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Abstract: The study of reliability, availability and control of industrial manufacturing machines
is a constant challenge in the industrial environment. This paper compares the results offered by
several maintenance strategies for multi-stage industrial manufacturing machines by analysing a
real case of a multi-stage thermoforming machine. Specifically, two strategies based on preventive
maintenance, Preventive Programming Maintenance (PPM) and Improve Preventive Programming
Maintenance (IPPM) are compared with two new strategies based on predictive maintenance, namely
Algorithm Life Optimisation Programming (ALOP) and Digital Behaviour Twin (DBT). The condition
of machine components can be assessed with the latter two proposals (ALOP and DBT) using sensors
and algorithms, thus providing a warning value for early decision-making before unexpected faults
occur. The study shows that the ALOP and DBT models detect unexpected failures early enough,
while the PPM and IPPM strategies warn of scheduled component replacement at the end of their
life cycle. The ALOP and DBT strategies algorithms can also be valid for managing the maintenance
of other multi-stage industrial manufacturing machines. The authors consider that the combination
of preventive and predictive maintenance strategies may be an ideal approach because operating
conditions affect the mechanical, electrical, electronic and pneumatic components of multi-stage
industrial manufacturing machines differently.

Keywords: maintenance; sensors; multi-stage machine; maintenance algorithm; thermoforming

1. Introduction

The industrial production environment is becoming increasingly competitive, reliable
and optimised. Industrial environments comprise several coordinated production lines
and supplementary services that work towards achieving their production objectives.

Production processes are usually made up of several operation steps. Depending
on the design of the production system, a common solution proposes using the same
single-stage machines for each operation step. These days, there is another increasingly
popular alternative based on multi-stage machines, in which the same machine carries out
all the production phases.

From a maintenance viewpoint, in case of using single stage machines for different
operation steps, any failure in one of the machines in a phase does not necessarily imply
a production stoppage, although it may mean a temporary loss of the line’s production
capacity. However, in industrial production systems based on multi-stage machines, a
multi-stage machine is a machine that performs different consecutive operations within a
production process. In this case, a failure in any machine component means a complete
stoppage of the production line. As a result, the study of component reliability and
availability is critical in this type of machine.

Multi-stage machines are used in many industrial processes such as ultrasonic cleaning
machines, terrine thermoforming machines, transfer solutions in packaging, fruit sorters,
control solutions at logistic warehouse inputs and outputs.
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Maintenance and availability monitoring strategies have evolved with time and
changes in machine manufacturing technology. Preventive maintenance strategies are
currently known to be the most popular [1]. In industrial machines, besides maintenance
strategies based on predictive maintenance [2,3], statistical studies have also been carried
out for prescriptive maintenance [3], conceptualisation based on Cyber-Physical Systems,
artificial intelligence, Big Data [4] or even Digital Twin (DT) modelling [5].

1.1. Preventive Programming Maintenance (PPM)

This is the most popular maintenance strategy in the industrial environment.
Taghipour, S. [6] studied this strategy by monitoring the degradation of components
in production lines, using an exponential model to obtain the best maintenance strategy.
Duffuaa, S. [7], however, related the study of PPM to monitoring and process decisions on
a single-stage machine.

The study of the reliability of multi-stage machines provides interesting information
for decision-making and PPM strategies. This strategy has already been used in studies by
Panagiotis, H. [8] and Ahmadi, A. [9], which showed a model of machine reliability moni-
toring in which decisions on preventive or corrective maintenance were made based on
observed reliability, although they did not consider the cost of maintenance. Zhen Hu [10]
uses the health index to assess the remaining component lifetime on manufacturing lines.

David, J. [11] suggested PPM modelling based on knowledge of all the times involved
in the repair and commissioning of the machine. Each component has its own Mean Time
To Repair (MTTR) depending on its availability, installation difficulty and configuration
(see Equation (1)). This analysis may reflect critical values that may affect the maintenance
strategy for each component.

Liberopoulos, G. [12] analysed the reliability and availability of a process based on
the reliability and availability of each component susceptible to failure or wear and tear.

1.2. Improvement Preventive Programming Maintenance (IPPM)

This is based on the PPM strategy. This maintenance strategy minimises component
replacement times and increases component safety stock, resulting in a minimum MTTR
value and increasing component availability. Gharbia, A. [13] analysed the relationship
between stock cost and scheduled preventive maintenance time. This maintenance strategy
is widely used on intensively operated multi-stage machines. A shutdown due to an
unexpected failure entails high opportunity costs. IPPM is used for all components or for
components with a high replenishment time.

1.3. Algorithm Life Optimisation Programming (ALOP)

This is a proposed maintenance strategy that aims to improve the maintenance of
the machines by making decisions based on analysing sensor signals and a predictive
algorithm of the state of the most relevant components.

Knowledge of the wear and tear of components is a difficult task to model. Studies by
A Molina and G Weichhart used information from specific sensors at strategic locations on
machines or systems, which provided information related to production status, such as
Desing S3-RF (sustainable, smart, sensing, reference framework) [14,15]. Decisions were
made by computing the data obtained. As a complement, Molina, A. [16] developed the
Sensing, Smart and Sustainable studies, where he introduced the environmental factor in
the monitoring and managing of Cyber-Physical Systems (CPS).

Satish T S Bukkapatnam suggested the use of specific sensors for anomaly–fault detec-
tion in processes [17]. P Ponce proposed studies using sensors and artificial intelligence [18]
for the agri-food industry. Ponce, P., Miranda, J. and Molina, A. [19] proposed using sen-
sors, the interrelation of their measurements with the machine components and a data
computation system as a strategy to learn about the real state of the machine components.
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1.4. Digital Behaviour Twin (DBT)

Introducing Industry 4.0 in production processes paves the way for Smart Manufac-
turing [20,21] in the industry. In manufacturing multi-stage machines, DBT allows the
study of new strategies based on collecting and processing data and defining standard
behaviour patterns, which are then compared with real behaviours. This strategy provides
essential information for decision-making based on the analysis of current behaviour and
comparison of sensor readings.

Using smart devices, cloud computing [22], the study of Machine to Machine (M2M)
strategies [23], while maintaining a high level of security and data quality based on in-
ternational standards [24,25] is indispensable to achieve the full potential of Industry 4.0.
Alsharif, M. and Rawat, D.B. [26] propose cloud-base service architecture form managing
machine learning models that best fit different Internet of Things (IoT) device operational
configurations for security. The necessary traceability in the value chain is possible with
the application of the so-called Industry 4.0 [27–29].

Moreover, the conception of Cyber-Physical Systems (CPS) [30–32], Mixed-Criticality
Systems (MCS) [33] or Industrial Cyber-Physical Systems (ICPS) [34] have prompted a
change in the definition of systems, their monitoring and study to obtain the best infor-
mation and interaction in real-time between a physical system and the monitoring, data
computation, communication and interrelation with other systems [35]. K Meng’s paper,
called Smart Recovery Decision-Making (SRDM) [36], uses data computation for end-of-life
prediction of products.

Decision-making based on accumulated knowledge by the design and assessment
of behavioural models is possible thanks to Behavioural Design Encapsulations defined
by Stary, C. [37]. They are based on the reconfiguration of patterns with the accumulated
knowledge of experience.

The emergence of the DT concept has made it possible to know and digitally simulate
the behaviour of the physical model, and therefore improve control over the reliability
and availability of equipment, as JdA Bertazzi [38] points out. However, for its applica-
tion in multi-stage machines, a study and precise modeling of the physical behavior is
required, in addition to subsequent adjustments and, finally, the verification that the model
responds in the same way as the real model to external changes, boundary conditions or
production [39–42].

Some studies define Evolutionary Digital Twin (EDT) as a parallel and complementary
digital approach to DT and the real model [43]. Thus, knowledge of reality is also used as a
source of learning for the system. This study allows the response of the model to be more
flexible and adaptive to changes through supervised learning.

In a study by Wright, L. and Davison, S. [44], a DT is defined as an executable virtual
model of a physical part or system. The digital model must then include the equations of
the physical system and sensors that provide feedback on the real behaviour. Therefore, a
DT can report on the correct or incorrect performance, decision-making or even prediction
of the machine’s lifetime. The study also indicates that to achieve a behavioural model with
DT, it must have sensors, be accurate in its calculations and be quick to suggest decisions.

Studies by Chakraborty, S. and Adhikari, S. [45] propose the modelling of a DT through
the parallel study of response prediction and reality learning. A DT is used to simulate
the behaviour of machines [46]. The study by Ritou, M. [47] defines the concept of “digital
shadow” as a model that extracts information from the physical system, computes the
values and proposes decisions on the state of the machines.

Few references dedicated to maintenance management in industrial manufacturing
multi-stage machines have been found during the search for references.

1.5. Methodology of the Case Studied

This paper, however, studies a real case of a multi-stage thermoforming machine with
a capacity of six terrines per cycle and a cycle time of 4 s. Four maintenance strategies
were studied for one year: two usual preventive maintenance strategies (PPM and IPPM)
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and two predictive maintenance proposals (ALOP and DBT), adapted to Multi-Stage
Machines technology.

The work carried out in this research is based on the use of four different maintenance
strategies whose operation was observed for one year. The thermoforming multi-stage
machine was working continuously 8 h a day, Monday to Friday, for a year. To carry out
the work, the following steps were followed in order:

1. Conceptualisation of the machine. In this section, the most important components,
whose reliability, efficiency and availability were to be studied, were selected;

2. Analysis of the causes and consequences of a failure in the selected components. (See
Table 1);

3. Proposition of individual maintenance times per component, as well as equations for
calculating reliability, efficiency and availability;

4. Proposition and location of appropriate sensors whose values are associated with the
proper functioning of the components;

5. Proposition and development of algorithms for ALOP and DBT strategies;
6. Location of a master linear axis for the case of DBT, by means of which the study is

related to the position of the encoder and subsequently converted to units of time;
7. Configuration of the Programmable Logic Controller (PLC) datalogger function and

record all the relevant values in each strategy;
8. Recording of the failures and errors detected in ALOP and DBT;
9. Evaluation of the results obtained.

Table 1. Basic decomposition of components and faults in a multi-stage thermoforming machine.

Item Component Type Fault Source Consequence of
Failure

1 Master power switch Power Machine/Static Ambient condition, Power supplier event Stop

2 PLC Control/Static Ambient condition, Power supplier event Stop

3 HMI Control/Static Ambient condition, Power supplier event, Crash Stop

4 Chromatic sensor Sensor/Static Ambient condition, Power supplier event, Crash Malfunction

5 Plug-in relay Control device/Static Ambient condition, Power supplier event Stop

6 Command and signalling Control Ambient condition, Power supplier event, Crash Stop

7 Safety limit switch Security/Static Ambient condition, Power supplier event Stop

8 Safety relay Security/Static Ambient condition, Power supplier event Stop

9 Safety button Security/Static Ambient condition, Power supplier event, Crash Stop

10 Temperature controller Control/Static Ambient condition, Power supplier event Stop

11 Solid state relay Actuator/Static Ambient condition, Power supplier event Malfunction

12 Thermal resistance Actuator/Dynamic Global fatigue Malfunction

13 Thermocouple sensor Control/Dynamic Global fatigue Malfunction

14 Tape drive Actuator/Static Ambient condition, Power supplier event Stop

15 Tape Motor Motor/Dynamic Global fatigue Malfunction

16 Bronze cap Mechanism/Dynamic Global fatigue Malfunction

17 Linear axis Mechanism/Dynamic Global fatigue Malfunction

18 Lineal bearing Mechanism/Dynamic Global fatigue Malfunction

19 Pneumatic valve Actuator/Dynamic Pressure failure, Failure valve Malfunction

20 Pneumatic cylinder Actuator/Dynamic Pressure failure, Cylinder failure Malfunction

21 Pressure sensor Control/Static Ambient condition, Power supplier event Stop

22 Servo drive peristaltic pump Actuator/Dynamic Ambient condition, Power supplier event Stop

23 Peristaltic pump Actuator/Dynamic Global fatigue Malfunction

24 Terrine cutter Mechanism/Dynamic Global fatigue, Mechanical hit Malfunction

25 Absolute encoder Control/Dynamic Ambient condition, Power supplier event.
Mechanical hit Stop
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The objectives proposed in this study are:

1. Obtain a systematic approach to managing the maintenance of multi-stage machines,
so that it can allow their use not only in the case studied;

2. Evaluate and compare the results that are obtained with the different of mainte-
nance strategies;

3. Propose a maintenance strategy for the detection of unexpected failures that cause
manufacturing without expected quality or production stoppage.

2. Case Studied

Production in small packages, known as single use, is increasingly present in the
industrial environment. Commonly used products such as oil, vinegar, etc., are already
marketed on a large scale by many industries that produce them in large production
batches. Figure 1 shows an image of the multi-stage thermoforming machine studied in
this article.
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Figure 1. A thermoforming multi-stage machine of 6 terrines per cycle.

This multi-stage thermoforming machine consists of:

• A structural, fixed part, usually not subject to wear and tear but must be adequately
protected against corrosion and meet health and food standards;

• Electronic components, power actuators, servo drives, motors, gearboxes, variable
speed drives, electrical and electronic devices, including the HMI operator terminal,
which are usually 4.3, 7 and 10 inch touch screens;

• Mechanical components subject to movement, such as bearings, shafts, belts and cams.
They are generally designed with fatigue-resistant materials but may be damaged by
wear and tear and environmental conditions;

• The peristaltic and pneumatic drive system, with which the filling of the terrines and
the upward and downward movements of sets of cylinders for adhesion, sealing,
glueing and cutting of the terrines are produced, respectively. These systems have
bronze bushings, which often suffer from wear and tear;

• A polymer roll dosing system for the top and bottom of the tray. The movement of
these rollers is carried out as required at any given moment.

Improvements in process monitoring and technology have made this type of machine
controllable by PLC that receive status signals from the field and act on the power actuators
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for the coordinated execution of all movements. The same technology can be used to
manage the availability of the machine or its components.

Table 1 shows a basic decomposition of the components of the machine subject to
failure in this paper. A distinction is made between static or moving elements, the possible
fault source and the consequence of its failure.

Multi-stage thermoforming machines are one of many multi-stage machines in indus-
trial manufacturing processes. These machines comprise several sub-processes ranging
from the management of the polymer film to the container and lid, including the dosage
and final cut. Figure 2 shows the steps of this machine ordered sequentially.
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Figure 2. Sub-process in thermoforming and terrine filling machines.

Production capacity can vary from 6 to 12 terrines in the last step, depending on
whether the machine is designed for manufacturing 3, 6, 9 or up to 12 tubs simultaneously.
Normally, production is carried out with thermoforming moulds of 2, 4, 6 and 12 tubs,
composed of one or two rows according to the design of the multi-stage thermoforming
machine, then in one cycle, up to 12 tubs can be manufactured simultaneously. This affects
the size, the mould of the thermoformer, the number of peristaltic pumps, the rails for the
row passage, the lid’s thermal bonder and the tub cutter’s size. Here, the thermoforming
mould used is for six tubs, and the cycle time is 4 s.

Figure 3 shows the terrine used. It is possible to see the lid and the tub. When the lid
is added by Step six, terrine is obtained.
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Figure 3. Example of terrine obtained in the thermoforming multi-stage machine studied.

Standard operation requires the constant coordination of all sub-processes since a fail-
ure in one of them means production stoppage. There is a master linear axis (see Figure 1)
in the lower part of the machine that runs from the thermal conditioner of the polymer
for the thermoformer container to the cutter for finished tubs, which permits coordinated
movements with cams in synchronised positions to ensure the process is controlled at a
constant speed.
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It can be understood that a critical component failure can lead to a failure of the whole
machine either because it works without the necessary quality or because it cannot continue
with the commissioned work.

The times involved in the study of the failures [11,12], are:

• TTRP: Time to replace a component;
• TTC: Time to configure;
• TTMA: Time to mechanical adjustment;
• TTPR: Time to provisioning;
• MTTR: Mean time to repair;
• MTTF: Mean time to failure;
• MTBF: Mean time between failure;
• TTLR: Line restart time, defined by expert knowledge;
• TLP: Time lost production.

MTTR = TTRP + TTC + TTMA + TTPR (1)

TLP = MTTR + TTLR (2)

MTBF = MTTR + MTTF (3)

with these times, two concepts are used: efficiency (4) and availability (5). Both concepts
will be used as indicators of success in the preventive control of machine failures.

Efficiency = 1− TLP
MTTR + MTTF

(4)

Availability =
MTBF

MTBF + MTTR
(5)

3. Maintenance Strategies for the Multi-Stage Thermoforming Machine

The maintenances assessed in an initial phase on this multi-stage thermoforming
machine have been PPM and IPPM. High levels of availability and efficiency are achieved.
ALOP and DBT strategies have been assessed, and failures were detected before the static
value of MTTF (see Table 2) determined by PPM and IPPM.

3.1. PPM: Preventive Programming Maintenance

This strategy is based on using existing data from the usage of the machine. With
the information gained from the usage of the machine, each component has its own time
values (TTRP, TTC, TTMA, TTPR, MTTR, MTTF, MTBF, TTLP, TLP), and an individual
value for availability and efficiency.

The results of setting the line restart time, TTLR, at 14.400 s and using stable market
values (values obtained from manufacturers and experience) for the times in this machine
are shown in Table 2:

Using the exponential function given by expression 6, the reliability of all the compo-
nents is calculated in a time equal to MTTF. Figure 4 shows the results.

R(t) = e−λt (6)

where λ factor is the inverse value of MTBF [48] if we consider the constant fatigue
of components.
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Table 2. Thermoforming components times in seconds. Efficiency and availability in %.

Component MTTR TTRP TTC TTMA TTPR MTTF TLP Efficiency MTBF Availability

Master power switch 14,400 3600 0 0 10,800 9,999,999 28,800 99.71% 10,014,399 99.86%

PLC 435,600 3600 86,400 0 345,600 9,999,999 450,000 95.69% 10,4435,599 95.99%

HMI 435,600 3600 86,400 0 345,600 9,999,999 450,000 95.69% 10,435,599 95.99%

Chromatic sensor 176,520 3600 120 0 172,800 5,000,000 190,920 96.31% 5,176,520 96.70%

Plug-in relay 14,400 3600 0 0 10,800 5,000,000 28,800 99.43% 5,014,400 99.71%

Command and signalling 14,400 3600 0 0 10,800 5,000,000 28,800 99.43% 5,014,400 99.71%

Safety limit switch 14,400 3600 0 0 10,800 9,999,999 28,800 99.71% 10,014,399 99.86%

Safety relay 14,400 3600 0 0 10,800 9,999,999 28,800 99.71% 10,014,399 99.86%

Safety button 14,400 3600 0 0 10,800 9,999,999 28,800 99.71% 10,014,399 99.86%

Temperature controller 435,600 3600 86,400 0 345,600 9,999,999 450,000 95.69% 10,435,599 95.99%

Solid state relay 176,400 3600 0 0 172,800 5,000,000 190,800 96.31% 5,176,400 96.70%

Thermal resistance 25,500 14,400 0 300 10,800 3,700,800 39,900 98.93% 3,726,300 99.32%

Thermocouple sensor 14,700 3600 0 300 10,800 3,700,800 29,100 99.22% 3,715,500 99.61%

Tape drive 435,600 3600 86,400 0 345,600 9,999,999 450,000 95.69% 10,435,599 95.99%

Tape motor 187,200 14,400 0 0 172,800 5,000,000 201,600 96.11% 5,187,200 96.52%

Bronze cap 288,000 28,800 0 86,400 172,800 7,750,000 302,400 96.24% 8,038,000 96.54%

Linear axis 288,000 28,800 0 86,400 172,800 7,625,000 302,400 96.18% 7,913,000 96.49%

Lineal bearing 288,000 28,800 0 86,400 172,800 7,500,000 302,400 96.12% 7,788,000 96.43%

Pneumatic valve 176,400 3600 0 0 172,800 9,999,999 190,800 98.13% 10,176,399 98.30%

Pneumatic cylinder 176,400 3600 0 0 172,800 9,999,999 190,800 98.13% 10,176,399 98.30%

Pressure sensor 176,700 3600 300 0 172,800 5,000,000 191,100 96.31% 5,176,700 96.70%

Servo drive peristaltic pump 435,600 3600 86,400 0 345,600 9,999,999 450,000 95.69% 10,435,599 95.99%

Peristaltic pump 547,200 14,400 0 14,400 518,400 5,000,000 561,600 89.88% 5,547,200 91.02%

Terrine cutter 288,000 28,800 0 86,400 172,800 9,999,999 302,400 97.06% 10,287,999 97.28%

Absolute encoder 360,000 14,400 86,400 86,400 172,800 5,000,000 374,400 93.01% 5,360,000 93.71%
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3.2. IPPM: Improvement Preventive Programming Maintenance

Table 2 shows the TTPR value for all items. It is a significant value when calculating
the MTTR value (see Equation (2)).

The IPPM strategy is based on the TTPR of components that would considerably
reduce the value of MTTR, and consequently, in the efficiency and availability values.
Table 3 shows the results of substituting the TTPR for a residual search time in own
stock. Then if the component fails and needs to be replaced, the TTPR value affects the
MTTR very little and therefore increases the availability and efficiency of the machine (see
Equations (4) and (5)).

The results obtained reveal very high efficiency and availability values for PPM (see
Table 2) and IPPM. Components with a high TTPR value improve their efficiency and
availability values. Comparison of the results between the two provides a maximum
increase in efficiency in 9.26% and availability by 8.4%. Figure 5 shows a comparison of
these results.

In other components such as 2, 3, 10, 11, 14, 15, 21 and 22 there has also been an
increase in efficiency and availability above 3%.

The results obtained reveal that availability and efficiency improve with the imple-
mentation of the IPPM strategy.

The results show that electronic components such as the PLC, HMI, temperature
controller, solid state relay, pressure sensor, servo drive form peristaltic pump, peristaltic
pump and absolute encoder improve their availability with this strategy, while mechanical
components such as the bronze cap, linear axis, linear bearing, pneumatic valve, pneumatic
cylinder and terrine cutter partially improve their availability. Consideration of market
conditions, transport problems, supply problems or health scares can increase the value
of TTPR. These events do not affect the IPPM strategy because it is based on having
the components in stock. To avoid affecting the PPM strategy, the TTPR value should
be changed by frequently consulting the market for this time in all components. The
availability and efficiency of the machine can be maintained in this case and do not
decrease due to external causes if a failure occurs.
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Table 3. Comparison of efficiency and availability between PPM and IPPM.

Item Component
PPM IPPM Difference IPPM-PPM

Efficiency Availability Efficiency Availability Efficiency Availability

1 Master power switch 99.71% 99.86% 99.82% 99.96% 0.10% 0.10%

2 PLC 95.69% 95.99% 98.96% 99.11% 3.27% 3.12%

3 HMI 95.69% 95.99% 98.96% 99.11% 3.27% 3.12%

4 Chromatic sensor 96.31% 96.70% 99.63% 99.92% 3.32% 3.22%

5 Plug-in relay 99.43% 99.71% 99.63% 99.92% 0.21% 0.21%

6 Command and signalling 99.43% 99.71% 99.63% 99.92% 0.21% 0.21%

7 Safety limit switch 99.71% 99.86% 99.82% 99.96% 0.10% 0.10%

8 Safety relay 99.71% 99.86% 99.82% 99.96% 0.10% 0.10%

9 Safety button 99.71% 99.86% 99.82% 99.96% 0.10% 0.10%

10 Temperature controller 95.69% 95.99% 98.96% 99.11% 3.27% 3.12%

11 Solid state relay 96.31% 96.70% 99.63% 99.92% 3.32% 3.22%

12 Thermal resistance 98.93% 99.32% 99.21% 99.60% 0.28% 0.28%

13 Thermocouple sensor 99.22% 99.61% 99.50% 99.89% 0.28% 0.28%

14 Tape drive 95.69% 95.99% 98.96% 99.11% 3.27% 3.12%

15 Tape Motor 96.11% 96.52% 99.42% 99.71% 3.31% 3.19%

16 Bronze cap 96.24% 96.54% 98.35% 98.55% 2.11% 2.01%

17 Linear axis 96.18% 96.49% 98.32% 98.53% 2.14% 2.04%

18 Linear bearing 96.12% 96.43% 98.29% 98.51% 2.18% 2.07%

19 Pneumatic valve 98.13% 98.30% 99.82% 99.96% 1.69% 1.66%

20 Pneumatic cylinder 98.13% 98.30% 99.82% 99.96% 1.69% 1.66%

21 Pressure sensor 96.31% 96.70% 99.63% 99.92% 3.32% 3.22%

22 Servo drive peristaltic pump 95.69% 95.99% 98.96% 99.11% 3.27% 3.12%

23 Peristaltic pump 89.88% 91.02% 99.14% 99.42% 9.26% 8.40%

24 Terrine cutter 97.06% 97.28% 98.72% 98.87% 1.66% 1.59%

25 Absolute encoder 96.12% 96.43% 98.29% 98.51% 2.18% 2.07%

3.3. ALOP: Algorithm Life Optimisation Programming

The MTTF of each component can be changed with this strategy by analysing the
behaviour of measurements from various sensors. This strategy would enable optimising
the useful life of each component. This strategy is compatible with maintenance decisions,
and conclusions of the previous strategy can be applied by the algorithm.

Figure 6 shows this model, in which the PLC that manages the process is the same
equipment that manages the ALOP algorithm. It consists of sensors in specific parts of the
multi-stage thermoforming machine. The real-time processing of the values measured by
the sensors allows to know the status of the components and calculate the MTTF in real
time. This quality allows a failure to be detected before it occurs. Compared to the PPM and
IPPM strategies that keep the MTTF at a fixed value, this strategy detects failures before
a static time (remember static MTTF in the PPM and IPPM strategies). The possibility of
detecting failures before the fixed MTTF value proposed in PPM or IPPM causes the lower
efficiency and availability values of this strategy compared to the two previous strategies
(see Equations (4) and (5)).
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Figure 6. The setup of ALOP strategy.

Table 4 contains the sensors used in the multi-stage thermoforming machine and the
component group they affect.

All sensors provide an analogue output signal. A datalogger oversees monitoring,
recording and treating the signals in real-time.
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Table 4. Sensors and components used for the ALOP model.

Sensor Description Items Affected

SA1 % humidity inside the control panel 1, 2, 3, 4, 5, 8, 10, 11, 14, 22, 24, 25

SA2 Cª temperature inside control panel 1, 2, 3, 4, 5, 8, 10, 11, 14, 22, 24, 25

SA3 Voltage RMS in IGBT 1, 2, 3, 4, 5, 8, 10, 12, 14, 15, 19, 20, 21, 22, 23, 25

SA4 Pressure sensor for thermoformer tub MODEL DPM2A of PANASONIC 10, 12, 13, 16, 18, 19, 20, 21

SA5 Pressure sensor for peristaltic pumps MODEL DPM2A of PANASONIC 22, 23

SA6 Micro laser measurement, side front MODEL HGC of PANASONIC 14, 15, 16, 17, 18

SA7 Micro laser measurement, side rear MODEL HGC of PANASONIC 14, 15, 16, 17, 18

Mathematical Model of the Algorithm

The adoption of this model is based on the accumulated experience in the usage of
the PPM and IPPM strategies in the multi-stage thermoforming machine. ALOP was im-
plemented when specific components with available lifetimes according to their proposed
MTTF in PPM or IPPM were experiencing unexpected failures. Poor knowledge of the
causes of such failures and the impossibility of solving this problem with PPM or IPPM led
to the creation of ALOP in an attempt to correct the MTTF value according to the reality
measured by sensors reporting to the process control PLC.

This algorithm proposes the calculation of reliability parameters such as MTTF by
using the values of distributed sensors that provide information on physical magnitudes
whose normality values are recorded. The aim is to compare and adjust the times before
failure to then adjust the MTTF value for each component and calculate the component’s
reliability using the exponential model. As a complement to the algorithm, a warning
factor (WF) indicating an unacceptable value of a sensor will be proposed.

The application of this ALOP model focuses on components not kept in stock that cause
machine downtime and whose failure causes a considerable TLP value (see Equation (2)).
Components such as command and signalling (buttons, switches), a master power switch,
plug-in relay and safety components do not apply to this model due to being components of
very low cost and high availability of stock.

Equations (7) and (8) are proposed for the calculation of MMTFi(t). A step-by-step
algorithm will then be proposed to enable decision-making:

MTTFi(t) = [MTBFi,0 − (t− t0)]fc(i) −MTTRi (7)

where MTBFi is the mean time between failures of component “i”. This value is shown
in Table 2, which results from adding the MTTF and MTTR values for each component
proposed in the PPM and IPPM strategies. MTTRi is the mean time to repair a failure of
equipment “i”. fc(i) is a correction factor for component “i” that depends on the measure-
ments of its associated sensors and is calculated every 100 machine cycles (Since the cycle
time is 4 s (see the beginning of Section 2) and therefore 100 cycles correspond to 400 s, it is
considered a reasonable time to take measurements on the sensors) and corresponds to the
following equation:

fc(i) =
n

∏
j=1

σ(t)j,i

σ(t+100)j,i
(8)

where σ(t)i,j is the standard deviation at time “t” of the measurement of sensor “j” whose
evolution can provide information on the reliability and availability status of component
“i”. σ(t+100)j,i is the standard deviation at time “t + 100” of the measurement of sensor “j”,
the evolution of which can provide information on the reliability and availability status of
component “i”.

The risk function described in D M Frangopol’s study [49] is then used for
each component:

fr(t,i) = (1− R(t,i)) Cfi (9)
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where fr(t,i) is the risk in economic terms based on the reliability of component “i” at time
“t” and R(t,i) is the reliability of component “i” at time “t”, which is calculated using the

exponential model R(t,i) = e
−λ

t , where λ coincides with 1
MTBFi−LC

where MTBFi−LC is the
mean time between failures of the previous assessment time of component “i”. Cfi is
considered constant and is the cost in economic terms of the TLP due to a failure to be
repaired in component “i”.

The risk factor fr(t,i) is used to advance sourcing decisions for component “i” even
if the algorithm has not yet suggested it. It is essential to define risk margins for each
component so the value of fr(t,i) must be within the margins set by the user. The lower the
reliability of a component R(t,i), the higher its failure function F(t,i) = 1− R(t,i). Therefore,
the product between F(t,i) and the constant value Cfi will become larger and larger until it
reaches Cfi(R(t,i) = 0). Here, the component fails, and the value of fr(t,i) is maximum (see
Equation (9)). The comparison between fr(t,i) is used as an indicator for the acquisition of
component “i”.

The warning level or technical alarm WF is an inadmissible value for each sensor,
set as a technical warning threshold indicating which components may be affected by the
warning. This warning may lead to a decision to procure the component or replace it if it is
in stock. A Gaussian distribution criterion based on the confidence level of the sample of
values is used for verification. The following equation is used:

WF > SAj ± ci × σj (10)

where ci expresses the confidence level or permissiveness of accepting or not accepting
deviations from the mean measured value of each sensor. Following the Gaussian Normal
distribution criterion, the smallest value of “c” is 0.67 [50], corresponding to a confidence
level of 50% of the measured values. Each sensor can have a different value of ci depending
of the dispersion of its measurements. In this study, ci = 0.67 was used for all “j” sensors,
because it is a restrictive criterion in the Gaussian distribution, so that the algorithm will be
more sensitive to variations that are far from the mean value of the sensor measurement.

Proposed ALOP algorithm:

STEP 1. The time for evaluation and recalculation of values is set as t = 1000 s.
STEP 2. From t = 0, values are taken from the “j” sensors measurements, SAj. every 10 s.
STEP 3. SAj And σj is calculated every 100 s.
STEP 4. At t = 1000 s, fc(i) is calculated for each component “i”.
STEP 5. The values MTBFi,1000 and MTTFi,1000, Ri,1000, Effi,1000, AVi,1000 are calculated.
STEP 6. The value of MTTFi,1000 is compared with MTTRi and subsequently with TTPRi.
STEP 7. The risk factor fr(1000,i) of component “i” is calculated. It is compared to the cost

of component “i”:

IF fr(1000,i) > Component cos ti → Component supply ′′I′′

→ Component supply ′′I′′
(11)

IF fr(1000,i) < Component cos ti → No decisions (12)

STEP 8. If MTTFi,1000 < MTTRi , the notification for acquiring component “i” is initiated.
STEP 9. If there are no warnings in Steps 7 and 8, compliance with the following is verified:

IF WFj < SAj,1000 ± c x σj,1000 → No decisions (13)

IF WFj > SAj,1000 ± c x σj,1000 → Technical warning (14)

STEP 10. At t = 1000 s, MTBF0 values are updated to MTBF1000 since the 1000 s that has
elapsed is to be deducted from the mean time to failure of component “j”.

STEP 11. Start the algorithm again at Step 2.
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This algorithm was adjusted successively over 1 year. In the conclusions, the results
of ALOP will be compared with DBT and the effectiveness of their respective algorithms.

3.4. DBT: Digital Behaviour Twin

This strategy proposes using a real-time model that maps the outputs to actuators
of the process control (PLC). The monitoring of these variables reports the real operating
status of the machine in the order to know which commands are being executed, which
field signals are being measured and their values. This strategy uses the position of
the absolute encoder, which measures the position of the main shaft of this multi-stage
machine. Depending on the position in each cycle, the commands representing the expected
behaviour of the process are activated in a coordinated order.

Figure 7 shows the schematic of the DBT model setup for this strategy. It uses the
same sensors as ALOP (see Table 4). In this strategy, the activations and deactivations
of the actuators are monitored, and the sensor values and the position of the absolute
encoder are compared with a so-called normal behaviour pattern. An essential difference
to the ALOP strategy is the use of a different measurement scale. ALOP assesses the sensor
measurements according to the time algorithm, whereas DBT uses the assessment of the
sensor measurements in terms of the position taken by the absolute encoder (see item 25,
Table 2).
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The DBT strategy proved to be efficient in this paper and can, therefore, be consid-
ered appropriate for developing maintenance strategies for other industrial multi-stage
machines. The position of the main shaft of the machine is known through the encoder.
The decision-making provided by the proposed DBT algorithm is performed on the time
scale by converting the encoder position to time.

In this machine, a work cycle starts at position 0 and ends at position 999 of the
absolute encoder. All sensor measurements are linked to machine actuators. They are then
recorded and stored according to the encoder position. As a result, a behavioural pattern is
obtained with sensor measurement values within the maximum and minimum thresholds
and is considered the standard behavioural reference for the multi-stage thermoforming
machine. During the normal operation of the machine, the real values are compared with
the standard to determine whether the machine is working correctly. The strategy also
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studies the trend of sensor values and whether they show a potential risk to component
lifetime or manufacturing quality.

If the encoder position indicates it and a “z” Actuator (ACZ) is activated, this input
is represented with value one or zero if not activated. The SAi sensors in Table 4 provide
measurements throughout the cycle regardless of activations or non-activations of the ACZ
actuators. All SAi sensors have a nominal, minimum and maximum value. The decision to
assess or replace the component is made based on the analysis of the measurement trend
of its associated SAi sensors and the maximum and minimum values allowed for these
measurements.

Table 5 shows the pattern of behaviour of the machine from encoder position 0 to 999.
The study has evaluated both the state of the actuators and the value of the sensors every
10 incremental positions of the encoder.

Table 5. Normal pattern of behaviour of multi-stage thermoforming machine.

EP (Encoder Position) 0 10 100 200 300 400 450 500 600 700 800 900 970 980 990 999

AC1: Cam bottom dead centre 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1

AC2: Drag start point 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AC3: Blown Time 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

AC4: Start of heater operation 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0

AC5: Dosing point 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

AC6: Top point cams 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

AC7: Home pushers 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

AC8: Start blowing 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

SA1: Humidity % inside Control Panel 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60

SA2: Temperature inside Control Panel 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

SA3: Voltage supplier inside Control Panel 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230

SA4: Pressure sensor Thermoforming step (bar) 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

SA5: Pressure sensor after Peristaltic Pump (bar) 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0

SA6: Laser measure hp heat seal front (Data in mm) 0 0 0 0 5.0 5.0 5.0 5.0 0.0 0 0 0 0 0 0 0

SA7: Laser measure hp heat seal rear (Data in mm) 0 0 0 0 5.0 5.0 5.0 5.0 0.0 0 0 0 0 0 0 0

The relevance of sensor measurements can be recognised by using the encoder position.
Therefore, this strategy allows maintenance to be managed by adjusting the operating

time of components at the end of their useful life or when they may be damaged by external
causes and need to be replaced.

DBT Mathematical Model

Since the normal behaviour pattern and the nominal, maximum and minimum values
of the sensors at all encoder positions are known, Artificial Intelligence procedures are not
necessary. This feature is considered an advantage of this strategy.

Proposed DBT algorithm:

STEP 1. The assessment procedure starts every 10 encoder positions (EP10 to EP1000).
STEP 2. An assessment is carried out every 10 positions:

• Actuator values ACz (binary value zero or one);
• Values of SAi sensors (analogue signals)

STEP 3. Pattern checks:

• The ACz activations reading for the Encoder Position (EP) 10 value should
coincide with the valid pattern (see Table 5) If not→ PLC or encoder fault.

• The SAi sensor reading for the EP10 value should coincide with the valid
standard (see Table 5) If not→ Step 4.



Sensors 2021, 21, 6809 16 of 22

• The ACz activations reading for the SAi value should coincide with the valid
pattern (see Table 6) If not→ Step 4.

STEP 4. Checking deviations of SAi sensors:

If SAi, ∈ (SAi,VN − |dmin|, SAi,VN + |dmax|) → No decisions. (15)

If SAi, /∈ (SAi,VN − |dmin|, SAi,VN + |dmax|) → Assessment of

components associated with SAi sensor → Step 5
(16)

where dmax and dmin are the maximum and minimum deviations allowed in the
measurements of the “i” sensors.

STEP 5. The trend is assessed by analysing the mean and standard deviation of the last
1000 cumulative measurements of the SAi value of sensor “i”, whose value is other
than zero.

SAi(10−1000) =
EP=1000

∑
EP=10

SAi−EP

1000
(17)

Table 6. Comparison of unexpected failures detected for ALOP and DBT.

Item Component ALOP True ALOP False DBT True

1 Master power switch

2 PLC

3 HMI

4 Chromatic sensor 1 1

5 Plug-in relay 1 1 1

6 Command and signalling

7 Safety limit switch

8 Safety relay

9 Safety button

10 Temperature controller 1 1 1

11 Solid state relay 1 1

12 Thermal resistance 1 1 1

13 Thermocouple sensor 1 1 1

14 Tape drive

15 Tape Motor

16 Bronze cap 1

17 Linear axis

18 Linear bearing 1

19 Pneumatic valve

20 Pneumatic cylinder

21 Pressure sensor 1 1

22 Servo drive peristaltic pump

23 Peristaltic pump 1 1

25 Absolute encoder 1
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For this calculation, the SAi values that must have a defined value is different from
than zero according to the behavioural pattern will be considered.

σEP=1000
SAi

=
∑1000

10

(
SAi−EP − SAi (10−1000)

)2

1000− 1
(18)

Based on the above values and assuming a Gaussian probability distribution, it is
evaluated if the value is included in a statistical limit based on the previous measures.

(SAi,VN − |dmin|, SAi,VN + |dmax|) ∈
(

SAi(10−1000) ± 3 × σEP=1000
SAi

)
(19)

If the trend is maintained, the algorithm calculates the time remaining before the SAi
sensor measurement can indicate a failure and/or an undesired shutdown.

The result is studied on the encoder scale. Therefore, the result is obtained in the
number of cycles missing for the measurement of a sensor to go beyond its limits. NCTFSAi
is the number of cycles to failure indicated by the SAi sensor.

STEP 6. Decision taking.

Once the study of the trend of the SAi sensor values in the encoder position has been
completed, the relationship between the encoder position scale and the time is defined. In
this case (see beginning of Section 2):

1 work cycle ≡ 1.000 encoder positions from 0 to 999 = 4 s

MTTFSAi = NCTFSAi × TC (20)

Expression (20) can calculate the number of cycles that can be performed with the
sensor values within their maximum and minimum thresholds.

The DBT strategy and the encoder assessment scale in the maintenance management
of the multi-stage thermoforming machine makes it possible to ascertain:

• Deviations in the measurements of the “j” sensors, whose relationship is established
with the “i” items by Table 4;

• Whether the evolution of any of the “z” actuator activation/deactivation commands
is correctly coordinated and is proceeding according to the normal pattern;

• If any of the measurements of the “j” sensors conform to the encoder position;
• If any of the measurements of the “j” sensors conform to the activation pattern of the

“z” actuators at each encoder position;
• Whether the absolute encoder is providing the shaft position information correctly;
• Whether the process control, PLC, is executing the commands correctly according to

the encoder position.

It also makes it possible to:

• Take early decisions on machine components and prevent unwanted faults by assess-
ing the measurements of each sensor and observing the measurement trend;

• Know the planned production that can be performed without a failure;
• Adjust the dmax and dmin values for each SAi sensor, allowing the establishment of a

confidence margin where the output meets industry quality standards;
• Very precise control of deviations from nominal measurements of the “j” sensors by be-

ing assessed only when indicated by the position of the encoder and the “z” actuators
and the sensor shows a value other than zero (see Step 5 of the DBT algorithm).

4. Results and Conclusions

The ALOP and DBT strategies have been tested on the multi-stage thermoforming
machine working continuously 8 h a day, Monday to Friday, for a year. Table 6 shows the
number of unexpected failures, with information on the warnings of each algorithm and
which have warned of a real failure, and which have not.
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Unexpected failures can be detected with ALOP and DBT algorithms. However, the
ALOP algorithm has shown false warnings. The authors consider this may be due to ALOP
taking measurements from each sensor every 10 s, whereby the nominal measurement value
of the sensor or zero value may be recorded. As a result, the dispersion of measurements
may be excessive. Increasing this dispersion may cause false warnings (see expression 8).
For the DBT model, the trend of the measurements is only assessed on the measured value,
which will always be very close to the nominal value unless the sensor fails.

As a follow-up, the DBT algorithm has detected unexpected failures in mechanical
items 16 and 18. Failures in affected components are detected if the deviations in the SA6
and SA7 sensors are greater than 0.5 mm. The detection of possible failures in mobile me-
chanical equipment requires a maintenance strategy in which the assessment of deviations
is as accurate as possible, with DBT being the best alternative.

Item 25 (encoder) suffered an accidental mechanical shock. From that moment on, its
operation was not correct as the commands executed to the actuators started to be carried
out without the expected coordination. Step 3 of the DBT algorithm warned very quickly,
in less than one cycle. ALOP did not detect it because it uses the SA1, SA2 and SA3 sensors
for that component, and none of the three sensors noticed an anomaly in the measurements.
As a consequence, the machine was stopped by an operator.

As both algorithms detected failures in some components, the MTTF was reduced.
To manage the maintenance of this alteration, the MTTF value of components triggered
component replacement decisions as the mean time to failure was reduced and, therefore,
the component’s lifetime ended. Their Efficiency and Availability values changed (see
Equations (4) and (5)).

Figures 8 and 9 show the comparison of Efficiency and Availability in percentage
values of the components that presented unexpected failures detected by ALOP and DBT,
and their values obtained in PPM and IPPM (see Table 3).

The detection of failures before the MTTF stated in the PPM and IPPM strategies is
the consequence of the decrease in the efficiency and availability values of the affected
components. However, the relevance of the decrease in the values can be compared to the
advantages of detecting a failure before an unexpected stoppage and the opportunity costs
it may entail (proposed for future research).
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The study of maintenance strategies for multi-stage machines can be an avenue for
future research. Through the results obtained, a solution is offered for unexpected failure
detection, which for this type of machine is of great importance. With the results obtained,
these conclusions can be drawn:

• The algorithms proposed for the ALOP and DBT strategies show favorable results, and
their use can be proposed for managing the maintenance of other multi-stage machines;

• Because multi-stage machines require better maintenance control to detect unexpected
failures, ALOP and DBT can be proposed as suitable strategies for this type of machine;

• Unexpected failures can be detected with ALOP and DBT strategies. The authors
consider that both strategies complement PPM or IPPM, and their combined study
could be an avenue for future research;

• The accuracy of the measurement evaluation procedure of the DBT strategy allows
the detection of faults in moving mechanical components with very low deviations
from nominal values;

• Knowledge of a normal operating pattern of machines is a very reliable source of
knowledge for maintenance management. It allows the best assessment of component
lifetime by setting limit deviations (dmax and dmin) (See Step 4 in the DBT algorithm)
on sensor-measured values, based on the quality standards of each industry;

• The detection of unexpected mechanical or electronic components failures may be
due to alterations of environmental operating conditions and non-recommended
voltage values;

• The knowledge of the production that can be performed without failures is only
achieved with the DBT model;

• The IPPM application offers improvements of efficiency and availability and minimises
MTTR, but stock costs can grow;

• Improvements in the efficiency and availability of the electronic components (see
components 2, 3, 4, 10, 11, 14, 15, 21 and 22 in Figure 5) and partially the mechanical
components (see components 10, 16, 17, 18, 19 and 23 in Figure 5) are noticeable. As
with PPM, this strategy also fails to detect unexpected failures;

• Applying PM techniques based on the time scale is interesting if the SAi sensor values
provide constant and similar measurements throughout the process. Otherwise, the
dispersion in values may not correctly reflect reality. On multi-stage thermoforming
machines, it is very beneficial to evaluate the measurements on the scale of the encoder
positions and then decide on the time scale.

The authors consider the following avenues for future research:
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• Comparative study between the decrease in efficiency and availability by applying
ALOP and DBT strategies, and the benefits of detecting unexpected failures compared
with static value of MMTF provided by the PPM and IPPM strategies;

• Study of the application of different maintenance strategies for each kind of component
in the same multi-stage machine;

• Study of the cost of the different maintenance strategies in a multi-stage machine.
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