.526 † 
6–12 109.0 ± 36.9 ‡ 108.7 ± 36.6 ‡ 0.932 ‡ 

13–18 170.3 ± 49.6 †† 161.3 ± 49.1 †† 0.636 †† 

Position of kidney 
IMGSEG_Vol 

p-Value Boys Girls 
Mean (Error Measure) Mean (Error Measure) 

Right 92.1 ± 63.1 ∥ 84.3 ± 52.2 ∥ 0.135 ∥ 
Left 90.8 ± 57.6 ¶ 82.8 ±53.8 ¶ 0.402 ¶ 

IMGSEG_Vol: Kidney volume determined by image segmentation. † p = 0.526 : p-Value between right and left mean 
IMGSEG_Vol in age group 0-5 years. ‡ p = 0.932 : p-Value between right and left mean IMGSEG_Vol in age group 6-12 
years. †† p = 0.636 : p-Value between right and left mean IMGSEG_Vol in age group 13-18 years. ∥ p = 0.135 : p-Value 
between boys and girls mean IMGSEG_Vol in right kidney. ¶ p = 0.402 : p-Value between right and left mean 
IMGSEG_Vol in left kidney. 

3.2. Correlation between Age and Kidney Volume Measured by Different Methods 
The correlation between age and kidney volume was compared based on the meas-

urement method. The kidney volume by CT (CT_Vol) showed the highest correlation with 
age (R2 = 0.6803), followed by IMGSEG_Vol (R2 = 0.4089) and volume, measured with the 
ellipsoidal method (ELLIP_Vol, R2 = 0.3825; Figure 6). 

 
Figure 6. Correlation between age and kidney volume according to volume measurement methods. 
The R2 values are shown to compare the correlation between age and kidney volume obtained by 
each volume measurement method. Higher R2 values indicate a stronger correlation. 

3.3. Degree of Agreement with the Reference Kidney Volume 
The intraclass correlation coefficients (ICCs) indicate the degree of agreement be-

tween the reference kidney volume (CT_Vol) and those calculated by the different meth-
ods. The ICCs for IMGSEG_Vol and ELLIP_Vol were 0.909 (95% CI, 0.847–0.946) and 0.805 
(95% CI, 0.327–0.919), respectively, which were significantly different (p < 0.05) (Table 4). 
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Table 4. Degrees of agreement among IMGSEG_Vol, ELLIP_Vol, and reference value (CT_Vol). 

Kidney 
Volume 

ICC * 95% CI ** p-Value 

IMGSEG_Vol 0.909 0.847–0.946 
p < 0.05 

ELLIP_Vol 0.805 0.327–0.919 
IMGSEG_Vol: kidney volume measured by image segmentation; ELLIP_Vol: kidney volume measured by the ellipsoidal 
method; CT_Vol: kidney volume measured by computed tomography. * ICC: intraclass correlation coefficient; degree of 
agreement is higher as the ICC approaches 1.0. ** CI: confidence interval. 

3.4. Factors Affecting Changes in Kidney Volume 
The correlation between IMGSEG_Vol with various factors affecting kidney volume 

changes was first verified by univariate regression analysis (Table 5).  

Table 5. Univariate regression analysis of factors affecting changes in kidney volume. 

Independent 
Variables Intercept B * Standard Error Standardized Co-

efficient (β) p-Value 𝑹𝑹𝟐𝟐 

Weight 20.599 2.467 0.079 0.899 p < 0.001 0.809 
BSA −2.878 106.281 3.277 0.890 p < 0.001 0.792 

Height −46.459 1.220 0.045 0.851 p < 0.001 0.724 
Age 34.881 8.468 0.339 0.831 p < 0.001 0.690 
BMI −76.77 9.751 0.740 0.621 p < 0.001 0.386 

* B: weight factor; BMI: body mass index; BSA: body surface area; IMGSEG_Vol: kidney volume measured by image 
segmentation. 

The weight (R2 = 0.809), body surface area (BSA; R2 = 0.792), height (R2 = 0.724), age 
(R2 = 0.690), and body mass index (BMI; R2 = 0.386) were all significantly correlated with 
IMGSEG_Vol (p < 0.001). Next, the weight and height, which showed the most significant 
correlations with IMGSEG_Vol, were used in multivariate regression analysis (Table 6).  

Table 6. Multivariate regression analysis of variables affecting IMGSEG_Vol. 

Independent 
Variables Intercept B * 

Standard 
Error (SE) 

Standardized Co-
efficient (β) p-Value VIF ** 𝑹𝑹𝟐𝟐 

Weight 
Height 

5.138 2.220 
0.252 

0.198 
0.094 

0.737 
0.175 

p < 0.001 
p < 0.05 

6.273 0.810 

IMGSEG_Vol: kidney volume measured by image segmentation. * B: weight factor. ** VIF: variance inflation factor; mul-
ticollinearity, less than 10 means less interference between variables. 

We also formulated the following equation to estimate the EKV:  

EKV = [2.22 × weight (kg) + 0.252 × height (cm) + 5.138] (11) 

The error between IMGSEG_Vol and the calculated EKV was determined. The mean 
error rate was −5.9%, and the range of the mean error rate ± 2 SD was −57.9 to 46.1%  

(Figure 7). 

Error rate (%) = ( measured IMGSEG_Vol  –  calculated EKV )
measured IMGSEG_Vol

× 100 (12) 
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Figure 7. Normal distribution of the error rate. The error rate was calculated according to Equation 
(12). The mean error rate and ± double standard deviation (2SD) are plotted on the normal distribu-
tion graph. 

3.5. Accuracy of the Automatically Measured Kidney Volume Using Hybrid Learning. 
The results of the child kidney segmentation were evaluated quantitatively, as shown 

in Table 7. The segmentation results were compared by recall, precision, and F1 score.  
Recall is the rate at which a model correctly predicts the true answer. It is also com-

monly used to measure sensitivity and hit rate. The formula is 

Recall =
TP

TP + FN
=

Ipred ∩ IGT
|IGT|    (13) 

Precision is the proportion of what the model classifies as true is actually true. This 
is also called the positive predictive value (PPV). This is expressed as follows: 

Precision =
TP

TP + FP
=

Ipred ∩ IGT
�Ipred�

 (14) 

The F1 score is the harmonic mean of precision and recall, and is expressed as follows: 

F1score =
1

1
Precision + 1

Recall
= 2 ×

Precision × Recall
Precision + Recall

  (15) 

The F1 score can accurately evaluate the performance of the model when the data 
labels are unbalanced, and the performance can be expressed as a single number. This is 
also known as the dice score.  

The kidney segmentation study was conducted on each dataset on the coronal and trans-
verse planes. In the coronal plane, the three evaluation indicators exceeded 90%, and the seg-
mentation results were excellent. In the transversal plane, the results approached 90%. The 
trained hybrid learning model performed better on the coronal images than the transverse 
images in the validation process using recall, precision, and the F1 score(Table 7).  
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Table 7. Results of the kidney segmentation. This table shows the evaluation results for the test set 
of the model trained with each dataset of the coronal and transverse sections. 

 Coronal Plane Transverse Plane 
 Recall Precision F1 Score Recall Precision F1 Score 

Validation 0.9211 0.9716 0.9441 0.8617 0.9382 0.8808 
Test 0.9310 0.9801 0.9538 0.8858 0.9224 0.8940 

The results of the child kidney segmentation were evaluated qualitatively, as shown 
in Figure 8. The segmented outlines of the kidney images of the ground truth and deep 
learning results show good accordance on the coronal and transverse planes.  

  
Figure 8. Results of the kidney segmentation. Red line: model prediction; green line: ground truth. 
First row: coronal plane; second row: transverse plane. 

Before the manual calibration, only the square-shaped regions of interest were deter-
mined, and the results show inaccurate kidney boundaries (Figure 9A). Therefore, manual 
calibration with accurate kidney boundaries was performed to obtain the ground truth 
images (Figure 9B). The kidney boundaries were automatically extracted with the pro-
posed hybrid learning method using segmented kidney US images from U-Net as an ini-
tial mask for the active contour processing (Figure 9C).  

The ICC for HYBRID_Vol was 0.925 (95% CI, 0.872–0.956), which was significantly 
different from that for ELLIP_Vol (p < 0.01). The ICC for IMGSEG_Vol was 0.909 (95% CI, 
0.847–0.946), which was also significantly different from that for ELLIP_Vol (p < 0.05). 
There were no significant differences in the ICCs for HYBRID_Vol and IMGSEG_Vol (p = 
0.59) (Table 8). 
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Figure 9. Comparison of kidney boundaries based on the stage of segmentation. (A) Kidney bound-
aries extracted without manual calibration. (B) Kidney boundaries obtained using manual calibra-
tion. (C) Kidney boundaries extracted automatically using hybrid learning. 

Table 8. Degree of agreement between HYBRID_Vol, IMGSEG_Vol, ELLIP_Vol, and reference value. 

Method ICC * 95%CI ** p-Value 
HYBRID_Vol 0.925 ‡, ¶ 0.872–0.956 p = 0.59 ‡ 

IMGSEG_Vol 0.909 ‡, ∮ 0.847–0.946 p < 0.01 ¶ 

ELLIP_Vol 0.805 ¶, ∮ 0.327–0.919 p < 0.05 ∮ 
HYBRID_Vol: kidney volume measured by hybrid learning; IMGSEG_Vol: kidney volume measured by image segmen-
tation; ELLIP_Vol: kidney volume measured by the ellipsoidal method; CT_Vol: kidney volume measured by computed 
tomography. * ICC: intraclass correlation coefficient; the degree of agreement is higher as the ICC approaches 1.0. ** CI: 
confidence interval. ‡ p = 0.59: p-Value between HYBRID_Vol ICC and IMGSEG_Vol ICC. ¶ p < 0.01: p-Value between 
HYBRID_Vol ICC and ELLIP_Vol ICC. ∮ p < 0.05: p-Value between IMGSEG_Vol ICC and ELLIP_Vol ICC. 

4. Discussion 
Childhood is a crucial period of growth for many organs. Age and kidney size are 

closely related to renal function. Therefore, an age-matched normal reference value of kid-
ney volume can help in the diagnosis and prognosis of kidney diseases [8,9,41]. In chil-
dren, an accurate estimation of the EKV is necessary, and an age-matched normal kidney 
growth curve is the ideal method to evaluate kidney size. In children, US is the preferred 
method for measuring kidney volume because it is safer and simpler than CT and MRI.  

Although 3D US can be advantageous in defining the outer appearance of the kidney, 
2D US is still widely used for kidney volume measurement. 3D US has the disadvantages 
of high costs, complicated computational processes, and limitations in evaluating the re-
nal parenchyma due to the low resolution [42,43]. For these reasons, evaluation of the 
kidney parenchyma should start with 2D US before measuring the kidney volume in chil-
dren by 3D US. 

3D US has complicated computational processes because it reconstructs the outer 
kidney appearance with multiple parallel cross-sectional images, similar to the CT and 
MRI methods. On the other hand, the proposed method using MATLAB on 2D US is rel-
atively inexpensive, and the computational burden of programming is lower than that of 
3D US since the MATLAB-based volume measurement methods in this study use only a 
single mid-transverse and one coronal image. In addition, when artificial intelligence is 
applied to 3D US, training a deep network on a large dataset may be more computation-
ally expensive for real clinical applications than 2D US [20,44]. Furthermore, 2D US is pre-
ferred for clinical research because it is widely used as the conventional screening imaging 
study method for kidney disease and is advantageous for data accumulation. 
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Kidney volume calculated by the ellipsoidal equation is frequently used to compare 
them with measurements done by 2D renal US. However, the ellipsoidal method usually 
underestimates kidney volume by 15–25% compared to CT or MRI measurements 
[15,18,27]. Therefore, we have proposed an advanced method for kidney volume meas-
urement using 2D renal US and MATLAB to overcome the limitations of the current eval-
uation methods. In previous studies, the inaccuracy of the ellipsoidal method was cor-
rected by multiplying a uniform constant to resolve the problem of underestimation [27]. 
However, such a uniform correction could not overcome the limitation of the ellipsoidal 
method because of the wide range of underestimation errors associated with it [15].  

Furthermore, the ellipsoidal equation requires manual measurements of the cross-
sectional area’s width and depth for calculating the kidney volume, which is prone to 
errors. In contrast, our proposed method does not require such manual measurements 
because the cross-sectional area and kidney volume are calculated automatically from US 
images, which allows for more accurate measurements. Our method is partly based on 
the stepped section method reported by Rasmussen et al. [19]. However, the stepped sec-
tion method requires serial parallel transverse kidney US images to calculate the kidney 
volume, making it time consuming and impractical, especially in children. In contrast, our 
method uses a single mid-transverse image and demonstrates a significantly higher de-
gree of agreement (ICCs) of IMGSEG_Vol with the reference volume (CT_Vol) compared 
to the ellipsoidal method (p < 0.05) (Table 4).  

To develop the EKV equation for children, the variables that affect kidney volume 
(IMGSEG_Vol) need to be evaluated. It is well-known that weight, height, age, and BSA 
are highly correlated with renal volume, of which weight and height are the most signifi-
cant [7,8,17,45]. Our results also show that weight and height were the most reliable pre-
dictors of EKV, and therefore, we used these parameters in the EKV equation. While some 
previous studies have reported differences in kidney size based on sex and side [7,8,45], 
we and others found no significant differences based on these factors [9,46]. Therefore, we 
did not consider sex or the side the kidney is on when formulating the EKV equation.  

To ensure accurate kidney volume (IMGSEG_Vol) measurements, they should be 
compared with the reference volume calculated using the EKV. Previous studies used the 
mean ± SD or the mean ± 2 SD to assess the reference range for the normal kidney size 
[1,8]. Clinical renal hypoplasia is diagnosed when the kidney volume is less than the mean 
—2SD [4]. We defined the mean error rate ± 2 SD as the cut-off range to determine the 
measured kidney volume’s accuracy and found that the cut-off ranged from −57.0% to 
+45.7%. A measured volume outside of the cut-off range indicates that it is more or less 
than the normal average kidney volume. We expect this cut-off range to be a predictor of 
kidney disease progression and an indicator for further clinical investigation. 

The assessment of kidney size using the EKV or the expected kidney length is based 
on the linear proportional relationship between kidney volume and variables such as 
weight and height [1,17]. Ultimately, the gold standard method for kidney size assessment 
in children involves comparison with a real reference volume (normal kidney) in an age-
matched manner, as in a fitted centile growth chart for kidney volume, which has been 
reported only for fetal stages so far [47,48]. To develop such a fitted centile growth chart 
for children, data on kidney volumes for different age groups should be collected from 
various countries or ethnic regions to reflect all differences. For these reasons, volume 
measurement should be accurate, simple, and with minimal inter-observer error. 

Kidney volume measurement using an image processing program requires the man-
ual calibration of image segmentation to define the kidney’s boundary accurately in US 
images [49]. Manual calibration is highly dependent on human experience, which is time 
consuming and prone to inter-observer variability. To overcome this problem, we applied 
hybrid learning to the image processing program. Hybrid learning is an artificial intelli-
gence-based learning technology that combines machine learning and deep learning. 
Combined with the image processing program, hybrid learning enabled the automatic 
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segmentation and calculation of kidney volume (HYBRID_Vol) directly from the US im-
age without manual calibration (Figure 9). 

Deep learning requires several datasets. Because our dataset was relatively small for 
training deep learning models, the training results are limited. However, to address this 
problem, we improved the accuracy by generating more meaningful data through thin-
plate spline (TPS) transformation rather than the classic method of using conventional 
image processing techniques to train the deep learning models [37]. U-net, a deep learning 
model optimized for medical image segmentation, was used [38]. The results of deep 
learning were applied to the active contour model to create smoother results. We also 
adopted the BCE, dice, and focal loss to assess the loss of function, reflecting information 
on the shape of the kidney and focusing on data that are difficult to learn through focal 
loss. 

We independently trained each U-Net model on the coronal and transverse section 
datasets. We thought that separate training of each homogenous model could lower the 
complexity of the dataset by making the distribution of the dataset constant. Thus, we 
assumed that each model could learn efficiently to obtain the best results even if the num-
ber of datasets is small. There was a previous study in which a deep learning model was 
trained separately for each section of the hippocampus in the brain [50]. The segmentation 
results among the sagittal, coronal, and axial sections of the hippocampus were different 
and it seemed that the more complex structure showed worse performance. 

The number of data was sparse in this study because obtaining the proper image 
data, especially from children, is difficult in a retrospective study. Therefore, we trained 
the U-Net model separately on the coronal and transverse sections to maximize the effi-
ciency of the training. The outline of the transverse section is more complex than that of 
the coronal because of the region where the ureter emerges from the hilum. Our data show 
that the coronal section performed better than the transverse section because there were 
more conditions to be considered during the training for the segmentation of the trans-
verse section. In consideration of the distinct differences of features between the coronal 
and transverse sections and the small number of data, we thought that the separate train-
ing of each section of the kidney was adequate for our study.  

We found significant differences between the ICCs for HYBRID_Vol and ELLIP_Vol. 
The ICC for HYBRID_Vol was higher than that for IMGSEG_Vol (Table 8). Therefore, our 
findings demonstrate that this new automated method is more accurate than the ellipsoi-
dal method, and that manual calibration can be successfully replaced by an automated 
process after hybrid learning. This is the first study on children to use image pre-pro-
cessing and hybrid learning to determine kidney volume changes. 

There are some limitations to our study. First, in retrospective studies, including 
ours, it is generally challenging to collect consistent US kidney images. The consistency of 
the cross-sectional images is an important factor for research with MATLAB and hybrid 
learning. In contrast, our radiology department already had an exact US protocol for de-
ciding the transverse and coronal sections of the kidney that met our criteria; thus, we 
could minimize the difficulty in collecting consistent US images. Second, we had to ana-
lyze a limited number of images to avoid training bias because, in hybrid learning, imag-
ing data for ICC evaluation should not be repeatedly used. More imaging data for hybrid 
learning would have improved the accuracy of HYBRID_Vol. Third, even if the model 
was further optimized using the TPS transformation, there was insufficient evaluation 
data to examine the potential bias, statistical uncertainty, and generalizability of the pro-
posed model. Therefore, we aim to collect more data in the future for a more objective 
evaluation. Lastly, there was not enough kidney volume data for each age group to de-
velop a fitted centile curve of kidney growth based on pediatric age. Therefore, instead of 
a kidney growth curve, we developed an equation to calculate the EKV and decided on a 
cut-off range (mean error rate ± 2 SD). Our future research will focus on developing fitted 
centile growth curves based on pediatric age, with large amounts of prospectively col-
lected HYBRID_Vol data using our new automated method. 
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5. Conclusions 
We propose a new advanced automated method for kidney volume measurement 

using US image segmentation and established an equation for the expected kidney vol-
ume (EKV) in healthy children. We successfully automated this method by applying arti-
ficial intelligence-based hybrid learning. In addition, we proved the accuracy of auto-
mated segmentation and the reliability of kidney volume calculation using the proposed 
process by comparing it with the gold standard kidney volume measurement method. We 
propose this method to help develop an age-specific kidney growth curve by accumulat-
ing and analyzing large 2D US image datasets. It could also help to evaluate various kid-
ney diseases by measuring the volume of pathological kidney structures, such as hydro-
nephrosis, polycystic kidney disease, and renal tumors.  
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