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Abstract: The extraction of wheat lodging is of great significance to post-disaster agricultural produc-
tion management, disaster assessment and insurance subsidies. At present, the recognition of lodging
wheat in the actual complex field environment still has low accuracy and poor real-time performance.
To overcome this gap, first, four-channel fusion images, including RGB and DSM (digital surface
model), as well as RGB and ExG (excess green), were constructed based on the RGB image acquired
from unmanned aerial vehicle (UAV). Second, a Mobile U-Net model that combined a lightweight
neural network with a depthwise separable convolution and U-Net model was proposed. Finally,
three data sets (RGB, RGB + DSM and RGB + ExG) were used to train, verify, test and evaluate the
proposed model. The results of the experiment showed that the overall accuracy of lodging recog-
nition based on RGB + DSM reached 88.99%, which is 11.8% higher than that of original RGB and
6.2% higher than that of RGB + ExG. In addition, our proposed model was superior to typical deep
learning frameworks in terms of model parameters, processing speed and segmentation accuracy.
The optimized Mobile U-Net model reached 9.49 million parameters, which was 27.3% and 33.3%
faster than the FCN and U-Net models, respectively. Furthermore, for RGB + DSM wheat lodging
extraction, the overall accuracy of Mobile U-Net was improved by 24.3% and 15.3% compared with
FCN and U-Net, respectively. Therefore, the Mobile U-Net model using RGB + DSM could extract
wheat lodging with higher accuracy, fewer parameters and stronger robustness.

Keywords: UAV; wheat lodging; deep learning; lightweight; digital surface model (DSM)

1. Introduction

Wheat is the main food source in the world, the quality and yield of which are
related to food security [1]. Lodging is a common agricultural natural disaster in wheat
production, especially in the middle and late stages of wheat growth, and it is one of
the important factors that limit the high yield of wheat [2]. On the one hand, lodging
changes the individual development of wheat and, on the other hand, lodging changes the
population structure of wheat. Previous studies have shown that lodging not only affects
protein synthesis and nutrient transport, but also causes a sharp decline in photosynthetic
rate and dry matter production capacity [3]. Therefore, it is of great significance for
production management, prevention and control guidance, as well as disaster assessment
for agricultural departments and agricultural insurance departments, to accurately and
quickly obtain information, such as the location and area of wheat lodging.

The traditional method of obtaining lodging information is ground manual mea-
surement, which is time-consuming and labor-intensive and its measurement results are
subjectively affected. In addition, for large-scale lodging disasters, its low work efficiency
often cannot meet actual needs [4]. In contrast, the rapid development based on remote
sensing technology provides a practical means for large-scale and rapid monitoring of

Sensors 2021, 21, 6826. https://doi.org/10.3390/s21206826 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1967-8845
https://doi.org/10.3390/s21206826
https://doi.org/10.3390/s21206826
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21206826
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21206826?type=check_update&version=3


Sensors 2021, 21, 6826 2 of 16

lodging information [5], such as near-ground remote sensing, satellite remote sensing and
unmanned aerial vehicle (UAV) remote sensing monitoring. The low efficiency of near-
ground remote sensing technology limits its further application on the farmland scale [6].
To achieve large-scale crop lodging monitoring, Yang et al. used the Radarsat-2 radar
polarization index method to monitor wheat lodging [7]. Chauhan et al. used Sentinel 1
radar data and Sentinel 2 multispectral data to monitor the incidence of wheat lodging [8].
To make full use of the information provided by satellites, Chauhan et al. realized the clas-
sification of the degree of lodging of wheat by combining satellite data and the measured
crop height on the ground [9]. However, for the limitation of time resolution, satellites
cannot quickly obtain data to meet the needs of real-time identification. Therefore, it is
necessary to develop a fast and reliable method for identifying wheat lodging. In recent
years, UAV remote sensing has made up for the shortcomings of satellite remote sensing
and near-ground remote sensing by virtue of its advantages of miniaturization, low cost,
simple operation and high spatial and temporal resolution. UAV is the main tool for rapid
and accurate acquisition of crop information in the application of agricultural quantitative
remote sensing. UAV remote sensing is the current research hotspot and the future research
trend. Previous studies have shown that remote sensing technology based on UAV can
detect not only lodging in high-density crops, such as buckwheat [10], rice [11], barley [12],
wheat [13] and jute [14], but low-density crop lodging information acquisition, such as
corn [15], sunflower [16], cotton [17] and sugarcane [18], has also achieved good results. In
addition, many scholars have also carried out analyses of crop lodging based on different
features extracted by UAV, including spectral information [19], texture features [20], gray
level co-occurrence matrix [21] and vegetation indices [22]. In any case, the above research
papers showed the feasibility of extracting crop lodging based on digital images obtained
from UAV. However, it is difficult to achieve accurate lodging detection tasks for tradi-
tional features. Therefore, it is expected that more robust features will be used to identify
wheat lodging.

At present, UAV not only obtains digital images with three channels of R, G and
B, but also can generate a variety of derivative models based on multiple aerial images,
including digital orthophoto (DOM), digital elevation model (DEM) and digital surface
model (DSM), which have been successfully used in the application of monitoring crop
growth. Among them, DSM has received extensive attention because of its rich information
and intuitive reflection of features such as canopy, location and height. Handique et al.
used the difference of DSM to distinguish crops of different heights [23]. Feng et al. utilized
DSM to successfully estimate crop yields [24]. In general, the DSM generated by UAV
images can accurately represent the spatial variability of crops in different growth states.
Yang et al. successfully realized the lodging detection of rice using DSM and texture
features generated by UAV images [25]. In fact, fusion images based on RGB images
contain multi-channel information, which can provide more heterogeneous features for
lodging recognition. For example, some studies have focused on fusion image combining
RGB and DSM to extract lodging, while other studies have developed a method of fusing
RGB and the vegetation index to extract lodging [26]. At present, there is no universally
accepted understanding of which information is better to fuse aerial images obtained by
UAV. In addition, most of the research was still based on manually extracted features.
Therefore, the extraction of crop lodging information still faces many challenges.

With the enhancement of computer processing power, the recognition of crop lodging
based on deep learning has become a research hotspot in the field of agriculture. Many
methods based on convolutional neural networks have been successfully applied to the
research of lodging recognition. Yang et al. used EDANet to extract the lodging infor-
mation of rice [27]. Zhao et al. utilized U-Net to extract the lodging area of rice [28].
Compared with traditional algorithms, the advantage of deep learning is that it can au-
tomatically extract effective features through a multi-layer neural network. In particular,
the convolutional neural network model not only extracts the local detailed features of the
image, but also extracts the high-level semantic features of the image. Research results
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showed the feasibility and superiority of extracting crop lodging information based on
deep learning. However, the limitations of large amounts of calculation and high resource
consumption still make the model complex, which makes it difficult to meet the needs of
large-scale, real-time detection. In particular, it was not known whether the multi-channel
image of fusion information could further improve the accuracy of lodging information
extraction. Although Li et al. exploited deep learning methods to achieve lodging area
segmentation based on multi-channel spectral information [29], so far, it is not clear how
fusion-based multi-channel images could detect crop lodging based on lightweight neural
network models.

Therefore, a method for extracting wheat lodging information based on a light-weight
U-Net model with depthwise separable convolution is proposed in this study. Self-built
data sets obtained from UAV were used to evaluate the performance of the model, including
RGB of three channels, RGB + DSM of four channels and RGB + ExG of four channels.
The purpose of this research study is to (1) train Mobile U-Net using self-built data sets
and fine-tune model parameters to improve the robustness of the model, (2) verify the
effectiveness of the multi-channel fusion image to improve the accuracy of wheat lodging
extraction and (3) compare ours with other models to evaluate the performance of the
proposed model.

2. Materials and Methods
2.1. Data Collection

The field experiment was conducted in the National Modern Agriculture Demon-
stration Zone (31◦29′26′′ N, 117◦13′4′′ E) located in Guohe Town, Lujiang County, Anhui
Province, China. The area belongs to the subtropical monsoon climate, with four distinct
seasons, obvious cold and heat and it is suitable for the cultivation of wheat. Thirty-six
plots in the experimental area were selected as the study area, each plot covering the area
of 144.3 square meters (78 × 1.85 m2). The large row spacing was 0.3 m and the small row
spacing was 0.1 m. The variety of wheat was ‘Wanmai 55’. From 30 April to 26 May 2021,
Lujiang County experienced severe convective weather such as severe storms and rains,
with winds reaching up to 7–8 levels, and severe weather such as hail in some areas, leading
to multiple lodging of wheat in the study area. The wheat in the experimental area was in
the critical period of wheat growth. During this period, members of our team collected
UAV images and ground information at different stages of wheat growth, including the
flowering (7 May 2021), filling (17 May 2021) and maturity (27 May 2021) stages.

During the data collection process, a total of 298 UAV aerial images was obtained at
a height of 30 m above the ground during the three growth stages of wheat, including
flowering (98 images), filling (100 images) and maturity (100 images). The size of a single
image was 4000 × 3000 pixels. The Pix4DMapper software (Pix4D, Prilly, Switzerland) was
used to stitch the original images to obtain orthophotos of wheat fields in three periods.
Then, the acquired aerial images were manually annotated, cropped and subjected to
data augmentation.

Figure 1a shows the research location; Figure 1b is a partially enlarged display of
the wheat field. It is easy to see that the lodging area was very large and the degree of
lodging was very serious. Figure 1c shows a close-up map of lodging and healthy wheat in
flowering stage; the image of the wheat field was acquired by UAV at a height of about
3 m above the ground and the shooting angle was about 65◦. Figure 1d shows a close-up
map of lodging and healthy wheat in filling stage, Figure 1e shows a close-up map of
lodging and healthy wheat in maturity stage. We found that the height of lodging wheat
is significantly lower than that of non-lodging wheat by at least 20 cm. Figure 1d,e was
obtained using a mobile phone (nova5 pro, ISO: 50, focal length: 26 mm).
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Figure 1. Location of UAV imaging area, study site and lodging samples: (a) study site; (b) partially enlarged display of the
wheat field; the close-up maps of lodging and healthy wheat in (c) flowering, (d) filling and (e) maturity. The field indicated
by the blue arrow is the lodging wheat.

2.2. Data Preprocessing
2.2.1. Image Annotation

Among them, the Labelme software (http://labelme.csail.mit.edu/Release3.0/, ac-
cessed on 10 May 2021) was used to manually mark; the non-lodging area of wheat was
marked as wheat, the lodging area was marked as lodging, the other areas were marked as
background. The label images were created and the annotated images were cropped into
images with 256 × 256 pixels, as shown in Figure 2.

1 
 

 

 

 
Figure 2. Example of original image and labeled image after cropping.

http://labelme.csail.mit.edu/Release3.0/
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2.2.2. Image Fusion

To explore the influence of DSM and ExG on the recognition of the lodging effect
based on the deep learning model, the RGB images collected by the UAV in this study were
calculated to obtain the ExG index, the DSM was generated based on the dense point cloud
and then the band was synthesized by the ENVI5.3 (Exelis Visual Information Solutions,
USA) software. The ExG and DSM were added to the RGB image as the fourth band to
obtain fusion images of RGB + ExG and RGB + DSM.

Among them, high-resolution, multi-view dense images were obtained from UAV and
then Pix4Dmapper (Pix4D Company, Switzerland) software was used to adjust and match
the images to generate dense point clouds; then, the triangulated irregular network (TIN)
was constructed and, finally, a digital surface model (DSM) was obtained.

Excess green (ExG) can better distinguish vegetation and soil and it is often used for
crop remote sensing monitoring [30]. To increase the extraction accuracy of wheat lodging
information, the ENVI5.3 software was used to extract the gray values of the three bands
of R, G and B from the RGB image obtained by UAV aerial photography and then the ExG
index was calculated according to Equation (1).

ExG =
2R−G− B
R + G + B

(1)

where G, B and R are the visible light green band, blue band and red band respectively.

2.2.3. Image Augmentation

To obtain more training samples, data augmentation was performed on training
sample images and label images. A lossless transformation method was used, i.e., random
horizontal or vertical flipping, random rotation at 90◦ and random x–y coordinate axis
transposition. Therefore, data sets based on RGB and fusion images (four channels based
on RGB + ExG and four-channel images based on RGB + DSM) were constructed, each
including 1500 images. Different lodging detection models were trained based on three
different data sets, training sets, validation sets and test sets, which included 1200, 150 and
150 images, respectively.

2.3. Model Construction and Evaluation Indicators
2.3.1. U-Net Model

U-Net is currently a popular deep learning model for semantic segmentation, which
consists of a convolutional coding unit and a convolutional decoding unit [31]. Generally,
the coding unit is mainly used to capture the context information in the image and the
decoding unit is used to accurately locate the part that needs to be divided. Although
the U-Net performance has been improved by improving the fully convolutional network
(FCN), the standard U-Net neural network still needs to be further improved. To improve
the detection accuracy, we proposed a wheat lodging recognition model combining Mo-
bileNetV1 with depthwise separable convolution and U-Net to form a wheat lodging
segmentation model.

2.3.2. Mobile U-Net Model

The Mobile U-Net model was composed of an encoder and a decoder. The ordinary
convolution was replaced with a depthwise separable convolution to reduce the number of
parameters and calculations of the entire network [32]. Among them, the pooling layer (Max
pooling) and the convolutional layer were combined to construct a down-sampling unit,
while the up-sampling layer and the convolutional layer were combined to construct an
up-sampling unit. At the same time, depthwise separable convolution was used for feature
extraction in the down-sampling unit, which enhances the feature extraction capability of
the network model and reduces the computational cost. The addition of the convolutional
layer could make up for the shortcomings of the Max Pooling layer and up-sampling layer
that are not trainable, so it could reduce the loss of feature information during the sampling
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process and effectively improve the segmentation accuracy of the small boundary of the
lodging edge of wheat, as shown in Figure 3. 

2 

 

 

Figure 3. The structure of the Mobile U-Net model. (3/4 means that the parameter is set to 3 for RGB as input data and the
parameter is set to 4 for four-channel image as input).

The input of the model was an image with a resolution of 256 × 256 pixels (3-channel
image or 4-channel image) and the output was a single-channel segmented image. In
the convolutional coding unit, a total of 4 up-samplings was performed and the first up-
sampling unit included 2 repeated depthwise separable convolution modules and a Max
pooling layer. The second, third and fourth up-sampling units had the same structure,
including a depthwise separable convolution module and a Max pooling layer. After each
pooling operation, the feature map size decreased and the number of channels doubled.
The decoder performed down-sampling through transposed convolution and gradually
restored image information. Corresponding to the encoder part, the decoder performed a
total of 4 down-samplings. The first down-sampling unit included a depthwise separable
convolution module and a transposed convolution module. The second, third and fourth
down-sampling units also had the same structure, including two repeated depthwise
separable convolution modules and one transposed convolution module, respectively.
Each up-sampling expanded the feature map size and reduced the number of channels by
half. Finally, a standard convolution module with a size of 1 × 1 was used to reduce the
dimension and a normalized exponential function (SoftMax) was used to convert the value
into a probability. The specific parameters are shown in the Table 1.

2.3.3. Wheat Lodging Segmentation Model

The technical process of this research study, shown in Figure 4, mainly included UAV
digital image collection, data set construction, model training and verification, testing,
model evaluation and optimization. Firstly, the DSM and ExG derived from the RGB image
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obtained by UAV were used to construct the RGB, RGB + ExG and RGB + DSM data sets.
Secondly, the Mobile U-Net model proposed in this study was trained, verified and tested
using different data sets. Furthermore, we compare the performance of Mobile U-Net
with typical deep learning frameworks, such as FCN and U-Net. Finally, three data sets in
different periods were used to predict the lodging area.

Table 1. Parameters of the Mobile U-Net model.

Layer Type Size Filter Stride

Input 256 × 256 × 3/4
Depthwise separable convolution 256 × 256 × 64 3 × 3, 1 × 1 2

Max pooling 128 × 128 × 64 2 × 2 1
Depthwise separable convolution 128 × 128 × 128 3 × 3, 1 × 1 2

Max pooling 64 × 64 × 128 2 × 2 1
Depthwise separable convolution 64 × 64 × 256 3 × 3, 1 × 1 2

Max pooling 32 × 32 × 256 2 × 2 1
Depthwise separable convolution 32 × 32 × 512 3 × 3, 1 × 1 2

Max pooling 16 × 16 × 512 2 × 2 1
Depthwise separable convolution 16 × 16 × 1024 3 × 3, 1 × 1 2

Transposed Convolution 32 × 32 × 512 3 × 3 1
Skip connection 32 × 32 × 1024 1

Depthwise separable convolution 32 × 32 × 512 3 × 3, 1 × 1 2
Transposed Convolution 64 × 64 × 256 3 × 3 1

Skip connection 64 × 64 × 512 1
Depthwise separable convolution 64 × 64 × 256 3 × 3, 1 × 1 2

Transposed Convolution 128 × 128 × 128 3 × 3 1
Skip connection 128 × 128 × 256 1

Depthwise separable convolution 128 × 128 × 128 3 × 3, 1 × 1 2
Transposed Convolution 256 × 256 × 64 3 × 3 1

Skip connection 256 × 256 × 128 1
Depthwise separable convolution 256 × 256 × 64 3 × 3, 1 × 1 2

Standard convolution 256 × 256 × 3 1 × 1 1

 

2 

 

 
Figure 4. The technical flow chart of this study.

2.3.4. Evaluation Indicators

There were four indicators used to evaluate the performance of the model, including
precision, recall, F1 − score and mean Intersection over Union (mIoU). Among them,
precision shows the proportion of samples that are predicted to be lodging wheat in the
segmented image that are actually lodging wheat; recall shows to the proportion of samples
that are predicted to be lodging wheat among all the samples that are actually lodging
wheat; F1− score is the harmonic mean of accuracy and recall, reflecting the comprehensive
performance of segmentation of lodging wheat in the wheat field; mIoU is the ratio of
overlap between the segmentation result of wheat lodging and ground truth. The values of
the above evaluation indicators are all between 0 and 1 and the larger the value, the better
the segmentation effect. In this study, precision, recall, F1− score and mIoU are used as
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the evaluation indexes for evaluating the segmentation accuracy of lodging wheat and the
calculation formulas are as follows:

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1− score = 2× precision× recall
precision + recall

(4)

mIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(5)

where TP refers to the correct segmentation of the wheat lodging area, which is the wheat
lodging area; TN refers to the correct segmentation of the non-lodging area of wheat, which
is a non-lodging area of wheat; FP refers to the correct segmentation of the wheat lodging
area, which is a non-lodging area of wheat; FN refers to the correct segmentation of the
non-lodging area of wheat, which is the wheat lodging area; k is the number of categories.

3. Results
3.1. DSM and ExG Images Derived from RGB

Pix4Dmapper was used to generate a high-precision DSM (digital surface model)
and ExG (excess green) in the wheat research area with high-resolution digital images
obtained from UAV in different growth periods, as shown in Figure 5. Among them, the
first column represents the flowering period, the second column represents the filling
period and the third column represents the maturity period, as shown in Figure 1a–c. The
first row represents the RGB image of the study area, the second row represents the DSM
extracted from the image of the study area and the third row represents the ExG extracted
from the image of the study area.

It can be seen, from Figure 5 (a2, DSM of flowering period; b2, DSM of filling period;
c2, DSM of maturity period), that the elevations of the digital surface models in different
periods were still significantly different. Especially, in the same period, the elevation of
the wheat field was also different, because the digital surface model covered the elevation
of other surface information except the ground. In this study, DSM showed the ground
elevation model of normal wheat and lodging wheat, which could most truly express the
growth status of crops on the ground of wheat fields. Therefore, DSM was beneficial to
distinguish between normal wheat and lodging wheat in the field.

In addition, to clarify the contribution of the ExG index in identifying lodging wheat,
the digital numbers (DNs) of the R, G and B channels were extracted from the RGB images
of the study area acquired in three different periods; then, ExG was calculated and the
visualization of ExG is shown in Figure 5 (a3, ExG of flowering period; b3, ExG of filling
period; c3, ExG of maturity period). It can be seen, from Figure 5, that ExG was different in
different periods.

Figure 6a–d shows the specific values of the digital number of R, digital number of
G, digital number of B and ExG of lodging and non-lodging wheat in different periods
extracted from the set 30 regions of interest (ROI). It can be seen, from Figure 6a–d, that the
distribution of R, G, B and ExG was different in the flowering, filling and maturity periods.
Especially, Figure 6d shows that the ExG of non-lodging wheat was significantly lower
than that of lodging wheat. The mean values of ExG were 0.193–0.307, 0.009–0.157 and
0.027–0.049 for non-lodging and 0.238–0.319, 0.053–0.227 and 0.032–0.07 for lodging at the
flowering, filling and maturity stage, respectively. Among them, the average ExG values of
lodging wheat fields were 0.281, 0.116 and 0.044 in the three periods, which were 10%, 39%
and 12% higher than those of normal wheat fields. It can be seen that ExG had a positive
effect on the identification of wheat lodging.
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3.2. Model Parameter Setting and Training

The experimental environment of this research project was the Windows10 Profes-
sional 64-bit operating system and the deep learning framework was Keras 2.2.4, which
was used to train the network model. Model training and verification environment were
as follows: Intel(R) Core (TM) i7-8700 @3.20 GHz and 16 G NVIDIA GeForce RTX 2080.
The images were stitched with Pix4Dmapper and were cropped with Python codes. The
language of model development used was python.

 

3 

 
Figure 5. RGB, DSM and ExG of wheat fields in different growth periods: (a) flowering, (b) filling and (c) maturity.
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4 

 
 Figure 6. Comparison of the ExG values of lodging and non-lodging in different periods: (a) digital
number of R; (b) digital number of G; (c) digital number of B; (d) value of ExG.

The model was trained using the Adam algorithm, the learning rate was 0.0001, the
Batch size was 4 and the training iterations were 200 Epochs. After each Epoch training,
not only the loss and accuracy were obtained by calculation, but the weights were also
updated and saved. After the model was trained for 200 Epochs, the model with the
highest accuracy was selected as the test model. Figure 7 shows the loss and accuracy
curves of the training set and the validation set (RGB, RGB + ExG and RGB + DSM) of
the Mobile U-Net model. It can be seen, from Figure 7, that that the error between the
training set and the validation set decreased with the increase in the number of iterations
and the error dropped below 0.1 when epoch = 65, then finally stabilized. On the one
hand, this shows that the model can control the deviation. However, the close error of
the training set and the verification set after stabilization indicated that the variance of
the model was relatively low. In addition, the accuracy of the network increased as the
number of iterations increased, until it stabilized. Therefore, when the training converged,
the model with the highest accuracy was selected as the test model.

 

4 

 
 

Figure 7. Loss and accuracy curves of the training set and validation set: (a) loss curve; (b) accuracy curve of training set
and verification set. Train indicates training set; Val indicates validation set.
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3.3. Results of Wheat Lodging Recognition with Different Data Sets

Table 2 showed the test results of data sets for different growth periods based on the
Mobile U-Net model. Among them, the F1-score of the training set was 74.31–94.87% and
the mIoU was 70.21–91.31%. The F1-score of the test set was 70.45–96.82% and the mIoU
was 62.11–87.99%. Therefore, the Mobile U-Net model performed well in the extraction of
wheat lodging. In particular, the F1-score of wheat lodging segmentation was 70.45–85.42%
for RGB, 78.49–90.37% for RGB + ExG and 80.8–96.82% for RGB + DSM. The corresponding
mIoU were 62.11–74.68%, 69.58–83.45% and 70.39–87.99%.

Table 2. Segmentation results using different data of three different periods.

Dataset
F1-Score (%) mIoU (%) F1-Score (%) mIoU (%)

Training Set Test Set

RGB
Flowering 74.31 70.21 70.45 62.11

Filling 88.02 77.67 85.42 74.68
Maturity 83.46 72.89 79.65 70.64

RGB + ExG
Flowering 81.32 76.53 78.49 69.58

Filling 94.87 87.04 90.37 83.45
Maturity 88.36 83.87 81.58 72.94

RGB + DSM
Flowering 89.69 85.94 80.8 70.39

Filling 97.59 91.31 96.82 87.99
Maturity 90.62 84.55 89.36 80.73

Figure 8 shows the lodging segmentation results of three different data sets in different
periods, including RGB, RGB + ExG and RGB + DSM. It could be seen from Figure 8a
that the lodging degree of wheat in the three different periods was quite different and the
canopy structure was also different. Figure 8b represents the ground truth of wheat lodging.
Figure 8c–e shows the results of wheat lodging recognition. Among them, the lodging
recognition error rate with the RGB image was relatively high. There were many missed
recognitions in lodging recognition using RGB + ExG. The result of lodging recognition
using RGB + DSM was close to ground truth.
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4. Discussions
4.1. Compare the Identifying Results of Wheat Lodging Using Different Fusion Images

The visible light vegetation index could quantify the growth of vegetation under
certain conditions, because it could reflect the difference between the reflection of vegetation
under visible light and the soil background [33]. Some studies have used the vegetation
index to successfully extract crop lodging information. For example, Wu et al. used NDVI
to extract the lodging of rice [34]. Zhao et al. used a combination of three vegetation indices,
including super green (ExG), super red (ExR) and the visible band difference vegetation
index (VDVI), to successfully extract the lodging area of rice [28]. They only carried out the
lodging extraction study based on the spectral characteristics of the vegetation, but did not
carry out the comparison with the image fusion. In particular, the identification of lodging
and non-lodging based only on the spectral characteristics of the wheat canopy could
easily lead to misidentification and low recognition accuracy, because it was inevitable that
the same objects had different spectra and the same spectrum reflected different objects.
Therefore, it was necessary to study the different characteristics of the canopy in order to
improve the accuracy of lodging detection.

In this study, three wheat field data sets of different growth periods were constructed,
including RGB, RGB + ExG and RGB + DSM. Table 3 shows the comparison of the lodging
recognition results based on data sets in different periods. Compared with RGB, F1-score
and mIoU based on RGB + DSM increased by 12.8% and 11.8% in the flowering stage,
increased by 11.8% and 15.1% in the filling stage and increased by 10.9% and 12.5% in the
maturity period. In the corresponding period, F1-score and mIoU were 2.9% and 1.2%,
6.7% and 5.2%, and 8.7% and 9.6% higher than that of RGB + ExG, respectively. It is worth
mentioning that there were significant differences in the elevations displayed in the DSM
of the study area before and after the lodging of the wheat. Therefore, DSM fully expressed
the difference in elevation between ground features in different periods, which was suitable
for distinguishing lodging wheat from normal wheat.

Table 3. Comparison of lodging recognition results of different models.

Methods Data F1-Score mIoU Time-CPU
(s/Image)

Parameter
(Million)

FCN
RGB 59.45 56.87 0.53 17.08

RGB + ExG 61.90 53.72 0.70 17.08
RGB + DSM 67.33 55.89 0.73 17.08

U-Net
RGB 66.17 60.51 0.60 30.95

RGB + ExG 69.06 59.78 0.80 30.95
RGB + DSM 75.36 64.95 0.80 30.95

Mobile
U-Net

RGB 78.51 69.14 0.33 9.49
RGB + ExG 83.48 75.32 0.53 9.49
RGB + DSM 88.99 80.7 0.53 9.49

4.2. Compare the Identifying Results of Wheat Lodging Based on Different Methods

To further verify the performance of our proposed method, the classic segmenta-
tion method U-Net model and FCN model under the deep learning framework were
selected and compared with the model proposed in this paper on three identical test sets
(150 images). The hardware environment for model testing was Intel(R) Core (TM) i7-
1065G7 @1.30 GHz, 16 G. The results are shown in Table 3. It can be seen, from Table 3,
that, compared with FCN and U-Net, the F1-Score of Mobile U-Net increased by 24.3% and
15.7% and mIoU increased by 17.7% and 12.5% for the RGB; 25.9% and 17.3% of F1-Score,
28.7% and 20.6% of mIoU for the RGB + ExG; 24.3% and 15.3% of F1-Score, 30.7% and 19.5%
of mIoU for the RGB + DSM. Therefore, regardless of RGB, or the fused image RGB + ExG
and RGB + DSM, the Mobile U-Net proposed in this study was superior to FCN and U-Net
in wheat lodging recognition. In particular, F1-Score and mIoU based on Mobile U-Net
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using RGB + DSM was 88.99%, 80.7%, 11.8% and 14.3% higher than that of RGB and 6.2%
and 6.7% higher than that of RGB + ExG.

Table 3 shows the comparison results of the average time for different models to
process each image. After the model was tested using the test sets, the average time for
Mobile U-Net to process each four-channel image with a size of 256 × 256 was 0.53 s
using CPU (Intel(R) Core (TM) i7-1065G7, @1.30 GHz, 16 G). Both U-Net and FCN took
longer to process the same types of images than the Mobile U-Net model. Regarding
processing time per image, Mobile U-Net was 37.5% and 44.4% faster than U-Net and
FCN for RGB, 23.8% and 33.3% faster for RGB + ExG, and 27.3% and 33.3% faster for
RGB + DSM. In addition, regarding the parameters of the model, FCN was 17.08 million,
U-Net was 30.95 million and Mobile U-Net was only 9.49 million, which was the model
with the fewest parameters among the three models. Therefore, the model proposed in
this study ensured that the accuracy was not reduced and improved the speed of image
segmentation, aiming to achieve the goal of early warning of wheat lodging, reducing the
impact of lodging, increasing production and income and benefiting farmers.

In fact, some studies have shown that semantic segmentation methods based on deep
learning have strong advantages in lodging recognition. Yang [26] et al. used FCN (full
neural network) to extract rice lodging based on RGB + ExG fusion information. Zhao et al.
used UNet to extract lodging information [28]. Although the above-mentioned deep
learning methods could effectively extract lodging features, too many parameters resulted
in a low operating speed of the model. The possible reason is that the structure of the model
they adopted was more complicated. For example, the standard U-Net neural network
consists of 19 convolutional layers, the corresponding pooling layers and up-sampling
layers. Therefore, it was necessary to improve the model, aiming to reduce the amount of
calculation and improve the recognition effect.

To show the recognition of wheat lodging based on different models, only the recogni-
tion results using the RGB + DSM were provided here, as shown in Figure 9. It can be seen,
from Figure 9, that there were many wrong recognitions based on the FCN. The lodging
detection based on U-net was close to the result of our method and there were still some
areas missing recognition. According to the analysis in Table 3, compared with FCN and
U-net, the model we proposed not only maintained the premise of the same accuracy, but
also improved the processing speed and reduced the parameters of the model, providing a
technical basis for portable mobile devices that detect lodging in the field.
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4.3. Visualization of Feature Activation in Lodging Wheat

To verify the function of the depthwise separable convolution module, gradient-
weighted class activation mapping (Grad-CAM) [35], which mainly uses the gradient of the
target class and propagates to the final convolutional layer to generate a rough positioning
map, was used to visualize the features,. The results of visualization clearly show how
the network model selects important areas of the prediction class, so as to determine the
impact of the depthwise separable convolution module.

As shown in Figure 10, the red area in the feature map indicates the high-weight
area of the neural network to determine the lodging wheat and the blue area indicates
the low-weight area of the network to determine the lodging wheat. The redder the color,
the greater the influence of this area on the recognition result of the lodging wheat. It
can be seen, from Figure 10b,d, that U-Net focused on the lodging area, non-lodging area
and background. Figure 10c,e shows that the Mobile U-Net model paid attention to the
more accurate lodging areas. Therefore, our proposed model with a depthwise separable
convolution module could better learn the characteristic information of lodging wheat and
improve the segmentation accuracy of lodging wheat.

 

5 

 
Figure 10. Visualization of feature activations using Grad-CAM.

5. Conclusions

In this study, a wheat lodging segmentation model based on a lightweight U-Net
neural network with depthwise separable convolution, which was used to realize wheat
lodging recognition and accurate segmentation from UAV images under field conditions, is
proposed. The proposed model was trained, verified and tested with self-built wheat data
sets (RGB, RGB + ExG, RGB + DSM) of different growth periods, including flowering, filling
and maturity. The experiments showed that the extraction of wheat lodging effect based
on the fusion image of DSM and RGB was the best; the F1-Score reached 88.99% and the
mIoU reached 80.7%, indicating that the fusion image was more suitable for wheat lodging
extraction. Furthermore, the parameters of the Mobile U-Net model were 9.49 million
and the overall accuracy of Mobile U-Net was improved by 24.3% and 15.3% compared
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with FCN and U-Net, which indicate that the proposed model was suitable for the task of
quickly and accurately detecting wheat lodging in the field.
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