
sensors

Article

A Variable-Sampling Time Model Predictive Control Algorithm
for Improving Path-Tracking Performance of a Vehicle

Yoonsuk Choi 1, Wonwoo Lee 1, Jeesu Kim 2,3 and Jinwoo Yoo 4,*

����������
�������

Citation: Choi, Y.; Lee, W.; Kim, J.;

Yoo, J. A Variable-Sampling Time

Model Predictive Control Algorithm

for Improving Path-Tracking

Performance of a Vehicle. Sensors

2021, 21, 6845. https://doi.org/

10.3390/s21206845

Academic Editors: Arturo de la

Escalera Hueso and Steven Waslander

Received: 14 September 2021

Accepted: 13 October 2021

Published: 14 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The Graduate School of Automotive Engineering, Kookmin University, Seoul 02707, Korea;
dbstjr1020@kookmin.ac.kr (Y.C.); wonwoo@kookmin.ac.kr (W.L.)

2 Department of Congno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea;
Jeesukim@pusan.ac.kr

3 Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
4 Department of Automobile and IT Convergence, Kookmin University, Seoul 02707, Korea
* Correspondence: jwyoo@kookmin.ac.kr

Abstract: This paper proposes a novel model predictive control (MPC) algorithm that increases the
path tracking performance according to the control input. The proposed algorithm reduces the path
tracking errors of MPC by updating the sampling time of the next step according to the control inputs
(i.e., the lateral velocity and front steering angle) calculated in each step of the MPC algorithm. The
scenarios of a mixture of straight and curved driving paths were constructed, and the optimal control
input was calculated in each step. In the experiment, a scenario was created with the Automated
Driving Toolbox of MATLAB, and the path-following performance characteristics and computation
times of the existing and proposed MPC algorithms were verified and compared with simulations.
The results prove that the proposed MPC algorithm has improved path-following performance
compared to those of the existing MPC algorithm.

Keywords: model predictive control; variable sampling time; autonomous driving; path tracking;
autonomous vehicle

1. Introduction

Autonomously driving vehicles and electrification of vehicle parts have been hot
topics in the automobile industry over the past few years, and many parts of vehicles
have been replaced with electric devices. Accordingly, researchers are studying model
predictive control (MPC) algorithms, which they apply to autonomous vehicles to track
the vehicle’s driving route or optimize the efficiency of the engine, transmission, exhaust
gas consumption, and motor performance. In the early 1960s, research on MPC involved
the use of linear quadratic regulators designed by Kalman to minimize unconstrained
quadratic objective functions. However, MPC was not applied in industry for a long time
owing to the nonlinearity of actual industrial processes. Finally, in 1978 [1], chemical
engineers applied MPC in chemical industrial control processes, thereby demonstrating its
advantages over other control technologies.

When Ford Motor Company began exploring MPC-based control technology, MPC
has already been applied in different automobile fields, such as for direct injection stratified
engines [2] and traction control [3,4]. When user convenience became increasingly impor-
tant and autonomously driving vehicles started to emerge, researchers studied optimal
trajectories or collision avoidance trajectories by extending the use of MPC algorithms to the
fields of advanced driver assistance systems (ADAS) [5–7] and autonomous driving [8,9].
These studies have demonstrated that constrained, multivariate MPC has advantages in
following the path of autonomous vehicles [10].

MPC algorithms have been developed to improve the tracking performance by consid-
ering the nonlinearity of a vehicle model through nonlinear MPC or by further strengthen-
ing the state constraint such as with Robust MPC [11–13]. However, depending on the size

Sensors 2021, 21, 6845. https://doi.org/10.3390/s21206845 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2542-0234
https://orcid.org/0000-0003-1025-3784
https://doi.org/10.3390/s21206845
https://doi.org/10.3390/s21206845
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21206845
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21206845?type=check_update&version=2

Sensors 2021, 21, 6845 2 of 20

of the prediction horizon, control horizon, and sampling time, the computation complexity
can increase, or the tracking performance can be insufficient. In the above study, MPC
was performed by fixing the size of the sampling time, and the size of the sampling time
was set empirically. However, MPC using a fixed sampling time has improved tracking
performance when the sampling time is small, but causes computational load. Conversely,
when the sampling time is large, the computation time is fast, but the tracking performance
is insufficient. The disadvantage of this method is that it is not suitable for vehicles that
need to perform various actions in various scenarios.

As a result, subsequent research is using weight matrix, prediction horizon, and
sampling time set as fixed parameters in MPC as variables, and changing and controlling
prediction horizon or sampling time by applying arbitrarily designated prediction horizon
and sampling time according to the conditions of each stage [14–17].

This paper proposes a variable sampling-time model predictive control algorithm
(VST-MPC) for improving the path tracking performance of a vehicle, and the sampling
time is adjusted based on the optimal steering angle and lateral acceleration inputs cal-
culated with MPC. Previously published studies set the sampling time as constant or
arbitrarily determined according to the conditions. However, the proposed VST-MPC
algorithm adjusts the sampling time by using the gradient descent method according to
the calculated optimal input. Therefore, it is controlled using various sampling times and
designed to gradually converge to the minimum or maximum value. In addition, since
the sampling time is changed based on the optimal input calculated from the MPC rather
than the external parameters of the vehicle, it can be utilized in various environments and
scenarios. This paper simulates four types of MPCs (MPC with a sampling time of 0.1,
MPC with a sampling time of 0.2, MPC with a sampling time of 0.05, and the proposed
MPC) in two scenarios. The simulation results show the path-following performance of
the proposed MPC is improved compared to the MPC with a fixed sampling time. The
algorithm was developed in the MATLAB environment, and the actual model utilized in
the simulation used a vehicle among the car models provided by the Automated Driving
Toolbox of MATLAB. The Automated Driving Toolbox of MATLAB provides many actors
(cars, trucks, bicycles, and pedestrians). In addition, many of the vehicle parameters can
be set, so various existing vehicles can be implemented by setting the parameters. Road
design features and sensors can be used to collect driving data. The camera sensor was
used to collect the reference data in this paper. The parameters of the vehicle and a more
detailed description of the automated driving toolbox are given in Section 4.

The remainder of the paper is organized as follows. Section 2 discusses the basic
MPC design to implement the proposed MPC. Section 3 describes the proposed VST-MPC
algorithm. Section 4 describes the experimental environment and scenarios, and the results
of each scenario. Finally, a conclusion is presented in Section 5.

2. Design of Model Predictive Control Algorithm

This section introduces the design of the MPC system. In Section 2.1, we present a
bicycle model based on vehicle dynamics [18]. In Sections 2.2–2.4, the discrete linear vehicle
model, cost function, and constraint for designing the MPC algorithm are presented.

2.1. Dynamic Bicycle Model of a Vehicle

Figure 1 shows a bicycle model of a vehicle. The variables in the figure are:αf, αr are
the tire slip angles of the front and rear wheels; β is the side-slip angle; δ is the steering angle
of a vehicle; Fyf, Fyr are the front and rear tire forces; lf, lr are the longitudinal distances
from the CG of vehicle to the front and rear wheels; and ϕ is the yaw angle.

Sensors 2021, 21, 6845 3 of 20

Sensors 2021, 21, 6845 3 of 20

2.1. Dynamic Bicycle Model of a Vehicle
Figure 1 shows a bicycle model of a vehicle. The variables in the figure are:αf,αr are

the tire slip angles of the front and rear wheels; β is the side-slip angle; δ is the steering
angle of a vehicle; Fyf, Fyr are the front and rear tire forces; lf, lr are the longitudinal dis-
tances from the CG of vehicle to the front and rear wheels; and φ is the yaw angle.

Figure 1. Bicycle model of a vehicle.

This section presents the bicycle model of the vehicle used in the MPC design [19].
The following assumptions are made for the vehicle model [20]:
(1) The longitudinal velocity of the vehicle is constant.
(2) The left and right wheels (front and rear wheels) are considered single wheels.
(3) Suspension movement and slippage aerodynamic effects are approximately zero.
(4) The steering angle of the rear wheel is zero.

Based on these assumptions, a linear model of the vehicle can be obtained with New-
ton’s law (Figure 1)

ẏ = ẏ, (1)

ÿ = −Vx ∙ φ̇ + ay, (2)

Iz ∙ φ̈ = 2�lf ∙ Fyf − lr ∙ Fyr�, (3)

where Vx is the longitudinal velocity of a vehicle, ay is the lateral acceleration of the cen-
ter of mass, Iz is yaw moment of inertia, and Fyf, Fyr are as follows:

Fyf = Cαf ∙ αf = Cαf ∙ �δ −
ẏ+lf∙φ̇
Vx

�, (4)

Fyr = Cαr ∙ αr = Cαr ∙ (− ẏ−lr∙φ̇
Vx

), (5)

where Cαf is the cornering stiffness of front wheel, and Cαr is the cornering stiffness of
rear wheel.

By substituting Equations (4) and (5) into Equation (3), the equation can be expressed
as a vehicle model equation with the yaw rate (φ̇) as shown below:

φ̈ = 2∙lf∙Cαf−2∙lr∙Cαr
Iz

∙ δ − 2∙lf∙Cαf−2∙lr∙Cαr
Iz∙Vx

∙ ẏ − 2∙lf
2∙Cαf+2∙lr2∙Cαr

Iz∙Vx
∙ φ̇. (6)

Subsequently, the continuous state-space equation of a vehicle can be constructed.
The MPC state-space equations are Equations (7) and (8):

XĊ = AC ∙ XC + BC ∙ u, (7)

YĊ = CC ∙ XC + DC ∙ u, (8)

Figure 1. Bicycle model of a vehicle.

This section presents the bicycle model of the vehicle used in the MPC design [19].
The following assumptions are made for the vehicle model [20]:

(1) The longitudinal velocity of the vehicle is constant.
(2) The left and right wheels (front and rear wheels) are considered single wheels.
(3) Suspension movement and slippage aerodynamic effects are approximately zero.
(4) The steering angle of the rear wheel is zero.

Based on these assumptions, a linear model of the vehicle can be obtained with
Newton’s law (Figure 1)

.
y =

.
y, (1)

..
y = −Vx·

.
ϕ + ay, (2)

Iz·
..
ϕ = 2

(
lf·Fyf − lr·Fyr

)
, (3)

where Vx is the longitudinal velocity of a vehicle, ay is the lateral acceleration of the center
of mass, Iz is yaw moment of inertia, and Fyf, Fyr are as follows:

Fyf = Cαf·αf = Cαf·
(
δ−

.
y + lf·

.
ϕ

Vx

)
, (4)

Fyr = Cαr·αr = Cαr·
(
−

.
y − lr·

.
ϕ

Vx

)
, (5)

where Cαf is the cornering stiffness of front wheel, and Cαr is the cornering stiffness of
rear wheel.

By substituting Equations (4) and (5) into Equation (3), the equation can be expressed
as a vehicle model equation with the yaw rate (

.
ϕ) as shown below:

..
ϕ =

2·lf·Cαf − 2·lr·Cαr

Iz
·δ− 2·lf·Cαf − 2·lr·Cαr

Iz·Vx
· .
y − 2·l2f ·Cαf + 2·l2r ·Cαr

Iz·Vx
· .
ϕ. (6)

Subsequently, the continuous state-space equation of a vehicle can be constructed. The
MPC state-space equations are Equations (7) and (8):

.
XC = AC·XC + BC· u, (7)

.
YC = CC·XC + DC· u, (8)

Sensors 2021, 21, 6845 4 of 20

where
XC =

[
y

.
y ϕ

.
ϕ
]T, (9)

AC =

0 1 0 0
0 0 0 −Vx
0 0 0 1

0 − 2·lf·Cαf−2·lr·Cαr
Iz·Vx

0 2·l2f ·Cαf+2·l2r ·Cαr
Iz·Vx

, (10)

BC =

0 0
1 0
0 0
0 2·lf·Cαf

Iz

, CC =

[
1 0 0 0
0 1 0 0

]
, (11)

u =
[

ay δ
]T, (12)

where Xc is the vehicle state; Ac is the state-space matrix; Bc and Cc are the input and
output matrices of the continuous-time state-space equation, respectively; and u is the
vehicle’s control input. The vehicle states are described by the lateral position, lateral
velocity, yaw angle, and yaw rate. The control inputs are the lateral acceleration of the
center of mass and the front steering angle [21].

2.2. Discrete State-Space Vehicle Model for MPC

To convert the continuous-time state-space equation (introduced in Section 2.3) into a
recursive equation, the value obtained by calculating the discrete-time state-space equation
with the period Ts is as follows [22]:

Xd(k + 1) = Ad·Xd(k) + Bd· u(k), (13)

where

Ad = eAd·TS , Bd =
∫ TS

0
eAC·τ·BCdτ. (14)

The output of the MPC algorithm is as follows:

Yd(k) = Cd·Xd(k), (15)

where
Yd(k) =

[
y(k)

.
y(k) ϕ(k)

.
ϕ(k)

]T, (16)

Cd = CC =

[
1 0 0 0
0 1 0 0

]
, (17)

To improve the tracking performance in the path-following problem, Equations (13)
and (15) are adjusted to the increment of the input:

Xa(k + 1) = Aa·Xa(k) + Ba·∆u(k), (18)

Ya(k) = Ca·Xa(k), (19)

where

Xa(k) =
[

∆Xd(k)
Yd(k)

]
, (20)

Aa =

[
Ad OT

d
Cd·Ad Id

]
, Ba =

[
Bd

Cd·Bd

]
, Ca = [OdId], (21)

Od =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, Id =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. (22)

Sensors 2021, 21, 6845 5 of 20

Equation (20) is a variable for the augmented state equation: Aa is the augmented
state matrix, Ba is the augmented input matrix, and Ca is the augmented output matrix;
Oa is a zero matrix, the number of rows of which is identical to the number of output
variables and the number of columns is identical to the number of state variables. Finally,
Ia is the unit matrix, and its number of rows and columns correspond to the number of
output variables.

2.3. Cost Function of MPC

To present the cost function in a simplified manner, the reference data and data
predicted with the MPC algorithm are vectorized and expressed as follows:

∆Um =
[

∆u(k) . . . ∆u(k + m) . . . ∆u(k + NC − 1)
]T, (23)

Xm(k) = Xa(k), (24)

Ym(k) = Fm·Xm(k) + Gm·∆Um(k) =
[

Ya(k + 1) . . . Ya(k + NP)
]T, (25)

where Np is the prediction horizon; Nc is the control horizon; and Fm, Gm are as below:

Fm =
[

CaAa CaA2
a . . . CaANC

a . . . CaANP
a

]T

3·NP×10
, (26)

Gm =

CaBa 0 · · · 0
CaAaBa CaBa · · · 0

...
... · · · 0

CaANC−1
a Ba CaANC−2

a Ba · · · CaBa
...

...
. . .

...
CaANP−1

a Ba CaANP−2
a Ba . . . CaANP−NC

a Ba

. (27)

Subsequently, the MPC cost function is designed to find an input that minimizes the
difference between the reference data and the state variable. The MPC cost function is as
follows [23]:

J = [Rr(k)− Ym(k)]T[Rr(k)− Ym(k)] + ∆UT
mR∆Um, (28)

where

Rr(k) =

yr(k + 1)
.

yr(k + 1)
ϕr(k + 1)

.
ϕr(k + 1)

...
yr(k + NP).
yr(k + NP)
ϕr(k + NP).
ϕr(k + NP)

, Ym(k) =

y(k + 1)
.
y(k + 1)
ϕ(k + 1)
.
ϕ(k + 1)

...
y(k + NP).
y(k + NP)
ϕ(k + NP).
ϕ(k + NP)

. (29)

To minimize the cost function, its derivative must be zero:

∂J
∂Xm

= 0,
∂J

∂∆Um
= 0. (30)

By substituting Equation (30) into Equation (28), the cost function for ∆Um can be
obtained as

J =
1
2

∆UT
mEm∆Um + ∆UT

mKm, (31)

where
Em = 2

(
GT

mGm + R
)

, (32)

Sensors 2021, 21, 6845 6 of 20

Km = −2·GT
m·[Rr(k)− Fm·Xm(k)]. (33)

2.4. Constraints of the MPC Algorithm

The MPC algorithm calculates the optimized control input according to a given cost
function and the specific state variables and constraints. Thus, it sets constraints on the
state variables and inputs [24]. Because the cost function is modified in terms of ∆Um, the
constraint must be expressed in terms of ∆Um. The constraint of the control input vector is
as follows:

Umin ≤ Um ≤ Umax, (34)

−Um ≤ −Umin, Um ≤ Umax. (35)

Equation (34) includes two inequality constraints, and it is identical to Equation (35).
Furthermore, Equation (35) can be expressed as a matrix:[

−I
I

]
Um ≤

[
−Umin
Umax

]
. (36)

Um can be expressed as follows:

u(k)

u(k + 1)
u(k + 2)

...
u(k + NC − 1)

 =

I
I
I
...
I

u(k − 1) +

I 0 0 · · · 0
I I 0 · · · 0
I I I · · · 0
...

...
...

. . .
...

I I I · · · I

∆u(k)

∆u(k + 1)
∆u(k + 2)

...
∆u(k + NC − 1)

. (37)

By substituting Equation (37) into Equation (36), the following constraints can be obtained as[
−C2
C2

]
∆Um ≤

[
−Umin + C1u(k − 1)
Umax − C1u(k − 1)

]
, (38)

where

C1 =

1
1
1
...
1

NC×3

, C2 =

I 0 0 · · · 0
I I 0 · · · 0
I I I · · · 0
...

...
...

. . .
...

I I I · · · I

NC×NC

. (39)

By following the same process for the increment of the input and output, the following
inequality constraint can be obtained as[

−I
I

]
·∆Um ≤

[
−∆Umin
∆Umax

]
, (40)

[
−Gm
Gm

]
∆Um ≤

[
−Ymin + FmXm(k)
Ymax − FmXm(k)

]
. (41)

By using Equations (38), (40) and (41), the MPC constraints can be derived: M1
M2
M3

∆Um ≤

 N1
N2
N3

, (42)

where

M1 =

[
−C2
C2

]
, M2 =

[
−I
I

]
, M3 =

[
−Gm
Gm

]
, (43)

Sensors 2021, 21, 6845 7 of 20

N1 =

[
−Umin + C1u(k − 1)
Umax − C1u(k − 1)

]
, (44)

N2 =

[
−∆Umin
∆Umax

]
, (45)

N3 =

[
−Ymin + FmXm(k)
Ymax − FmXm(k)

]
. (46)

3. A Variable Sampling-Time Model Predictive Control (VST-MPC) Algorithm

In MPC, the sampling time determines how many times the MPC runs the control
algorithm during a driving scenario. When the sampling time is short, because the control
algorithm is run by dividing the scenario into a long sequence, it can respond quickly to
disturbances and improve the tracking performance. However, the computation time is
long. When the sampling time is long, and the computation time is shortened because the
scenario is divided into a short sequence; however, the tracking performance is insufficient,
and the algorithm cannot respond quickly to disturbances [25]. In this section, we propose
the VST-MPC method, which adjusts the sampling time based on the optimal input value
calculated by the MPC algorithm.

3.1. Proposed VST-MPC Algorithm Using Optimal Input Sequence

The VST-MPC algorithm is designed to run while adjusting the sampling time ac-
cording to the driving situation at each stage. The basic VST-MPC algorithm is as follows:
In a straight driving section, because the input steering angle and lateral acceleration are
approximately zero, the sampling time does not have much effect on the tracking perfor-
mance and influence of the disturbance. Thus, the sampling time is set to the maximum in
the straight driving section for faster computation. In the curved driving section, because
the input steering angle and lateral acceleration change continuously, the sampling time
affects the tracking performance and reactivity toward the disturbance. Therefore, the
sampling time is gradually decreased to improve the tracking performance in the curved
driving section.

Algorithm 1 presents the pseudo-code of the VST-MPC algorithm. The description of
the pseudo-code is as follows: In Step 1, the default sampling time is set to 0.2. In Step 2, the
parameters of the MPC algorithm (various parameters such as Ad, Bd, Cd, Dd, Fm, Gm)
are set, and the MPC algorithm computes the optimal input to predict the next move. In
Step 3, the control input calculated with the MPC algorithm is used to predict the next
move of the vehicle. In Step 4, the predicted state is stored as the past state, and the control
input is stored as the past input. In Step 5, the sampling time to be used when the next
vehicle move is predicted is calculated with the calculated inputs u1 = ay =

∆Vy
Ts

and
u2 = δ. The contents of the equations of the fifth step are described in detail in Section 3.2.
In Step 6, the sampling time calculated in Step 5 is set as the sampling time for the next
prediction of the MPC. Step 7 prevents the sampling time from continuously increasing
or decreasing. When the sampling time calculated in Step 5 exceeds the maximum value
of the sampling time, the sampling time for the next prediction of the MPC is set as the
maximum value of the sampling time. In contrast, when the sampling time calculated in
Step 5 exceeds the minimum value of the sampling time, the sampling time for the next
prediction of the MPC is set as the minimum value of the sampling time. In Step 7, the
algorithm returns to Step 2 and continues to predict the next move of the vehicle from
Step 2 to Step 7 until the scenario is over.

Sensors 2021, 21, 6845 8 of 20

Algorithm 1 The Pseudo Code of VST-MPC.

Step 1: Set the initial sampling time TS = 0.2
Step 2: Set the MPC parameter and calculate the optimal input with MPC
Step 3: Predict Xa(K + 1) = Aa·Xa(K) + Ba·u(K)
Step 4: Update Xpast = Xa (K + 1), upast = u(K)
Step 5: Calculate the next sampling time using the following equation.

TS(K + 1) = TS(K) + sign(Z − C)·min(Z, C)

where Z = −λ·
∣∣∣ ∂

∂TS

(
δ(K)· ·Vy(K)

TS(K)

)∣∣∣, C = −0.01

Step 6: Set TS = TS(K + 1)
Step 7: If Ts > TS,maximum
TS = TS,maximum
else if TS < TS,minimum
TS = TS,minimum
end
Step 8: Go to Step 2 until MPC iteration is over.

3.2. Design a Function of VST-MPC for Sampling Time Variation

This section presents the equation for setting the sampling time in the VST-MPC
algorithm:

TS(K + 1) = TS(K) + sign(Z − C)·min(Z, C), (47)

where
∆Vy

∆Ts
= u1 = ay, δ = u2, (48)

Z = −λ·
∣∣∣∣ ∂

∂TS

(
δ(K)·

∆Vy(K)

TS(K)

)∣∣∣∣, (49)

sign(X) ,

1 (X > 0)
0 (X = 0)
−1 (X < 0)

(50)

where λ and C are manually determined constants. The values of λ and C are described in
Section 4.1.

In Equation (48), u1 and u2 are the inputs calculated by solving the cost function. This
expression is designed to change the sampling time according to the control input. In the
driving scenario, the inputs ay and δ converge to 0 in the straight driving section. However,
in the curved driving section, the inputs ay and δ have non-zero values. Equation (47)
reduces the computation time by maintaining a long sampling time in the straight driving
section owing to these driving characteristics. In the curved driving section, the sampling
time is gradually decreased according to the calculated input to improve the tracking
performance and for reliable reactivity to sudden disturbances.

In other words, in a driving scenario starting when the sampling time is set to 0.2,
Z is zero because the control input is close to zero in the straight driving scenario. The
next sampling time is predicted by adding the selected C value to the existing sampling
time of 0.2. However, 0.2 is maintained owing to the maximum value condition of the
sampling time in Step 7 of the pseudo-code. In the curved driving scenario, the control
input gradually increases. Thus, the new sampling time is determined by subtracting Z
from the equation from the existing sampling time 0.2.

In general, the path tracking error of MPC increases over curved sections. Therefore,
to reduce the path-tracking error, it is necessary to significantly reduce the sampling time
when the input calculated through MPC is large. In other words, the sampling time
should change significantly in the curved driving section where the calculated inputs are
increasing. However, when the sampling time is changed rapidly, the inputs will also
change rapidly, reducing the ride quality. There may be situations where the MPC cannot
compute the inputs. To prevents this phenomenon, the sampling time should be changed

Sensors 2021, 21, 6845 9 of 20

by a small increment at the first changing point from the linear driving section to the
curved driving section, and the sampling time should be gradually changed according to
the input. For this reason, in the first point where the sampling time changes, λ is set so
that the sampling time, which is the smallest possible increment, changes to 0.01. For the
same reason, C is set as the smallest increment so that the sampling time is adjusted step by
step. The value of C is set to 0.01 when the input is 0, that is, to increase the sampling time
in the straight section. Therefore, C is set to −0.01 to add to the existing sampling time.

Equation (50) determines the sign of the calculated expression. The reason for selecting
the smaller of the values C and Z in Equation (47) is to cause the sampling time that
converges to 0.05 in a curved driving section to converge to 0.2 again in a straight driving
section. Therefore, when C is selected, the calculated expression must be added to the
existing sampling time. Conversely, when C is not selected, it is set to subtract the calculated
equation from the existing sampling time, as it indicates a curved driving section. The
gradient descent algorithm is used in this equation such that the sampling time gradually
converges to the minimum bound, 0.05, or maximum bound, 0.2, as the curvature of the
driving path changes [26]. In the curved driving section, the sampling time decreases to
0.05. In the straight driving section, the sampling time increases to 0.2.

4. Configuration Driving Scenario Using MATLAB and Simulations

In this section, the proposed VST-MPC algorithm presented in Sections 2 and 3 is
verified based on different scenarios. Section 4.1 describes the scenario, and Section 4.2
presents the experimental results.

The simulation was performed with the following environment:

• CPU: AMD Ryzen 7 3800XT 8-Core Processor 3.90 GHz
• RAM: 32.0 GB
• GPU: NVIDIA GeForce RTX 3070
• RAM: 32.0 GB
• Tool: MATLAB 2020b, Automated Driving Toolbox

For the scenario configuration and simulations, MATLAB and Automated Driving
Toolbox be linked. The Automated Driving Toolbox of MATLAB provides many actors (car,
truck, bicycle, and pedestrian). In this paper, the car was used for the vehicle model for
simulations. The camera sensor was used for collecting the reference data of the simulations.
The Automated Driving Toolbox can be used to set many vehicle parameters and can
collect the driving data through road design and sensors. The toolbox provides several
algorithms and functions that facilitate the simulation of ADAS and autonomous driving
systems (static and dynamic actors, various sensors, etc.). In addition, some visualization
environments such as 3D simulation and bird’s eye view are provided. Scenarios can also
be exported to MATLAB in the form of functions, making it easy to link with MATLAB
and to plot experimental results on MATLAB. Because of these advantages, it is used in
ADAS and autonomous driving system verification in various papers [27].

Table 1 shows the parameters of a vehicle model and input constraints. Because the
scenario was performed at a speed of 20 m/s, the maximum acceleration constraint was
set using 2.24 m/s2, the empirical maximum acceleration value of a petrol car driving
at 20 m/s. The minimum acceleration constraint was set using 3.97 m/s2, the empirical
maximum deceleration value of a petrol car driving at 20 m/s [28]. The maximum steering
angle constraint was set by using Ackerman Jeantaud geometry in that the minimum
radius of gyration is set to 6 m [29].

Sensors 2021, 21, 6845 10 of 20

Table 1. MPC parameters.

Symbol Description Value [units]

m Vehicle mass 2020 [kg]
lf C.g. distance to front wheel 1.40 [m]
lr C.g. distance to rear wheel 1.65 [m]
Iz Yaw moment of inertia 3234 [kg · m2]

Cαf Front wheel cornering stiffness 1420· 180
π [N]

Cαr Rear wheel cornering stiffness 1420· 180
π [N]

V Velocity of vehicle 20 [m/s]
ay,max Maximum acceleration constraint 2.24 [m/s2]
ay,min Minimum acceleration constraint −3.97 [m/s2]
δf,max Maximum steering angle constraint 0.4864 [rad]
δf,min Minimum steering angle constraint −0.4864 [rad]

Figure 2 shows the trajectory of scenario 1 and scenario 2. A detailed description of
the scenario is provided in Section 4.1. Most of the MPC-related papers use the sampling
time as 0.1 [30]. Therefore, 0.1 is also used in this paper. Additionally, the sampling time,
0.2 was selected for comparison between the proposed MPC and the MPC with a longer
sampling time than 0.1. The sampling time, 0.2 is used at tracking control system and
cruise control system [31,32].

Sensors 2021, 21, 6845 10 of 20

Table 1. MPC parameters.

Symbol Description Value[units]
m Vehicle mass 2020 [kg]
lf C.g. distance to front wheel 1.40 [m]
lr C.g. distance to rear wheel 1.65 [m]
Iz Yaw moment of inertia 3234 [kg ∙ m2]

Cαf Front wheel cornering stiffness 1420∙ 180
𝜋𝜋

 [N]

Cαr Rear wheel cornering stiffness 1420∙ 180
𝜋𝜋

 [N]
V Velocity of vehicle 20 [m/s]

ay,max Maximum acceleration constraint 2.24 [m/s2]
ay,min Minimum acceleration constraint −3.97 [m/s2]
δf,max Maximum steering angle constraint 0.4864 [rad]
δf,min Minimum steering angle constraint −0.4864 [rad]

Figure 2 shows the trajectory of scenario 1 and scenario 2. A detailed description of
the scenario is provided in Section 4.1. Most of the MPC-related papers use the sampling
time as 0.1 [30]. Therefore, 0.1 is also used in this paper. Additionally, the sampling time,
0.2 was selected for comparison between the proposed MPC and the MPC with a longer
sampling time than 0.1. The sampling time, 0.2 is used at tracking control system and
cruise control system [31,32].

Figure 2. (a) Trajectory of scenario 1, (b) trajectory of scenario 2.

4.1. Scenario Description
In this section, the results of the MPC system with 0.2, 0.1, and 0.05 sampling times

and those of the proposed VST-MPC system for each scenario are compared.
The first scenario is shown in Figure 2a: the vehicle runs on two curved roads in a

row. In the beginning, the vehicle runs on a straight road of 40 m length and turns left into
a curved driving section with a 20 m radius of gyration. Subsequently, it runs on a 40 m
straight driving section and enters a (right-turning) curved section with a 20 m radius of
gyration. The scenario ends when the 40 m straight driving section has been passed. The
initial speed of the vehicle is 20 m/s, the prediction horizon is 10, and the control horizon
is 2. The prediction horizon indicates the amount of data that MPC references to calculate
the next prediction. The prediction horizon affects tracking performance and computation
time. However, in this paper, it is set as a fixed constant. Many papers set the prediction
horizon to 10 [7,20]. In an MPC system with a prediction horizon equal to 10, tracking
performance and computation time are reasonable, so the prediction horizon is set to 10.
The value of λ, which is a constant in Equation (47) is 0.0045, and C, which is a constant

Figure 2. (a) Trajectory of scenario 1, (b) trajectory of scenario 2.

4.1. Scenario Description

In this section, the results of the MPC system with 0.2, 0.1, and 0.05 sampling times
and those of the proposed VST-MPC system for each scenario are compared.

The first scenario is shown in Figure 2a: the vehicle runs on two curved roads in a
row. In the beginning, the vehicle runs on a straight road of 40 m length and turns left into
a curved driving section with a 20 m radius of gyration. Subsequently, it runs on a 40 m
straight driving section and enters a (right-turning) curved section with a 20 m radius of
gyration. The scenario ends when the 40 m straight driving section has been passed. The
initial speed of the vehicle is 20 m/s, the prediction horizon is 10, and the control horizon
is 2. The prediction horizon indicates the amount of data that MPC references to calculate
the next prediction. The prediction horizon affects tracking performance and computation
time. However, in this paper, it is set as a fixed constant. Many papers set the prediction
horizon to 10 [7,20]. In an MPC system with a prediction horizon equal to 10, tracking
performance and computation time are reasonable, so the prediction horizon is set to 10.
The value of λ, which is a constant in Equation (47) is 0.0045, and C, which is a constant in
Equation (47), is −0.001. In addition, the experiment is performed at different sampling
times: 0.2, 0.1, and a variable sampling time.

Sensors 2021, 21, 6845 11 of 20

The second scenario is shown in Figure 2b. This scenario consists of two driving
lanes. At the start of the scenario, the vehicle runs on the second lane of a two-lane road. It
switches to the first lane after detecting an obstacle at approximately 50 m distance from
the start and returns to the second lane after passing the obstacle. The initial speed of the
vehicle is 20 m/s, the prediction horizon is 10, and the control horizon is 2. In the second
scenario, most of the parameters are the same except that λ is 0.02, which is set empirically.
The results of the four MPC algorithms with different sampling times are compared to
assess the tracking performance of each algorithm.

4.2. Simulation Results of Scenario 1

Figure 3 shows the sampling time of scenario 1 in each step. The violet curve is the
sampling time in each step. The results indicate that the sampling time changes based on
the calculated input values of the lateral acceleration and steering angle when the vehicle
enters the curved driving section. Owing to the effect of the proposed MPC, a low sampling
time was selected for the curved driving section, and a high sampling time was selected
for the straight driving section.

Sensors 2021, 21, 6845 11 of 20

in Equation (47), is −0.001. In addition, the experiment is performed at different sampling
times: 0.2, 0.1, and a variable sampling time.

The second scenario is shown in Figure 2b. This scenario consists of two driving
lanes. At the start of the scenario, the vehicle runs on the second lane of a two-lane road.
It switches to the first lane after detecting an obstacle at approximately 50 m distance from
the start and returns to the second lane after passing the obstacle. The initial speed of the
vehicle is 20 m/s, the prediction horizon is 10, and the control horizon is 2. In the second
scenario, most of the parameters are the same except that λ is 0.02, which is set empiri-
cally. The results of the four MPC algorithms with different sampling times are compared
to assess the tracking performance of each algorithm.

4.2. Simulation Results of Scenario 1
Figure 3 shows the sampling time of scenario 1 in each step. The violet curve is the

sampling time in each step. The results indicate that the sampling time changes based on
the calculated input values of the lateral acceleration and steering angle when the vehicle
enters the curved driving section. Owing to the effect of the proposed MPC, a low sam-
pling time was selected for the curved driving section, and a high sampling time was se-
lected for the straight driving section.

Figure 3. The sampling time of scenario 1 in each step.

Figure 4 compares the trajectories of the four MPC algorithms. The black curve is the
reference trajectory, the red curve represents the MPC algorithm with 0.2 sampling time,
the blue curve represents the MPC algorithm with 0.1 sampling time, the green curve rep-
resents the results of the proposed MPC algorithm, and the brown curve represents the
result of the MPC algorithm with 0.05 sampling time. Because discussing the tracking er-
ror of each MPC algorithm based on a figure that shows the entire trajectories is difficult,
the tracking errors of each section are discussed separately.

Figure 3. The sampling time of scenario 1 in each step.

Figure 4 compares the trajectories of the four MPC algorithms. The black curve is
the reference trajectory, the red curve represents the MPC algorithm with 0.2 sampling
time, the blue curve represents the MPC algorithm with 0.1 sampling time, the green curve
represents the results of the proposed MPC algorithm, and the brown curve represents the
result of the MPC algorithm with 0.05 sampling time. Because discussing the tracking error
of each MPC algorithm based on a figure that shows the entire trajectories is difficult, the
tracking errors of each section are discussed separately.

Sensors 2021, 21, 6845 12 of 20
Sensors 2021, 21, 6845 12 of 20

Figure 4. Comparison of trajectories of four MPC algorithms.

Figure 5a is section A. Section A is the section entering from the first straight driving
area to the first curved driving area (35–65 m on the X axis).

Figure 5b is section B. Section B is the section entering from the second straight driv-
ing area to the second curved driving area (50–80 m on the X axis).

The proposed VST-MPC is closest to the reference trajectory compared to the MPC
with a 0.1 sampling time and the MPC with a 0.2 sampling time. This indicates that the
path-following performance is improved by the effect of the proposed VST-MPC. The pro-
posed VST-MPC shows similar tracking performance to the MPC with a sampling time of
0.05. However, in terms of computation time, the proposed MPC improves over the MPC
with a sampling time of 0.05. This is discussed in detail in Table 2.

(a)

Figure 4. Comparison of trajectories of four MPC algorithms.

Figure 5a is section A. Section A is the section entering from the first straight driving
area to the first curved driving area (35–65 m on the X axis).

Figure 5b is section B. Section B is the section entering from the second straight driving
area to the second curved driving area (50–80 m on the X axis).

The proposed VST-MPC is closest to the reference trajectory compared to the MPC
with a 0.1 sampling time and the MPC with a 0.2 sampling time. This indicates that the
path-following performance is improved by the effect of the proposed VST-MPC. The
proposed VST-MPC shows similar tracking performance to the MPC with a sampling time
of 0.05. However, in terms of computation time, the proposed MPC improves over the
MPC with a sampling time of 0.05. This is discussed in detail in Table 2.

Sensors 2021, 21, 6845 12 of 20

Figure 4. Comparison of trajectories of four MPC algorithms.

Figure 5a is section A. Section A is the section entering from the first straight driving
area to the first curved driving area (35–65 m on the X axis).

Figure 5b is section B. Section B is the section entering from the second straight driv-
ing area to the second curved driving area (50–80 m on the X axis).

The proposed VST-MPC is closest to the reference trajectory compared to the MPC
with a 0.1 sampling time and the MPC with a 0.2 sampling time. This indicates that the
path-following performance is improved by the effect of the proposed VST-MPC. The pro-
posed VST-MPC shows similar tracking performance to the MPC with a sampling time of
0.05. However, in terms of computation time, the proposed MPC improves over the MPC
with a sampling time of 0.05. This is discussed in detail in Table 2.

(a)

Figure 5. Cont.

Sensors 2021, 21, 6845 13 of 20
Sensors 2021, 21, 6845 13 of 20

(b)

Figure 5. (a) The trajectory of section A, (b) the trajectory of section B.

Figure 6 presents the control inputs of the proposed MPC. The value tends to change
rapidly in the section in which the sampling time is changed. That is, when the sampling
time is long, the control input is large because the reference for predicting the next step
changes to a large increment. When the sampling time is short, the calculated control in-
put is small because the reference for predicting the next step relatively changes to a small
increment. In the proposed MPC algorithm, because the sampling time changes continu-
ously, the control input increases or decreases according to the sampling time. Thus, the
input value tends to change rapidly.

Although this does not pose a major safety risk, this problem must be addressed in
further studies to ensure passenger comfort.

Figure 6. (a) Lateral acceleration input of VST-MPC, (b) steering angle input of VST-MPC.

Figure 5. (a) The trajectory of section A, (b) the trajectory of section B.

Table 2. Average tracking error and entire computation time of four MPC algorithms.

The MPC Algorithm Average Tracking Error (m) Computation Time (s)

The MPC algorithm with sampling time 0.1 0.1617 0.2880

The MPC algorithm with sampling time 0.2 0.6407 0.1292

The MPC algorithm with sampling time 0.05 0.1344 0.4170

VST-MPC 0.1420 0.3267

Figure 6 presents the control inputs of the proposed MPC. The value tends to change
rapidly in the section in which the sampling time is changed. That is, when the sampling
time is long, the control input is large because the reference for predicting the next step
changes to a large increment. When the sampling time is short, the calculated control
input is small because the reference for predicting the next step relatively changes to a
small increment. In the proposed MPC algorithm, because the sampling time changes
continuously, the control input increases or decreases according to the sampling time. Thus,
the input value tends to change rapidly.

Sensors 2021, 21, 6845 13 of 20

(b)

Figure 5. (a) The trajectory of section A, (b) the trajectory of section B.

Figure 6 presents the control inputs of the proposed MPC. The value tends to change
rapidly in the section in which the sampling time is changed. That is, when the sampling
time is long, the control input is large because the reference for predicting the next step
changes to a large increment. When the sampling time is short, the calculated control in-
put is small because the reference for predicting the next step relatively changes to a small
increment. In the proposed MPC algorithm, because the sampling time changes continu-
ously, the control input increases or decreases according to the sampling time. Thus, the
input value tends to change rapidly.

Although this does not pose a major safety risk, this problem must be addressed in
further studies to ensure passenger comfort.

Figure 6. (a) Lateral acceleration input of VST-MPC, (b) steering angle input of VST-MPC.

Figure 6. (a) Lateral acceleration input of VST-MPC, (b) steering angle input of VST-MPC.

Sensors 2021, 21, 6845 14 of 20

Although this does not pose a major safety risk, this problem must be addressed in
further studies to ensure passenger comfort.

Figure 7 is the tracking error for the four MPCs. The tracking error of MPC with
a 0.1 sampling time and MPC with a 0.2 sampling time increases in the curved driving
section. Figure 7 shows that the tracking errors of VST-MPC and MPC with sampling time
0.05 are the smallest.

Sensors 2021, 21, 6845 14 of 20

Figure 7 is the tracking error for the four MPCs. The tracking error of MPC with a 0.1
sampling time and MPC with a 0.2 sampling time increases in the curved driving section.
Figure 7 shows that the tracking errors of VST-MPC and MPC with sampling time 0.05
are the smallest.

Figure 7. Comparison of tracking error for four MPC algorithms.

Table 2. Average tracking error and entire computation time of four MPC algorithms.

The MPC Algorithm Average Tracking Error (m) Computation Time (s)
The MPC algorithm with sampling time 0.1 0.1617 0.2880
The MPC algorithm with sampling time 0.2 0.6407 0.1292

The MPC algorithm with sampling time 0.05 0.1344 0.4170
VST-MPC 0.1420 0.3267

The average tracking error and computation time are determined when the MPC al-
gorithm has completed all cycles. The average tracking error is calculated using the aver-
age absolute error.

Table 2 shows the average tracking errors and computation times of the four MPC
algorithms. The sampling time affects the average tracking error and computation time.
When the sampling time is long, there is an advantage in that the computation time is
decreased. However, there is a disadvantage in that the tracking error is increased. In the
opposite case, when the sampling time is short, there is an advantage in that the tracking
error is decreased. However, there is a disadvantage in that the computation time is in-
creased.

The MPC algorithm with a 0.2 sampling time has the disadvantage of a fairly large
average tracking error, 0.6407 m, but it has the advantage of a short computation time,
0.1292 s.

The MPC algorithm with a 0.1 sampling time shows adequate performance with an
average tracking error of 0.1617 m. In addition, the computation time is 0.2880 s, main-
taining an appropriate level.

Figure 7. Comparison of tracking error for four MPC algorithms.

The average tracking error and computation time are determined when the MPC
algorithm has completed all cycles. The average tracking error is calculated using the
average absolute error.

Table 2 shows the average tracking errors and computation times of the four MPC
algorithms. The sampling time affects the average tracking error and computation time.
When the sampling time is long, there is an advantage in that the computation time is
decreased. However, there is a disadvantage in that the tracking error is increased. In the
opposite case, when the sampling time is short, there is an advantage in that the tracking
error is decreased. However, there is a disadvantage in that the computation time is
increased.

The MPC algorithm with a 0.2 sampling time has the disadvantage of a fairly large
average tracking error, 0.6407 m, but it has the advantage of a short computation time,
0.1292 s.

The MPC algorithm with a 0.1 sampling time shows adequate performance with
an average tracking error of 0.1617 m. In addition, the computation time is 0.2880 s,
maintaining an appropriate level.

The MPC algorithm with a 0.05 sampling time has the advantage of the smallest
average tracking error, 0.1344 m, but it has the disadvantage of a long computation time,
0.4170 s.

The computation time of the proposed MPC algorithm is increased compared to the
computation time of the MPC algorithm with a 0.2 sampling time and the MPC algorithm
with a 0.1 sampling time. However, the average tracking performance of the proposed MPC
algorithm is improved compared to the average tracking performance of the MPC algorithm
with 0.2 sampling time and the MPC algorithm with 0.1 sampling time. The computation

Sensors 2021, 21, 6845 15 of 20

time of the proposed MPC algorithm is decreased compared to the computation time of
the MPC algorithm with a sampling time of 0.05. The average tracking performance of
the proposed MPC algorithm is similar to that of the MPC algorithm with a 0.05 sampling
time. This confirms that the computation time can be shortened while maintaining similar
performance in terms of tracking performance when the proposed VST-MPC algorithm
and the MPC algorithm with the shortest sampling time are compared.

The path-tracking error of the proposed VST-MPC was reduced by about 14% com-
pared to the MPC with a 0.1 sampling time and was reduced by about 351% compared
to the MPC with a 0.2 sampling time. However, the path-tracking error of the proposed
VST-MPC was increased only by about 5% compared to the MPC with a 0.05 sampling
time. The computation time was increased by about 12% compared to the MPC with a
0.1 sampling time and was increased by about 153% compared to the MPC with a 0.2 sam-
pling time. However, the computation time was reduced by about 28% compared to the
MPC with a 0.05 sampling time. Due to the effect of the proposed VST-MPC algorithm,
the tracking performance is increased compared to the MPC with a 0.1 sampling time
and MPC with a 0.2 sampling time. And it shows performance similar to the tracking
performance of MPC with a sampling time of 0.05. The proposed VST-MPC algorithm
has a disadvantage in that it increases the computation time, but this is low compared
to the increase in tracking performance. The proposed VST-MPC algorithm can reduce
the computation time compared to MPC with a 0.05 sampling time. That is, the code that
changes the sampling time in the proposed MPC algorithm does not significantly affect
the computation time, and only the changed sampling time increases the computation
time. This means that the proposed VST-MPC has the advantages of both MPC with long
sampling time and MPC with short sampling time.

4.3. Simulation Result of Scenario 2

Figure 8 shows the sampling times for Scenario 2 in each stage. The violet curve is the
sampling time in each step. The results indicate that the sampling time changes according
to the calculated lateral acceleration and steering angle input values when the vehicle
enters a curved driving section. Due to the effect of the proposed MPC, a low sampling
time was selected for the curve driving section and a high sampling time was selected for
the straight driving section. In addition, in the section that is the inflection point in the
trajectory, the sampling time is increased again because the steering angle and the lateral
acceleration are close to zero.

Sensors 2021, 21, 6845 16 of 20

Figure 8. The sampling time of scenario 2 in each step.

Figure 9 compares the trajectories of the four MPC algorithms. The black curve is the
reference trajectory, the red curve represents the MPC algorithm with a 0.2 sampling time,
the blue curve represents the MPC algorithm with a 0.1 sampling time, the green curve
represents the proposed MPC algorithm, and the brown curve represents the MPC algo-
rithm with a 0.05 sampling time. The proposed VST-MPC is closest to the reference trajec-
tory compared to the MPC with a 0.1 sampling time and the MPC with a 0.2 sampling
time. This indicates that the path-following performance is improved by the effect of the
proposed VST-MPC. Additionally, the proposed VST-MPC shows similar tracking per-
formance to the MPC with a sampling time of 0.05. However, in terms of computation
time, the proposed MPC improves over the MPC with a sampling time of 0.05. This is
discussed in detail in Table 3.

Figure 9. Comparison of trajectories of four MPC algorithms.

Figure 8. The sampling time of scenario 2 in each step.

Sensors 2021, 21, 6845 16 of 20

Figure 9 compares the trajectories of the four MPC algorithms. The black curve is
the reference trajectory, the red curve represents the MPC algorithm with a 0.2 sampling
time, the blue curve represents the MPC algorithm with a 0.1 sampling time, the green
curve represents the proposed MPC algorithm, and the brown curve represents the MPC
algorithm with a 0.05 sampling time. The proposed VST-MPC is closest to the reference
trajectory compared to the MPC with a 0.1 sampling time and the MPC with a 0.2 sampling
time. This indicates that the path-following performance is improved by the effect of
the proposed VST-MPC. Additionally, the proposed VST-MPC shows similar tracking
performance to the MPC with a sampling time of 0.05. However, in terms of computation
time, the proposed MPC improves over the MPC with a sampling time of 0.05. This is
discussed in detail in Table 3.

Sensors 2021, 21, 6845 16 of 20

Figure 8. The sampling time of scenario 2 in each step.

Figure 9 compares the trajectories of the four MPC algorithms. The black curve is the
reference trajectory, the red curve represents the MPC algorithm with a 0.2 sampling time,
the blue curve represents the MPC algorithm with a 0.1 sampling time, the green curve
represents the proposed MPC algorithm, and the brown curve represents the MPC algo-
rithm with a 0.05 sampling time. The proposed VST-MPC is closest to the reference trajec-
tory compared to the MPC with a 0.1 sampling time and the MPC with a 0.2 sampling
time. This indicates that the path-following performance is improved by the effect of the
proposed VST-MPC. Additionally, the proposed VST-MPC shows similar tracking per-
formance to the MPC with a sampling time of 0.05. However, in terms of computation
time, the proposed MPC improves over the MPC with a sampling time of 0.05. This is
discussed in detail in Table 3.

Figure 9. Comparison of trajectories of four MPC algorithms. Figure 9. Comparison of trajectories of four MPC algorithms.

Table 3. Average tracking error and entire computation time of four MPC algorithms.

The MPC Algorithm Average Tracking Error (m) Computation Time (s)

The MPC algorithm with sampling time 0.1 0.1395 0.1430

The MPC algorithm with sampling time 0.2 0.4079 0.0883

The MPC algorithm with sampling time 0.05 0.0556 0.3121

VST-MPC 0.0570 0.2033

Figure 10 presents the control input of Scenario 2. As noted in Section 4.2, the control
input changes suddenly, according to the sampling time.

Sensors 2021, 21, 6845 17 of 20

Sensors 2021, 21, 6845 17 of 20

Figure 10 presents the control input of Scenario 2. As noted in Section 4.2, the control
input changes suddenly, according to the sampling time.

Figure 10. (a) Lateral acceleration input of VST-MPC in scenario 2, (b) steering angle input of VST-
MPC in scenario 2.

Figure 11 shows the tracking errors of the four MPC algorithms. When the sampling
time is 0.2 and 0.05, the tracking error is large. By contrast, the proposed VST-MPC algo-
rithm does not have a large tracking error. Even compared to MPC with a 0.05 sampling
time, the tracking error of the proposed VST-MPC is similar with the MPC with a 0.05
sampling time.

Figure 11. Comparison for tracking error of four MPC algorithms.

Table 3. Average tracking error and entire computation time of four MPC algorithms.

The MPC Algorithm Average Tracking Error (m) Computation Time (s)
The MPC algorithm with sampling time 0.1 0.1395 0.1430
The MPC algorithm with sampling time 0.2 0.4079 0.0883

The MPC algorithm with sampling time 0.05 0.0556 0.3121

Figure 10. (a) Lateral acceleration input of VST-MPC in scenario 2, (b) steering angle input of
VST-MPC in scenario 2.

Figure 11 shows the tracking errors of the four MPC algorithms. When the sam-
pling time is 0.2 and 0.05, the tracking error is large. By contrast, the proposed VST-MPC
algorithm does not have a large tracking error. Even compared to MPC with a 0.05 sam-
pling time, the tracking error of the proposed VST-MPC is similar with the MPC with a
0.05 sampling time.

Sensors 2021, 21, 6845 17 of 20

Figure 10 presents the control input of Scenario 2. As noted in Section 4.2, the control
input changes suddenly, according to the sampling time.

Figure 10. (a) Lateral acceleration input of VST-MPC in scenario 2, (b) steering angle input of VST-
MPC in scenario 2.

Figure 11 shows the tracking errors of the four MPC algorithms. When the sampling
time is 0.2 and 0.05, the tracking error is large. By contrast, the proposed VST-MPC algo-
rithm does not have a large tracking error. Even compared to MPC with a 0.05 sampling
time, the tracking error of the proposed VST-MPC is similar with the MPC with a 0.05
sampling time.

Figure 11. Comparison for tracking error of four MPC algorithms.

Table 3. Average tracking error and entire computation time of four MPC algorithms.

The MPC Algorithm Average Tracking Error (m) Computation Time (s)
The MPC algorithm with sampling time 0.1 0.1395 0.1430
The MPC algorithm with sampling time 0.2 0.4079 0.0883

The MPC algorithm with sampling time 0.05 0.0556 0.3121

Figure 11. Comparison for tracking error of four MPC algorithms.

The average tracking error and computation time are measured when the MPC has
completed all cycles.

Table 3 shows the average tracking errors and computation times of the four MPC
algorithms. The sampling time affects the average tracking error and computation time.

The MPC algorithm with 0.2 sampling time has the disadvantage of a fairly large
average tracking error, 0.4079 m, but it has the advantage of a short computation time,
0.0883 s.

Sensors 2021, 21, 6845 18 of 20

The MPC algorithm with a 0.05 sampling time has the advantage of the smallest
average tracking error, 0.0556 m, but it has the disadvantage of a long computation time,
0.3121 s.

The proposed MPC algorithm has improved tracking performance over the MPC
algorithm with 0.1 sampling time and the MPC algorithm with 0.2 sampling time.

The computation time of the proposed MPC algorithm is decreased compared to the
computation time of the MPC algorithm with a sampling time of 0.05. The average tracking
performance of the proposed MPC algorithm is similar to that of the MPC algorithm with
a 0.05 sampling time. This confirms that the computation time can be shortened while
maintaining similar performance in terms of tracking performance when the proposed
VST-MPC algorithm and the MPC algorithm with the shortest sampling time are compared.

The tracking error of the proposed VST-MPC was reduced by about 145% compared
to the MPC with a 0.1 sampling time and 616% compared to the MPC with a 0.2 sampling
time. However, the path-tracking error of the proposed VST-MPC was increased only
by about 2% compared to the MPC with a 0.05 sampling time. The computation time
was increased by about 42% compared to MPC with a 0.1 sampling time and by 138%
compared to MPC with a 0.2 sampling time. However, the computation time was reduced
by about 54% compared to the MPC with a 0.05 sampling time. Due to the effect of the
proposed VST-MPC algorithm, the tracking performance is improved over that of MPC
with a 0.1 sampling time and MPC with a 0.2 sampling time. And it shows performance
similar to the tracking performance of MPC with a sampling time of 0.05. The proposed
VST-MPC algorithm has a disadvantage in that it increases the computation time, but
this is low compared to the increase in tracking performance. The proposed VST-MPC
algorithm can reduce computation time compared to MPC with a 0.05 sampling time.
That is, the code that changes the sampling time in the proposed MPC algorithm does not
significantly affect the computation time, and only the changed sampling time increases
the computation time. This means that the proposed VST-MPC has the advantages of both
MPC with long sampling time and MPC with short sampling time.

5. Conclusions and Future Work

This paper proposed an MPC algorithm for autonomous vehicles. The algorithm
adjusts the sampling time based on the lateral acceleration and steering angle, which
are the inputs calculated by the MPC algorithm when the vehicle is running. When a
short sampling time is chosen, the algorithm can cope well with sudden disturbances and
improve its tracking performance, however, this prolongs the computation time. When
the sampling time is long, the computation time is shortened. However, the algorithm
cannot cope well with sudden disturbances and exhibits poor tracking performance. To
compensate for these deficiencies, this paper proposes the VST-MPC algorithm. This
algorithm adjusts the sampling time of each step using optimized input calculated by the
MPC algorithm when driving the vehicle. The tracking characteristics and computation
time of the proposed and conventional MPC algorithms were compared with two fixed
sampling times in two scenarios. According to the results, the proposed MPC algorithm
shows improving tracking performance and similar computation time to MPC with a
sampling time of 0.1. This means that the proposed VST-MPC has both advantages of MPC
with short sampling time and MPC with long sampling time.

Because the vehicle is driven by continuously changing the sampling time, the input
lateral acceleration and the front wheel steering angle are continuously changed. Although
this does not affect the safety of the passengers, it may diminish driving comfort. Therefore,
the research to improve this is being planned. In addition, the research using HiLS or
real-time simulation is being planned for better proof of the algorithm.

Author Contributions: Software and writing, Y.C.; formal analysis and visualization, W.L.; validation
and visualization, J.K.; methodology and investigation, J.Y. All authors have read and agreed to the
published version of the manuscript.

Sensors 2021, 21, 6845 19 of 20

Funding: This work was supported by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(MSIT) (No. NRF-2021R1F1A1062153). This work was supported
by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)
(No. NRF-2021R1A5A1032937).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Richalet, J.; Rault, A.; Papon, J. Model Predictive Heuristic Control. Automatica 1978, 15, 413–428. [CrossRef]
2. Giorgetti, N.; Ripaccioli, G.; Bamporad, A.; Kolmanovsky, I.; Hrovat, D. Hybrid Model Predictive Control of Direct Injection

Stratified Charge Engines. IEEE/ASME Trans. Mechatron. 2006, 11, 499–506. [CrossRef]
3. Giorgetti, N.; Bamporad, A.; Tseng, H.E.; Hrovat, D. Traction control Hybrid model predictive control application towards

optimal semi-active suspension. Int. J. Control 2005, 79, 521–533. [CrossRef]
4. Liu, Y.; Fan, K.; Ouyang, Q. Intelligent Traction Control Method Based on Model Predictive Fuzzy PID Control and Online

Optimization for Permanent Magnetic Maglev Trains. IEEE Access 2021, 9, 29032–29046. [CrossRef]
5. Jhang, J.H.; Lian, F.L. An autonomous parking system of optimally integrating bidirectional rapidly-exploring random trees* and

parking-oriented model predictive control. IEEE Access 2020, 8, 163502–163523. [CrossRef]
6. Ma, H.; Chu, L.; Guo, J.; Wang, J.; Guo, C. Cooperative Adaptive Cruise Control Strategy Optimization for Electric Vehicles Based

on SA-PSO With Model Predictive Control. IEEE Access 2020, 8, 225745–225756. [CrossRef]
7. Salt Ducajú, J.M.; Salt Llobregat, J.J.; Cuenca, Á.; Tomizuka, M. Autonomous ground vehicle lane-keeping LPV model-based

control: Dual-rate state estimation and comparison of different real-time control strategies. Sensors 2021, 21, 1531. [CrossRef]
8. Gray, A.; Gao, Y.; Hedrick, J.K.; Borelli, F. Robust Predictive Control for semi-autonomous vehicles with an uncertain driver model.

In Proceedings of the 2013 IEEE Intelligent Vehicle Symposium (IV), Gold Coast, QLD, Australia, 23–26 June 2013; pp. 208–213.
9. Zhang, H.; Heng, B.; Zhao, W. Path tracking control for active rear steering vehicles considering driver steering characteristics.

IEEE Access 2020, 8, 98009–98017. [CrossRef]
10. González, D.; Pérez, J.; Milanés, V.; Nashashibi, F. A review of motion planning techniques for automated vehicles. IEEE Trans.

Intell. Transp. Syst. 2015, 17, 1135–1145. [CrossRef]
11. Falcone, P.; Borrelli, F.; Asgari, J.; Tseng, H.E.; Hrovat, D. A model predictive control approach for combined braking and steering

in autonomous vehicles. In Proceedings of the 2007 Mediterranean Conference on Control & Automation, Athens, Greece, 27–29
June 2007; pp. 1–6.

12. Mayne, D.Q.; Rawlings, J.B.; Rao, C.V.; Scokaert, P.O.M. Constrained model predictive control: Stability and optimality. Automatica
2000, 36, 789–814. [CrossRef]

13. Gao, Y.; Gray, A.; Tseng, H.E.; Borrelli, F. A tube-based robust nonlinear predictive control approach to semiautonomous ground
vehicles. Veh. Syst. Dyn. 2013, 52, 802–823. [CrossRef]

14. Zhang, B.; Zong, C.; Chen, G.; Li, G. An adaptive-prediction-horizon model prediction control for path tracking in a four-wheel
independent control electric vehicle. Proc. Inst. Mech. Eng. 2019, 233, 3246–3262. [CrossRef]

15. Hoffmann, N.; Andresen, M.; Fuchs, F.W.; Asiminoaei, L.; Thøgersen, P.B. Variable sampling time finite control-set model
predictive current control for voltage source inverters. In Proceedings of the 2012 IEEE Energy Conversion Congress and
Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 2215–2222.

16. Taherian, S.; Halder, K.; Dixit, S.; Fallah, S. Autonomous Collision Avoidance Using MPC with LQR-Based Weight Transformation.
Sensors 2021, 21, 4296. [CrossRef]

17. Wang, H.; Liu, B.; Ping, X.; An, Q. Path tracking control for autonomous vehicles based on an improved MPC. IEEE Access 2019, 7,
161064–161073. [CrossRef]

18. Rajamani, R. Vehicle Dynamics and Control, 2nd ed.; Springer Science & Business Media: New York, NY, USA, 2011; pp. 27–31.
19. Marzbani, H.; Khayyam, H.; To, C.N.; Quoc, Ð.V.; Jazar, R.N. Autonomous vehicles: Autodriver algorithm and vehicle dynamics.

IEEE Trans. Veh. Technol. 2019, 68, 3201–3211. [CrossRef]
20. Ji, J.; Khajepour, A.; Melek, W.W.; Huang, Y. Path Planning and Tracking for Vehicle Collision Avoidance Based on Model

Predictive Control with Multiconstraints. IEEE Trans. Veh. Technol. 2017, 66, 952–964. [CrossRef]
21. Kong, J.; Pfeiffer, M.; Schildbach, G.; Borrelli, F. Kinematic and dynamic vehicle models for autonomous driving control design.

In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 28 June–1 July 2015; pp. 1094–1099.
22. Shieh, L.S.; Wang, H.; Yates, R.E. discrete continuous model conversion. Appl. Mathmatical Model. 1980, 4, 449–455. [CrossRef]
23. Borrelli, F.; Falcone, P.; Keviczky, T.; Asgari, J.; Hrovat, D. MPC-based approach to active steering for autonomous vehicle systems.

Int. J. Veh. Auton. Syst. 2005, 3, 265–291. [CrossRef]
24. Wang, L. Model Predictive Control System Design and Implementation Using MATLAB ®; Springer Science & Business Media: New

York, NY, USA, 2009; pp. 47–50, 53–68.

http://doi.org/10.1016/0005-1098(78)90001-8
http://doi.org/10.1109/TMECH.2006.882979
http://doi.org/10.1080/00207170600593901
http://doi.org/10.1109/ACCESS.2021.3059443
http://doi.org/10.1109/ACCESS.2020.3020859
http://doi.org/10.1109/ACCESS.2020.3043370
http://doi.org/10.3390/s21041531
http://doi.org/10.1109/ACCESS.2020.2981417
http://doi.org/10.1109/TITS.2015.2498841
http://doi.org/10.1016/S0005-1098(99)00214-9
http://doi.org/10.1080/00423114.2014.902537
http://doi.org/10.1177/0954407018821527
http://doi.org/10.3390/s21134296
http://doi.org/10.1109/ACCESS.2019.2944894
http://doi.org/10.1109/TVT.2019.2895297
http://doi.org/10.1109/TVT.2016.2555853
http://doi.org/10.1016/0307-904X(80)90177-8
http://doi.org/10.1504/IJVAS.2005.008237

Sensors 2021, 21, 6845 20 of 20

25. Cao, Y.; Chen, W.H. Variable sampling-time nonlinear model predictive control of satellites using magneto-torquers. Syst. Sci.
Control Eng. Open Access J. 2014, 2, 593–601. [CrossRef]

26. Wang, L. Recognition of human activities using continuous autoencoders with wearable sensors. Sensors 2016, 16, 189. [CrossRef]
27. Giurgică, G.; Florescu, R.D. A case study for modeling autonomous driving systems. In Proceedings of the 2020 24th International

Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 8–10 October 2020; pp. 745–750.
28. Bokare, P.S.; Maurya, A.K. Acceleration-deceleration behaviour of various vehicle types. Transp. Res. Procedia 2017, 25, 4733–4749.

[CrossRef]
29. Din, Z.M.U.; Razzaq, W.; Arif, U.; Ahmad, W.; Muhammad, W. Real Time Ackerman Steering Angle Control for Self-Driving Car

Autonomous Navigation. In Proceedings of the 2019 4th International Conference on Emerging Trends in Engineering, Sciences
and Technology (ICEEST), Karachi, Pakistan, 10–11 December 2019; pp. 1–4.

30. Li, S.; Li, K.; Rajamani, R.; Wang, J. Model predictive multi-objective vehicular adaptive cruise control. IEEE Trans. Control Syst.
Technol. 2010, 19, 556–566. [CrossRef]

31. Kayacan, E.; Saeys, W.; Ramon, H.; Belta, C.; Peschel, J.M. Experimental validation of linear and nonlinear MPC on an articulated
unmanned ground vehicle. IEEE/ASME Trans. Mechatron. 2018, 23, 2023–2030. [CrossRef]

32. Lin, X.; Görges, D.; Weißmann, A. Simplified energy-efficient adaptive cruise control based on model predictive control. IFAC-
PapersOnLine 2017, 50, 4794–4799. [CrossRef]

http://doi.org/10.1080/21642583.2014.956841
http://doi.org/10.3390/s16020189
http://doi.org/10.1016/j.trpro.2017.05.486
http://doi.org/10.1109/TCST.2010.2049203
http://doi.org/10.1109/TMECH.2018.2854877
http://doi.org/10.1016/j.ifacol.2017.08.963

	Introduction
	Design of Model Predictive Control Algorithm
	Dynamic Bicycle Model of a Vehicle
	Discrete State-Space Vehicle Model for MPC
	Cost Function of MPC
	Constraints of the MPC Algorithm

	A Variable Sampling-Time Model Predictive Control (VST-MPC) Algorithm
	Proposed VST-MPC Algorithm Using Optimal Input Sequence
	Design a Function of VST-MPC for Sampling Time Variation

	Configuration Driving Scenario Using MATLAB and Simulations
	Scenario Description
	Simulation Results of Scenario 1
	Simulation Result of Scenario 2

	Conclusions and Future Work
	References

