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Abstract: Several studies have shown the importance of proper chewing and the effect of chewing
speed on the human health in terms of caloric intake and even cognitive functions. This study aims at
designing algorithms for determining the chew count from video recordings of subjects consuming
food items. A novel algorithm based on image and signal processing techniques has been developed
to continuously capture the area of interest from the video clips, determine facial landmarks, generate
the chewing signal, and process the signal with two methods: low pass filter, and discrete wavelet
decomposition. Peak detection was used to determine the chew count from the output of the
processed chewing signal. The system was tested using recordings from 100 subjects at three different
chewing speeds (i.e., slow, normal, and fast) without any constraints on gender, skin color, facial hair,
or ambience. The low pass filter algorithm achieved the best mean absolute percentage error of 6.48%,
7.76%, and 8.38% for the slow, normal, and fast chewing speeds, respectively. The performance was
also evaluated using the Bland-Altman plot, which showed that most of the points lie within the
lines of agreement. However, the algorithm needs improvement for faster chewing, but it surpasses
the performance of the relevant literature. This research provides a reliable and accurate method for
determining the chew count. The proposed methods facilitate the study of the chewing behavior
in natural settings without any cumbersome hardware that may affect the results. This work can
facilitate research into chewing behavior while using smart devices.

Keywords: chewing; smart devices; discrete wavelet decomposition; low pass filter; number of chews

1. Introduction

Chewing (i.e., mastication) is the action of crushing and grounding food by the teeth.
It is an important process that represents the first step of digestion by which the surface
area of the food is increased to allow for easy swallowing and efficient breakdown by
enzymes. Healthy nutrition is affected by several factors related to chewing, including;
food intake, chewing behavior, chewing time, chewing speed and the bolus size.

Monitoring and study of the chewing process is important. Abnormal chewing
behavior could be an indication of some ailments (e.g., anorexia, tooth decay, etc.), which
may reduce the chewing speed or the bolus size. Moreover, people suffering from binge
eating disorder tend to consume large amounts of food in a short time and are subject
to greater risk of high blood pressure and cardiovascular diseases [1]. In addition, some
researchers attempted to establish calibrated model for the caloric intake based on the
number of bites and chew count [2]. Thus, there is a need to establish automated portable
methods for the correct determination of the chew count [3]. Also, eating while using
mobile handheld devices is becoming common with children. This phenomenon has a
great effect on eating habits, which in turn influence the health of individuals (e.g., obesity
and overweight). Recent research suggests that children who use electronics for longer
hours or eat while using those devices have higher Body Mass Index (BMI) [4].

Manually counting chews by trained clinicians and the effort involved in studies
enlisting even small number of subjects is large considering the number of chews per
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minute. The process is tedious, time consuming, and error prone. The objective of this
paper is to automatically determine the chew count from video recordings of subject
munching on food while using camera-equipped electronic devices. This research develops
a method to automatically count the number of chews appearing in the video recording.
The results from this work can facilitate greater research in chewing behavior and its
relationship with human health. The contributions of this paper are as follows:

• We record chewing video data from 100 subjects at three speeds (slow, normal,
and fast).

• We use image processing techniques to isolate and extract the videos of the subject’s
face away from artifacts.

• We extract signals corresponding to the various movements during the chewing action.
• We propose two algorithms to count the number of chews automatically based on

Discrete Wavelet Decomposition and low pass filters.
• We achieve a low mean percentage error in automatically counting the number

of chews.

The remainder of this paper is organized as follows: In Section 2 we provide a
background into the chewing process and its health ramifications, and the related literature
in automatic chew counting. Section 3 describes in detail the data collection process and
the proposed methods for determining the chew count. Performance evaluation metrics
and the corresponding results are reported in Section 4. This is followed by a discussion
in Section 5 of the advantages and limitations of the reported work. The conclusion and
future work are presented in Section 6.

2. Background and Related Work

Chewing is the process of grinding a large piece of food between the teeth to convert
the food to small bolus that could be swallowed [5,6]. Recently, chewing behavior is
considered one factor associated with increased risk of diseases such as obesity and diabetes,
which may result from abnormal chewing behavior or from eating disorders [7]. Changes
to chewing behavior may be attributed to social and economic factors that may affect
food intake and food selection. For example, consuming food while driving or during
the usage of smart devices may lead to fast food intake and a reduction in mealtime [7].
In the next subsection, we discuss the importance of investigating chewing behavior. Such
literature signifies the importance and real-life applications of the automated count of
chews. After that, we analyze the related works and their shortcomings.

2.1. Chewing and Health

The relationship between chewing behavior and various health aspects is continuously
being investigated in the literature. [8] showed that eating slowly might reduce the risks
of overweight and underweight in Japanese preschoolers. This was corroborated by the
results of [9], wherein obese subjects had lower number of chews per gram of food in
comparison to a subject having normal weight. In this regard, relevant literature has shown
that increasing the chew count by 150–200% may reduce the food mass intake by up to
15% [10]. Similarly, other studies have shown that prolonged chewing before swallowing
may lead to lower caloric intake [11,12].

Chewing has also been found to be beneficial to brain functions. Chen et al. [13]
showed that chewing is an effective activity for maintaining the part of the nervous systems
responsible for spatial memory and learning (i.e., the hippocampus). Preserving the
hippocampus can reduce brain deterioration with age. Chuhuaicura et al. [14] supported
the hypothesis of the correlation between mastication and cognitive protection, and they
identified seven areas in the brain prefrontal cortex that could be affected by increasing
the mastication [15]. In general, mastication plays as a protection factor from cognitive
deterioration and neurodegenerative diseases [13,15,16].
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2.2. Automatic Chew Counting

Traditional methods used for determining the chew count were either manual or
automatic (i.e., using pervasive hardware) [17]. Manual methods are inherently tedious,
prone to errors, and un-scalable to large number of subjects. They rely on inspecting
visual recordings or direct viewing of subjects. For example, Moraru et al. [18] used visual
observation to collect chewing count data from 34 subjects. Other studies [2,12] used
similar approach.

Automated methods employ a range of devices that vary in sophistication and cost.
Some studies used Electromyography (EMG) to record the chew count of a small number
of subjects (i.e., less than 10), which is understood given that special electrodes, EMG
device, and professional help are required to perform the recording [19–21]. In another
study, piezoelectric and printed strain sensors were used in characterizing the chewing
behavior of five subjects [22]. However, their approach relied on the subjects to report
their own chewing behavior via a push button. Such an approach may be biased as the
subjects positively influenced the quality of the input signal (i.e., the chewing behavior was
unnatural). Nonetheless, the reported mean absolute error was 8% even with such input.
Similarly, Fontana et al. [2] employed the same input method. They used the annotated
data to train an artificial neural networks model (ANN) and their research achieved a mean
absolute error of 15.01%. Amft et al. [23] proposed counting chews using sound analysis of
audio recordings of the chewing process. However, such a method differs among subjects
and may be prone to ambient and other types of noise especially if the subject is using
an electronic device (e.g., playing multimedia) while eating. Nonetheless, noise-resilient
algorithms for chewing detection were proposed by Bedri et al. [24] using a combination of
acoustic, optical, and inertial sensors. They achieved an accuracy of 93% and an F1-score of
80.1% in unconstrained free living evaluation. Similarly, Papapanagiotou et al. [25] used
convolutional neural networks to achieve a 98% accuracy and F1-score of 88.3%. Recently,
Hossain et al. [26] used a similar approach to detect faces, which they followed by transfer
learning using AlexNet to classify images as bite or not, and used affine optical flow to
detection rotational movement in the detect faces. They reported a mean accuracy of
88.9± 7.4% for chew count. However, deep learning algorithms are known to be slow and
consume significant resources.

In general, hardware-based methods may cause discomfort to child subjects and incur
high cost in large-scale experiments. Additionally, remote or at a distance studies may not
be possible if special procedures are required to fit the hardware. Cadavid et al. [27] used
an active appearance model (AAM) to detect chewing events from captured images of the
subject’s face. They noticed that the AMM parameters displayed periodic variations in
response to the chewing behavior, which were different from other facial activities (e.g.,
talking). Thus, spectral analysis was used to derive features for a support vector machine
classification model. The dimensionality of the features was reduced using principle
component analysis in order to reduce the system overhead. However, their approach
requires extensive space and computational overhead [28]. They achieved an accuracy
of 93%, but that was accomplished using leave one subject out validation, which is not
recommended for their small dataset (i.e., 37 subjects) [29].

3. Material and Methods
3.1. Ethical Approvals

The current study was approved by the institutional review board (IRB No. 29/11/2018)
at King Abdullah University Hospital (KAUH) and the Deanship of Scientific Research at
Jordan University of Science and Technology in Jordan.

3.2. Procedure

Written informed consent was sought and provided prior to the study commencement.
For underage subjects, their parents filled the consent form, which needed to be signed
if they voluntarily accepted their child’s participation. The research assistants received
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intensive training by the lead investigators on the data collection process, as well as the
data entry. The information package included an information sheet describing the study
purpose and procedure in details, the consent form (including consent to publication of
images), and a parental/self-reporting questionnaire that contains demographics and other
relevant information.

3.3. Participants

The current study enrolled 100 randomly selected subjects. A total of 375 information
packages were randomly distributed prior to data collection. Of those, 275 (73.3%) recip-
ients refused to participate. The subjects included a mix of children and adults, with an
age range of 6–76 years (mean = 19.72, standard deviation = 11.03). Fifty-six of the subjects
were children and 44 were adults, and 58 were males. There were no restrictions regarding
skin color, facial hair, hairstyle, head cover, or wearing glasses (medical or otherwise).

3.4. Data Collection

A Huawei Y7 Prime 2018 smartphone main camera was used for video recording. It is
a 13 MP camera with 1080p@30fps resolution. The subjects were asked to face the camera
and eat a crunchy food sample (e.g., cucumber). Each subject recorded three one-minute
clips corresponding to three speeds (i.e., slow, normal, and fast). There was no specific
environment for the dataset collection, and no additional constrains were set during video
recording. Videos were recorded in a variety of setups (i.e., outdoors, indoors in a room,
and in public places) and with different light intensities.

Objective reference is required as a gold standard for performance evaluation. To this
end, three annotators were trained by the principle investigators to count the number of
chews in video recordings, and the training videos were not included in the dataset. Each
annotator worked independently from all others and recorded the number of chews in
each of the 300 video clips (i.e., 100 subjects with 3 recordings each). The annotators were
allowed to pause and rewind the videos for accurate counting.

Upon completing the annotation, the reliability of the process was verified using
Intra-class correlation coefficient (ICC) [30]. Table 1 shows the ICC values for all annotators
as well as pair wise comparisons among them. The lowest value in the table is 0.83 between
annotators 2 and 3, which is considered an excellent value [31].

Table 1. Annotator ICC values for the three chewing speeds.

Annotator\Chewing Speed Fast Medium Slow

All 0.91 0.94 0.96

1 & 2 0.88 0.90 0.92

2 & 3 0.83 0.90 0.95

1 & 3 0.90 0.94 0.95

3.5. Determining the Chew Count

Figure 1 shows the general steps taken to count the number of chews. Given a video
recording of the subject while eating, the algorithm works by first extracting individual
frames as separate images. In each image, the face of the subject is identified using the
Viola-Jones algorithm [32] (Section 3.5.1). However, not all of the face is of interest to chew
counting, only a few landmarks, which are indicators of mastication, are important. Thus,
the Kasemi and Sullivan landmark detector [33] was employed to detect facial landmarks
(Section 3.5.2). The Euclidean distance between a reference point and each of the identified
facial landmarks is measured and the average is calculated. Since chewing involves jaw
motion, there is a need to treat successive Euclidean distance averages as time series data
generated using the mean Euclidean distance from each video frame, which results in the
chewing signal (Section 3.5.3). After that, filtering techniques employing LPF or DWD
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retrain the relevant frequencies (Section 3.5.4). Finally, a peak counting determines the
number of chews excluding biting peaks (Section 3.5.5). In the next few subsections, we
will go through each one of the steps in detail. These steps were implemented using Matlab
2020a software.

Figure 1. The general steps to count the number of chews from the input video clip.

3.5.1. Face Detection

The first step in the algorithm aims to detect the face of the subject. To this end,
the Viola-Jones face detector was employed. The algorithm was chosen because it is fast
and has high detection accuracy [32]. It works in the following steps:

1. The image is converted to gray scale, which reduces the overhead. However, once the
face is detected, the location is marked in the colored image.

2. The image is scanned to search for intensity differences that may represent facial
features. This is done using boxes called Haar rectangles [34].These boxes are moved
so that every tile in the image is covered. Figure 2 shows a set of three Haar features
(HFs); two-rectangle, three-rectangle, and four-rectangle. These features represent
regions with different shades in an image. For example, the eyebrows will appear
darker in comparison to the surrounding skin. Similarly, the top of the nose may seem
brighter than the sides.

3. Each box is represented by a matrix of values corresponding to the pixel color in-
tensities in that box. The darker the pixel the closer the corresponding value to 1.
A Feature is generated by the difference between the sum of pixel values in the dark
region and the sum of pixel values in the light region.

4. The previous calculations can cause high computational overhead because of the large
number of pixels. Therefore, the process is adjusted to use an integral image (i.e.,
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a summed-area table). Each value, l(x, y), in the integral image is the summation of all
pixel values that lie above and to the left of (x, y) in the original image inclusively, see
Equation (1). Figure 3 shows an example matrix representing the original image and
the corresponding integral image. Using the integral image, calculating the intensities
of any rectangular area of any size in the original image requires four values only.
Moreover, the integral image is calculated with a single pass over all pixels. This
method greatly improves the efficiency of calculating the Haar feature rectangles.

5. Scanning the image using the rectangular boxes will generate a set of intensity values,
which form the input to the classification process. The output of this step indicates
whether or not a feature is likely to be part of the face. The Viola-Jones algorithm
uses adaptive boosting (AdaBoost), which employs a weak learner constraint to
select few features out of thousands of possible features. The algorithm training
dataset contained 4960 annotated facial images as well as 9544 other images without
faces [32].

6. Cascaded or ensemble classification. This step further refines the classification process
by attempting to discard the background regions by increasing the complexity of
classifiers in cascade. The collective effect of the weak classifiers selects the best
combination of features and their associated weights.

l(x, y) = ∑
x′≤x,y′≤y

v(x′, y′), (1)

where v(x′, y′) is the value of the pixel at (x′, y′).

Figure 2. Haar rectangular features.

3.5.2. Facial Landmarks Detection

The Viola-Jones algorithm generates a bounding box around the face of the subject.
However, the face as a whole is not useful by itself for chew counting. Thus, Kasemi
and Sullivan landmark detector [33] was employed to identify key facial features and
their location on the face. The facial landmark detector estimates the position of the facial
landmarks using an ensemble of regression trees (ERT) based on sparse pixel set intensities,
which are used as an input to the regressors. The pixel intensities are selected using a
gradient boosting algorithm and a prior probability of the distance between pairs of input
pixels. The face image is transformed into an initial shape and the features are extracted to
update the current shape vector. This procedure is repeated several times until convergence
is reached. After that, intensities of the sparse pixels are indexed on the initial shape. Each
regressor estimates the current shape from an initial shape estimation to solve the problem
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of face alignment. The initial shape can be selected by the mean shape of the centered and
scaled face image.

Figure 3. The intensities in the original image (left) and the corresponding integral image (right).
Calculating the intensity of the shaded box requires only four indices in the integral image regardless
of the number of pixels in the box.

This procedure results in a 192 × 2 vector representing the (x, y) coordinates of
192 points on the subject’s face. However, such number of facial points is excessive,
redundant, and consumes large space and processing power. The determination of the
facial landmarks forms the basis for the identification of the chewing motion. Several
useful observations were drawn from analyzing the chewing process, as follows:

1. The lower lip moves up and down during crushing the bolus in between the upper
and lower jaws. Furthermore, the lower lip moves slightly to the left and right during
the bolus motion in the mouth, but the motion of the lower lip decreases when the
subject swallows. Moreover, the lower lip motion is undiscernible when the chewing
speed is too slow and when the food texture is neither solid nor crispy. In addition,
the separation between the two lips increases when the subject is taking a bite.

2. The upper lip motion is unbeneficial for counting chews as it is undiscernible across
video frames. This mainly due to its connection to the immobile maxilla.

3. The corner points on the edge of the mouth move in an oval trajectory, which could
be a result of smiling or other facial expressions. Thus, they were ignored.

Careful inspection of the chewing process revealed that most of the points responding
to the chewing operation are located in the chin and jawline regions. Therefore, only
11 points in the chin and jawline were used, see Figure 4. They displayed consistency and
a stable chewing pattern during chewing regardless of the speed. Moreover, the motion
is immune to facial expressions (e.g., smiling). In addition, the points are visible during
food intake. Thus, the motion of the jawline points was used for counting purposes. These
points move in three ways, as follows:

1. Up and down during for crushing/chewing the food.
2. Sideways during bolus motion across the mouth sides.
3. A large downward movement for every food bite.
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Figure 4. Facial landmark detection showing the 11 jaw and 15 mouth landmarks. Only the 11 jaw
landmarks were used in counting chews.

3.5.3. Generation of the Chewing Signal

We define the up down mandible motion as one chew. To measure this motion,
a reference point was required with the constraint that it is unaffected by the chewing
motion, random movement, and may not be hidden during chewing. To this end, the upper
left corner of the face bounding box was chosen as a reference for all movements. This
box tracks the face throughout the recording and represents a fixed reference frame for
the jawline points. The Euclidean distance (ED) was measured for each frame between
every jawline point (x, y) and the reference point (u, v), and the average was taken for the
11 points, see Equation (2).

ED =
1

11

p=11

∑
p=1

√
(x− u)2 + (y− v)2 (2)

Figure 5 shows an example of the ED as measured between the reference point and
the jawline points used for counting chews. The ED values measured throughout the
duration of the chewing clip form a signal that represents the chewing pattern, see Figure 6.
The labelled peaks in Figure 6 represent the subject taking a bite and they were discounted
from the total chew count. Moreover, the signal inherently contains some noise due to the
subject’s movement and swallowing. For example, the sideways movement of the head.
Therefore, signal processing techniques were required to correctly identify the patterns
resulting from the actual chewing.

Figure 5. The Euclidean distance between chin/jaw landmarks and the upper left corner of the
face rectangle.



Sensors 2021, 21, 6806 9 of 18

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frame Number

30

40

50

60

70

80

90

E
u

cl
id

ea
n

 D
is

ta
n

ce

1

2

3
4

5

Figure 6. The chewing signal and five biting peaks.

3.5.4. Chewing Signal Processing

As previously stated, the chewing signal carries some noise due to the subject’s
movement, mandible motion, and other artefacts (e.g., variations in the head bounding
box). We experiment with two signal processing methods to improve the signal usefulness,
as follows:

• Low pass filter (LPF): a LPF was designed with a cut-off frequency of 1 Hz and a
sampling rate of 30 Hz [35]. It is a linear phase minimum order finite impulse response
filter. The measured frequencies in the collected dataset ranged between 0.4 and 2.3 Hz
for all chewing speeds. However, some of these frequencies resulted from variations
in the mandible motion before the completion of one chew. Thus, the frequencies
that are not representing actual chewing were removed. This was accomplished by
assigning a proper passband frequency. Several passband frequencies and sampling
rates were tested, and a 1 Hz passband frequency and 50 Hz sampling rate achieved
the best results. Figure 7 shows the original signal with many fake peaks caused by
noise. Whereas Figure 8 shows the smoothing of the signal and the elimination of
most of these peaks after LPF application.

• Discrete wavelet decomposition (DWD): DWD is a discrete version of the continuous
wavelet transform [36]. It retains the important features and reduces the computational
complexity in comparison to the continuous wavelet transform [37]. In DWD, the sig-
nal is decomposed using low and high pass filters into approximation (A) and detail
(D) coefficients, respectively. Further reduction to the frequency was achieved by ap-
plying the same procedure to the resulting approximation coefficients. A Daubechies
mother wavelet with tab equal 4 was used, which achieve the best smoothing effect
while retaining the important features. The sampling rate in the chewing signal was
30 Hz and the chewing signal frequency was 0–16 Hz, because of the noise in the
signal that comes from the unwanted movements and from the fast chewing speed
videos. Thus, three levels of decomposition were required to reach the closest fre-
quency of chewing (i.e., 1–2 Hz) for normal speed, see Figure 9. This corresponds to 1
to 2 chews per second. The frequency resolution can be increased/decreased to match
the chewing speed and the associated chewing signal frequency, see Figure 10.
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Figure 7. A chewing signal with many fake peaks caused by noise.
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Figure 8. The same signal in Figure 7 after low pass filtration.

Figure 9. Three-level discrete wavelet decomposition.
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Figure 10. Four-level DWD of the signal in Figure 7.

3.5.5. Counting Chews

The output from either one of the two signal processing techniques (i.e., LPF and
DWS) forms the basis for determining the number of chews. A peak detection algorithm
was employed to detect the chewing markers. The algorithm works by finding every local
maximum in the signal that is larger than the adjacent two neighboring points, where every
peak represents one chew. The Minimum-Peak-Height (MPH) parameter for peak detection
was set for LPF to half the average of all peak heights (PH), see Equation (3). For DWD
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and slow chewing videos, the MPH was set to half the average of PH see Equation (4).
Equations (5) and (6) show the values of the MPH for the DWD processing of the normal
and fast chewing speeds.

The MPH was set differently for the three chewing speed signals because it was
observed that the mandible movement changes in response to different chewing speeds.
The highest displacement occurred in the slow chewing speed signals. Thus, the chewing
peaks were high in comparison to false peaks (i.e., noise). On the other hand, the mandible
displacement was small in the fast chewing speed signals, so more of the peaks need
to be counted. Figure 11 shows the application of the peak counting algorithm on the
LPF-processed signal, and Figure 12 shows the results from the DWD output.

MPHLPF =
1
2
× 1

n

n

∑
i=0

PH (3)

MPHDWD_slow =
1
2
× 1

n

n

∑
i=0

PH (4)

MPHDWD_normal =
1
3
× 1

n

n

∑
i=0

PH (5)

MPHDWD_ f ast =
1
4
× 1

n

n

∑
i=0

PH (6)
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Figure 11. LPF output for counting chewing peaks in the processed signal.
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Figure 12. DWD output for counting chewing peaks in the processed signal.

4. Results and Evaluation
4.1. Complexity Analysis

As presented earlier, the proposed work relies on software-based methods as opposed
to hardware solutions (i.e., dedicated sensors). Sensing and counting hardware maybe
invasive but it provides less computationally intensive option. However, the approach used
in this paper is based upon well-established practical methods with linear time complexity.
The Viola-Jones face detector runs in linear time O(N), where N is the number of pixels in
the image. The calculations are done within a small region of interest in the integral image.
Moreover, the Haar features are computed in constant time [38]. The next step is facial
landmark detection, which uses the Kazemi and Sullivan [33]. Both this and the Viola-Jones
algorithms are considered real-time algorithms with low complexity and high speed [39].
The third step computes the average Euclidean distance for 11 chin/jaw landmarks in each
frame. At a frame rate of 30 fps, this computation is negligible. Next, the chewing signal
is filtered using either LPF or DWD, with the later having linear time complexity [40].
The last step is counting peaks, which inspects the elements before and after each possible
peak. Thus, it requires linear number of steps.
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4.2. Performance Evaluation Metrics

The performance of the proposed methods was evaluated in terms of the absolute
error (AE), mean absolute percentage error (MAPE), and root mean squared error (RMSE).
Each one of these metrics provides a different insight into the accuracy of the counting
algorithm. RMSE tends to penalize large errors. On the other hand, AE and MAPE are
easier to interpret. In addition, MAPE allows comparisons between varying chewing
counts as the error is relative to the gold standard. Equations (7)–(9) to show the formulas
for calculating these metrics.

AE = |Actualcount −Measuredcount| (7)

MAPE =
1
n

n

∑
1

|Actualcount −Measuredcount|
Actualcount

× 100% (8)

RMSE =

√
1
n

n

∑
1
(Actualcount −Measuredcount)2 (9)

The Bland-Altman plot was used to measure the agreement between the proposed
algorithms and the actual chew count as determine by each annotator. This is a graphical
method that plots the difference between the calculated values and the gold standard values
against the average of the two methods. Any two methods can be used interchangeably
used if 95% of the data points are located within the limits of agreement, which are defined
as the mean ±1.96× SD [41].

4.3. Results

Table 2 shows the AE for the two signal processing methods. The average AE is lowest
for the slow chewing speed for both LPF and DWD, although LP slightly outperforms DWD
with an AE of 5.42± 4.61. Moreover, the error is higher for faster speeds. The same trend
appears in Tables 3 and 4 for MAPE and RMSE respectively. Again, LPF achieved superior
performance for normal chewing with 7.76% and 7.93 for MAPE and RMSE, respectively.

Figure 13 show the Bland-Altman plot for the agreement between the proposed
algorithm and the average of the three annotators (i.e., the gold standard) using LPF or
DWD. The figures show that most of the points are within the lines of agreement. However,
the algorithm needs improvement for faster chewing. Nonetheless, our method can be
used interchangeably with the manual measuring techniques but provides the advantages
of automated measurement and reliable results. This serves as an evidence of the accuracy
and efficacy of the proposed approach.

Table 2. Performance comparison between LPF and DWD in terms of AE. SD stands for standard de-
viation.

Chewing Speed
LPF DWD

AEavg AEavg ±SD AEavg AEavg ±SD

Slow 5.42 0 4.61 5.72 0 4.8

Normal 7.47 0 6.85 7.45 0 6.85

Fast 9.84 0 9.55 10.32 0 10.42
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Table 3. Performance comparison between LPF and DWD in terms of MAPE.

Chewing Speed MAPE (LPF) MAPE (DWD)

Slow 6.48% 9.09%

Normal 7.76% 7.03%

Fast 8.38% 8.31%

Table 4. Performance comparison between LPF and DWD in terms of RMSE.

Chewing Speed RMSE (LPF) RMSE (DWD)

Slow 5.56 7.64

Normal 7.93 7.09

Fast 13.03 13.43
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Figure 13. Bland-Altman plots for the chewing counts at the three speeds with LPF and DWD pro-
cessing.

Table 5 shows a comparison to the related literature in terms of best average error,
the counting method, and the number of subjects recruited by the researchers. The evalu-
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ation of the proposed approach in this paper is based on the largest number of subjects
and achieved the least average error. Almost all of these approaches rely on dedicated
hardware or signals extracted from this hardware. On the other hand, our work uses input
from camera-equipped smart devices. Moreover, the number of subject recruited in most
studies is small, which may result in overfitting of the proposed methods to the specific
chewing pattern. Additionally, these studies did not test for different chewing speeds
although multiple food types were used to record chewing cycles.

Table 5. Performance comparison to the related literature.

Study Avg Error ± SD Counting
Method

No. of
Subjects

Farooq and Sazonov [3]
10.40% ± 7.03%

Peak detection in
manually
annotated
segments

30

15.01%± 11.06% Counting in ANN
classified epochs 30

Farooq and Sazonov [22]
8.09% ± 7.16% Piezoelectric

strain sensor 5

8.26% ± 7.51% Piezoelectric
strain sensor 5

Farooq and Sazonov [42] 9.66% ± 6.28%
Linear regression
of piezoelectric
sensor signal

10

Bedri et al. [24] F1-score = 90.9% Acoustic sensor 10

Cadavid et al. [27] Avg agreement =
93%

SVM classification
of AMM spectral

features
37

Taniguchi et al. [43] Precision = 0.958 Earphone sensor 6

Wang et al. [44] 12.2%
Triaxial

accelerometer on
the temporalis

4

Hossain et al. [26] Mean accuracy
88.9% ±7.4%

Deep learning
and affine optical

flow
28

This paper

5.42% ± 4.61
(slow) 7.47% ±
6.85 (normal)
9.84% ± 9.55

(fast)

Image processing
of chewing videos 100

5. Discussion

The work in this paper presents a method for the automatic counting of chewing from
video recordings. The results from both the LPF and DWD approaches suggest that the
proposed method can be used as an objective and accurate chewing counter. In comparison
to the literature, the method was tested on a reasonably large number of subjects and
chewing speeds.

In both signal processing techniques, the algorithm was used to estimate chew counts
in manually annotated chewing clips and was able to achieve a best AE, MAPE, and RMS
of 5.42± 4.61, 6.48%, and 5.56, respectively. However, this was achieved for slow chewing
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speeds. The same values for the normal chewing were 7.47± 6.85, 7.76%, and 7.93, respec-
tively. Moreover, given that the human counting accuracy is typically 5.7%± 11.2% [3],
our results present an excellent objective and automated methodology for accurate chew
counting. In addition, the results in Figure 11 show that the difference between the mea-
sured and annotated values to fall in the region over the mean, which may be explained by
the tendency of the annotator to underestimate the chew count [3].

This study has several limitations. First, we did not experiment with different food
types (e.g., hard, crunchy, crispy, tough, chewy, etc.). Second, the gold standard depends on
the annotators, who-although trained- are subject to mistakes and underestimation [3]. It
would have been more accurate to equip the participants with piezoelectric sensors, which
could capture the chewing count more accurately. Third, the length of the videos clips was
one minute, which was enough time to finish the piece of food provided to the subjects.
Fourth, the collected data did not include videos with different out of plane rotation (i.e.,
pose) or in plane rotation (i.e., orientation) as a normal chewing posture was assumed.
However, the Viola-Jones algorithm can detect faces that are tilted by ±15 degrees in plane
and ±45 degrees out of plane [45]. Finally, we did not perform fine-grained annotation of
the chewing clips, but this can be accomplished in future works. Annotating individual
chews in the videos would allow elaborate technical analysis and the development of
feature-based and artificial intelligence-based counting methods.

Nonetheless, the proposed approach has several merits. First, no extra hardware is
required for the deployment and usability of the counting algorithm. Once the system is
installed, researchers who are interested in studying the chewing behavior of subjects (e.g.,
children) can use it easily. It can be used in natural everyday settings (e.g., subjects are
using their smartphone or any camera-equipped smart device). Second, the study used
a reasonably large number of subjects and investigated a wide range of chewing speeds.
In comparison, the number of subjects in the relevant literature was less than 50 [33,35].
Third, the accuracy of the model surpasses relevant literature without requiring extra
hardware or intensive computation [3,19–21]. Finally, the algorithm displayed robustness
against different subject ages, skin colors, facial hair, or gender.

6. Conclusions

Chewing is an important process in the digestive system with much research dedi-
cated to studying the effects of chew speed, chewing rate, and bolus size on the human
health (e.g., BMI). In addition, it has been found that chewing speed is associated with
cognitive functions.

Recent proliferation of mobile smart devices, which are equipped with cameras and
strong processing power, facilitated the development of many applications from a wide
range of disciplines. Another aspect to consider is the health impacts of these devices,
which are being used during everyday activities including eating. Thus, the work in this
paper allows for the monitoring of the chewing behavior to enable researchers to further
study human dietary habits while using smart devices.

In this research, an algorithm was developed to count the number of chews from eating
video recordings. The input is processed using two well-known and established methods
(i.e., LPF and DWD) followed by a peak counting algorithm. Performance evaluation
results greatly improved on the existing literature. Moreover, the system allows for the
natural measurement without the need for expensive or uncomfortable hardware. We
expect this work to enable further studies into eating and weight disorders, especially those
connected to smart devices.
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