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Abstract: During the past decade, falling has been one of the top three causes of death amongst
firefighters in China. Even though there are many studies on fall-detection systems (FDSs), the
majority use a single motion sensor. Furthermore, few existing studies have considered the impact
sensor placement and positioning have on fall-detection performance; most are targeted toward fall
detection of the elderly. Unfortunately, floor cracks and unstable building structures in the fireground
increase the difficulty of detecting the fall of a firefighter. In particular, the movement activities of
firefighters are more varied; hence, distinguishing fall-like activities from actual falls is a significant
challenge. This study proposed a smart wearable FDS for firefighter fall detection by integrating
motion sensors into the firefighter’s personal protective clothing on the chest, elbows, wrists, thighs,
and ankles. The firefighter’s fall activities are detected by the proposed multisensory recurrent neural
network, and the performances of different combinations of inertial measurement units (IMUs) on
different body parts were also investigated. The results indicated that the sensor fusion of IMUs
from all five proposed body parts achieved performances of 94.10%, 92.25%, and 94.59% in accuracy,
sensitivity, and specificity, respectively.

Keywords: fall detection system; deep learning; wearable IOT technology; inertial measurement unit
(IMU); multisensory fusion

1. Introduction

Falling activities, including struck, dropping, and fainting, are some of the primary
causes of firefighter fatalities in China (Figure 1) [1]. In the United States in 2018, overexer-
tion and stress were the leading causes of death in firefighters, according to a US National
Fire Protection Association (NFPA) report [2]. A major cause of this difference is that the
personal protective equipment (PPE) for fall detection still requires improvement to better
guarantee safety [3].

The current FDS used by firefighters in China is a standard personal-alert safety
system (PASS) device for detecting a firefighter’s immobility (see Figure 2). It produces a
high-volume sound if no motion is detected after a short period (typically 30 s). There are
concerns, however, that this delay may be a critical deciding factor between life and death
in a real emergency.

In addition, the lack of training and experience is also a major cause. According to the
2019 annual report from the International Association of Fire and Rescue Services (CTIF) [4],
among a total of 7,630,000 firefighters in China, only 130,000 are career firefighters, account-
ing for only 1.7%. The rest are all volunteer firefighters. However, the percentage of career
firefighters is approximately 33.2% in the USA. These young volunteer firefighters with
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short training periods and little firefighting experience are often unable to master complex
firefighting skills, especially in dangerous situations, such as burning floors or unstable
building structures [3].

Figure 1. Comparison of the causes of firefighters’ fatalities in China (left) and in the USA (right),
2018 [1,2].

Figure 2. PASS device equipped by a firefighter in China.

In the majority of recorded fatalities on the fireground, the incident commander was
unaware of a fallen firefighter and, therefore, unable to instigate a rescue in time. The
smoke-filled environment also decreased firefighters’ ability to identify a peer’s injuries
and safety in a timely manner. In general, the firefighters’ education principle in China was
to learn and gain experience through actual firefighting tasks, with a high learning cost of
their life and safety [5]. These issues highlight the need for smart protection measurements
to detect firefighters’ falling activities to ensure their safety during firefighting missions.

Several studies [6–8] investigated the application of context-aware systems (CASs)
and wearable sensors for FDSs. A CAS generally integrates a set of vision systems with
cameras and other sensors, such as microphones or vibration sensors, placed in a well-
lit environment to monitor the user within the range of view [9]. Wearable sensors are
commonly used to analyze a human’s fall activities, based on the motion pattern [10]
and physiological status [11]. Even though FDSs have been widely deployed in the
healthcare sector, especially for elderly people, the system is targeted at detecting slow-
falling movements, which is not suitable for firefighters.

The current PASS device has the following deficiencies: (1) a long delay of approxi-
mately 30 s to raise the alert; (2) audible alarms are insufficient, if a firefighter is far away
from his peers or in a noisy environment; and (3) the action commander cannot receive
the alert soon enough to carry out a timely rescue. This study aims to develop a smart
FDS, integrated with wearable sensors, for detecting the fall activities of firefighters, espe-
cially in harsh environments, and alert the action commander in time to organize a rescue.
The proposed FDS applied GA10 & CCC certified national personal-protective clothing
(PPC) with embedded motion sensors to gather firefighter moving-activity data. The key
innovative aspects of this study are as follows.
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• Performance evaluation of firefighter fall detection based on motion sensors that are
placed in different parts of the body (PPC), including chest, elbows, wrists, thighs,
and ankles.

• Aim to build a high realistic falling related movements dataset through collaboration
with real firefighters.

• Proposes a novel fall-detection model which is trained with deep learning approach
that can classify actual falls and fall-like events.

The rest of the paper is organized as follows: Section 2 presents a literature review of
various FDS approaches, detailing the advantages and disadvantages; Section 3 describes
the proposed smart wearable PPC prototype design which is used in for data collection,
and discusses the details of the proposed FDS algorithms; Section 4 presents the evaluation
of FDS models with various combinations of IMUs, followed by the discussion of the fall
detection performance in each activity, and subsequently perform results comparison with
the existing works; Finally, we conclude with a discussion of our future work in Section 5.

2. Related Works

Fall-detection methods can be categorized into two approaches: vision-based and
non-vision-based. In a vision-based approach, fall detection is modeled based on images or
videos obtained from different types of cameras [9]. Iazzi et al. [12] proposed a vision-based
fall detector by isolating the different activities using a simple threshold method. The
approach first applied background subtraction to images obtained from an RGB camera
to compute a human silhouette. It then classified the activities, such as lying, bending,
sitting, and standing, by comparing the percentage of a human silhouette on the ground
with a predefined threshold. However, they also indicated that the system was inadequate
if multiple people were in the vision view. Moreover, a study by [13] presented an active
vision system for fall detection, based on skeleton movement captured by a 3D camera.
Several works [14,15] also analyzed head-moving patterns, where large head movements
indicated a high possibility of falling.

Nevertheless, vision-based solutions have several intractable issues in firefighting
applications, such as poor performance in dark, low-light, or smoke-filled environments,
limited range of vision, and views obstructed by obstacles in the field [16]. Hence, some
studies have explored the potential use of non-vision-based approaches to reduce the
constraints of vision-based approaches. The advantages of such approaches include lower
costs, in terms of algorithm computation and image processing, privacy protection, porta-
bility, and less affected by the environment [17].

IMUs embedded in mobile devices, such as smartphones and smartwatches, are
commonly used by many researchers for fall detection, typically in healthcare areas for
the elderly [18–23]. These studies extract motion data from a common nine degrees-
of-freedom (DOF) IMU for classifying fall activities, assuming that the smartphone is
stored in the pants pocket or a smartwatch is worn on the wrist. Nonetheless, carrying
a smartphone into a fireground can affect the performance of firefighting activities and,
thus, is prohibited. Hence, this approach is inapplicable and not considered in this study.
Instead, a sensor-fusion technique that integrates diverse wearable sensors for fall detection
is a better alternative.

Lee et al. [24] added an IMU with an RGB camera to improve the fall-recognition
rate and reduce the false-detection rate of falls. The study utilized a robot equipped with
a camera that could move toward the fall subject for further verification of a fall, if the
IMU-based classifier first predicted a fall-like activity. On the other hand, Kwolek et al. [25]
integrated a Kinect sensor and an IMU for fall detection, reducing the false fall alerts, which
improved the overall fall-detection performance from 90% (using only depth information
from the Kinect sensor) to 98.33%.

Sensor-fusion techniques with integrated vision-based sensors are not useful for
improving the fall detection of firefighters in smoke-filled and harsh environments. In
addition, Chen et al. [26] developed a shoe integrated with a barometer and IMU for a
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stair-based fall-risk detection system by measuring foot movements going upstairs or
downstairs. The study also revealed that the multisensory system performed better than a
single-sensor system in falling-risk evaluations.

Several studies have emphasized the use of PASS and PPC in fall detection for fire-
fighters [27–30]. Van Thanh et al. [27] proposed a device wearable on the waist, integrated
with a triaxial accelerometer and a carbon monoxide (CO) sensor to monitor falls in fire
environments. The CO sensor is specifically utilized for detecting falls caused by broken
air-support devices. They improved their system in [28] with a sensor-fusion approach
using a 9-DOF IMU, a CO sensor, and a barometer. However, the datasets they collected
are not publicly available.

Geng et al. [29] proposed a novel health-monitoring system with electrocardiogram
(ECG), electroencephalogram (EEG), and blood-pressure measurements to recognize the
motion events of firefighters by extracting features obtained from the on-body radio-
frequency (RF) channel. The average true classification rate is 88.69%.

Moreover, Blecha et al. [30] proposed functional wearable PPC for firefighters that
could monitor their physiological status (heart rate and temperature), detect firefighter
movements, and measure environmental information, such as the relative humidity and
concentration of toxic gases. In addition, they also designed a commander control unit as a
terminal to receive functional data from the PPC and alert the commander if any safety
risk to the firefighters was detected.

In summary, among existing fall-detection studies using wearable-type sensors, most
studies are targeted at detecting the falls of the elderly. Moreover, few to no public datasets
are available for the study and analysis of firefighter fall detection. Our work makes
important contributions that compensate for these shortcomings.

1. Building a dataset by collecting motion data of actual firefighters, including falls and
fall-like activities, for academic research purposes,

2. Investigating the optimization of motion sensors in fall-activity classification, in terms
of their quantity and placement on firefighter protective clothing, and

3. Presenting a fall-detection framework applied for firefighters, especially when they
are often working in high-stress situations.

3. Materials and Methods

This section discusses using the proposed novel design of smart PPC for firefighters to
gather firefighter motion data. Next, the experimental setup for data collection is discussed,
followed by a detailed description of the proposed FDS.

3.1. Smart PPC Prototype

The placement of wearable sensors plays an essential role in recognizing falls with a
high accuracy rate [10]. The important motion data that contribute to fall-event detection
are associated with the moving patterns of the chest, elbow, and wrist from the upper
body, and the thigh and ankle from the lower part of the body. Hence, BNO055 IMUs [31],
consisting of a triaxial accelerometer, triaxial gyroscope, and triaxial magnetometer, are
integrated with wired connections on the back of the protective jacket (PJ) and protective
trousers (PT), as shown in Figure 3. The angular velocity ranges from ±125 deg/s to
±2000 deg/s with a low-pass filter bandwidth from 523 Hz to 12 Hz, while the acceleration
ranges from ±2 g to ±16 g with a low-pass filter bandwidth from 1 kHz to 8 Hz, and the
measurement range of the magnetometer is about ±4800 uT with a resolution of 0.3 uT.
The maximum output rate of 9-DOF fusion data is 100 Hz. However, considering fast data
transmission can result in low data receiving efficiency, both sampling rate of the 9-DOF
data and wireless transmission rate were set to 15 Hz in this study after several trials for
optimization. An IMU was not placed on the shoulder because shoulder movement is
always associated with chest movement.
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Figure 3. Placement of motion sensors that are mapped to the body parts where the motion data are
critical for fall-detection computation.

Two processing units are placed on the chest and waist for receiving and transmitting
IMU data from the PJ and PT, respectively. Each processing unit consists of a Seeeduino
XIAO micro-controller unit (MCU) with a 20 × 17.5 mm2 size and 3.3-V power consump-
tion [32], a TCA9548A 1-to-8 I2C multiplexer [33] for multisensor connections, a Bluetooth
low-energy (BLE) 4.2 module [34], and a 3.7-V 400-mAh lithium-ion battery [35], as illus-
trated in Figure 4. The IMU sensors are connected to a processing unit with wires soldered
onto the PJ and PT.

Table 1 summarizes the components of the sensing module with their respective
specifications. To reduce the risk of destroying the components (including IMUs, processing
units, and wires) during the data collection, foam boards were placed on top of all the
components for protection, and rubber tape was used to secure the wire connections
between the processing unit and IMUs, as depicted in Figure 5. Finally, the IMU data from
the PJ and PT are transmitted to a terminal via BLE 4.2 for further processing, as shown
in Figure 6.

Table 1. Components and their respective specifications in the sensing module.

Components Specification

IMU

Triaxial accelerometer
Triaxial gyroscope

Triaxial magnetometer
Operating voltage: 3 V to 5 V

Seeeduino XIAO MCU

Operating voltage: 3.3 V/5 V
CPU: 40 MHz ARM Cortex-M0+

Flash memory: 256 KB
RAM: 32 KB

Size: 20 × 17.5 × 3.5 mm
I2C: 1 pair

TCA29548A multiplexer Operating voltage: 3V to 5V
I2C: 8 pairs

JDY-18 BLE

Operating voltage: 1.8 V to 3.6 V
BLE version: 4.2

Frequency: 2.4 GHz
Size: 27 × 12.8 × 1.6 mm

Lithium-lon battery Power supply: 3.7 V
Capacity: 400 mAh
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Figure 4. Processing unit that consists of an MCU, an I2C multiplexer, a BLE 4.2 module, and a
lithium-ion battery.

Figure 5. (a) Foam board is placed on the IMU for component protection and (b) rubber tape is used
to secure the wire connections between the processing unit and IMUs.

Figure 6. Overall design of the communication framework from the PJ and PT to a terminal via BLE 4.2 wireless transmission.
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3.2. Dataset Collection

Yan et al. [36] states that falls may be categorized into four distinct types: basic forward,
backward, left, and right lateral falls. The fall-like activities can be further subdivided into
basic forward, backward, left, and right lateral falls. However, a fall event is much more
complicated during firefighting activities. Some specific activities, such as slipping, sliding,
and fainting, can also result in falls [37]. Several existing studies [36,38,39] demonstrate the
challenges of differentiating fall-like activities, such as sitting quickly, jumping onto a bed,
and lying down slowly, from an actual fall. However, these existing fall datasets are not
suitable for detecting the falls of firefighters because most of the recorded activities do not
closely simulate realistic falling events in a fireground, such as jumping onto a bed.

This study initiated a collaboration with firefighters from the Haishu District Fire
Brigade from Ningbo City, Zhejiang Province, China, to obtain realistic fall events by
firefighters, based on their experiences. Fourteen male firefighters (with one to three years
of firefighting experience, ages between 21 and 24 years old, with heights between 1.7 and
1.88 m) voluntarily participated in the data collection. Six of them were career firefighters
and the other eight were volunteer firefighters.

Six types of fall activities were collected, including a forward fall with the knees,
forward fall with the hands, left and right sides of inclined falls, backward fall, and a slow
forward fall with a crouch. Three other activities, including crouching, sitting, and walking
with a stoop, were also collected as fall-like activities. Each firefighter was requested to
put on the developed PJ and PT and simulate falls and fall-like activities, based on their
firefighting experience. The details of the falls and fall-like activities are illustrated in
Figure 7. The number of trials for each activity and total trials are summarized in Table 2.

Figure 7. Demonstration of a firefighter with the proposed PJ and PT performing different types of
falls and fall-like activities, including (a) walking to a mat before falling, (b) forward fall with the
knees, (c) forward fall with the hands, (d) left side of an inclined fall, (e) right side of an inclined fall,
(f) slow forward fall with a crouch first, (g) backward fall, (h) fall-like crouching, (i) fall-like sitting,
and (j) fall-like walking with a stoop.
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Table 2. Details of activities recorded in the dataset.

Code Type Activity Trials for Each Subject Total Trials

F1

Falls

forward falls using knees 5 70
F2 forward falls using hands 5 70
F3 inclined falls left 4 56
F4 inclined falls right 4 56

F5 slow forward falls with
crouch first 3 42

F6 backward falls 3 42

FL1
Fall-like

crouch 4 56
FL2 walk with stoop 4 56
FL3 sit 3 42

According to Figure 8, IMU data from the PJ and PT are transmitted to a laptop via
BLE 4.2 wireless communication with a 15-Hz sampling rate. A fall action consists of three
phases: early fall, impact, and recovery [40]. As the aim of this study is to target the falling
event, the recorded data of the early falling phase are labeled as falls, whereas the rest are
labeled as non-falls.

Figure 8. Data collection, via BLE 4.2 wireless transmission to a laptop, of IMU data from the PJ
and PT.

3.3. Framework

The proposed wearable FDS is composed of three modules: (1) sensing, (2) pre-
processing, and (3) classification, as illustrated in Figure 9.

3.3.1. Global Calibration of IMUs

Each IMU has a tri-axial coordinate system, as depicted in Figure 10, which can be used
to determine the position and orientation of an object. In fact, an FDS with multiple IMUs
placed on different parts of the PPC needs further calibration to synchronize and unify the
coordinate system as a single entity. To achieve a global calibration for IMUs on the PJ and
PT, two common reference vectors are required, as proposed by O’Donovan et al. [37].
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Figure 9. Flowchart of the FDS algorithm, where A = triaxial accelerometer data, G = triaxial
gyroscope data, M = triaxial magnetometer data, Q = quaternion data, and E = Euler angles.

Figure 10. Local IMU coordinate system on PJ and PT.

The magnetic field vector (Vmag), which points to the north, is selected as one of the
common reference vectors, assuming no magnetic interference and that the magnetic field
in the vicinity of each IMU is the same. The other reference vector is the acceleration vector
(Vacc) in a quasi-static condition; it can be regarded as the gravity vector pointing to the
ground. The IMU local coordinates can thus be rotated to the north-east-up (NEU) earth
coordinate system (right-hand rule). Figure 11 presents the local and global coordinate
systems with two common reference vectors Vmag and Vacc. The calibration works in
the way that the subject should stand still initially, and it will take 1 second (15 samples)
to compute the average values of Vacc and Vmag. The main purpose of the calibration
is to convert the local coordinate system of each IMU to the unified NEU system. With
the values of Vacc and Vmag as the reference vectors, the rotation matrix of these two
coordinate systems can be computed, and hence, update the collected raw data of each
IMU referred to the NEU system.
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Figure 11. Global calibration. (a) Local coordinate system and vectors of Vacc and Vmag and (b) NEU
coordinate system and vectors of Vacc and Vmag.

3.3.2. Data Pre-Processing

The Mahony attitude and heading reference system (AHRS) [41] is utilized to compute
the quaternion and Euler angles from the raw data received from the terminal. The rotation
matrix of each IMU node can be derived as follows:

q = w + xi + yj + zk (1)

R(q) =

 2w2 + 2x2 − 1 2xy − 2zw 2xz + 2yw
2xy + 2zw 2w2 + 2y2 − 1 2yz − 2xw
2xz − 2yw 2yz + 2xw 2w2 + 2z2 − 1

, (2)

where q, w, x, y, and z represent a quaternion value that consists of a real number (w) and
imaginary values on three imaginary axes (i, j, k).

Each IMU delivered 13 outputs, including tri-axial acceleration (m/s2), tri-axial angu-
lar rate (deg/s2), four-point quaternion data, and the derived roll, pitch, and yaw angles.
To represent the variation of the different movements of a firefighter, given a defined
period, features including the mean (µ) (Equation (3)), range (R) (Equation (4)), standard
deviation (σ) (Equation (5)), and mean absolute deviation (MAD) (Equation (6)), are ex-
tracted from the 13 outputs, and calculated using 0.5 s of data each, with a window size
of 0.1 s. As a result, each IMU generates 52 vectorized features (13 outputs × 4 arith-
metic calculations), in which the total number of input features to the classifier is 468
features (52 features × 9 IMUs).

µ =
1
N

Σx[k] (3)

R = max x − min x (4)

σ =

√
1
N

Σ(x[k]− µ)2 (5)

MAD =
1
N

Σx[k]− µ (6)

3.3.3. Recurrent Neural Network Classifier

Figure 12 illustrates the neural network architecture, which includes three long short-
term memory (LSTM) layers with 128 units, 32 units, and 16 units, respectively, one dense
layer with an eight-unit rectified linear unit (ReLU) activation function (Equation (7)), and
a softmax activation function with two units (Equation (8)). This represents the probability
of non-fall and fall activities using one-hot encoding. The adaptive moment estimation
(Adam) algorithm with a learning rate of 0.01 is applied as the optimizer of the model, and
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the sparse categorical cross-entropy algorithm, shown in Equation (9), is used as the loss
function in the model. The batch size is set to 10, which represents the user’s action in one
second. The dataset is divided into 80% for training and 20% for testing.

ReLU = max(0, x) (7)

p(yi) =
eyi

Σn
j=1eyi

(8)

loss(yi) = − log p(yi) (9)

Figure 12. LSTM network architecture.

4. Results

First, the performance of the trained model with the proposed LSTM architecture is
presented in Figure 13 for every 10 epochs. It uses an RTX2060 6G RAM GPU with an Intel
i7-9700 CPU (3.0 GHz). The results indicate a slow increment in the accuracy rate after
40 training epochs, with the highest accuracy of 99.95% obtained after 100 training epochs,
using all the sensor data.

Meanwhile, this study has allocated 30 different combinations of sensor’s placements
to further investigate the optimization of the sensors’ placements and the quantity of sen-
sors allocated for the fall detection of firefighters. Five positions were coded, representing
the placement of the IMU on the protective clothing, as listed in Table 3, including the
chest, elbows, wrists, thighs, and ankles. The performance of each combination’s model
is evaluated, including the trained results using accuracy and loss, and the overall test
performance using the following widely used metrics:

• AUC: Area under the receiver operating characteristic (ROC) curve.
• Specificity (Sp): the ability to predict negative samples.
• Sensitivity (Se): also called recall; the ratio means the accuracy among all predictions

of falling.
• Accuracy (Ac): the accuracy among all predictions, both positive and negative.

The equations for specificity, sensitivity, and accuracy are shown in Equations (10)–
(12), respectively.

SE =
TP

TP + FN
(10)

Sp =
TN

TN + FP
(11)

Ac =
TP + TN

TP + TN + FP + FN
(12)
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Figure 13. Training results of the LSTM model using different epochs.

Table 3. Codes for the IMU locations.

Placement Chest Elbows Wrists Thighs Ankles

Code C E W T A

Table 4 illustrates the performance of these 30 models. The training accuracy of the
models after 100 epochs is nearly identical and most reach over 99.90%. In general, the best
fall-detection performance improved gradually with the addition of more IMUs placed on
different sections of the cloth, with the highest Ac, Se, and Sp achieved at 94.10%, 92.25%,
and 94.59%, respectively, for all IMUs included as proposed.

It is important to note that the IMU placed on the chest plays an important role in
detecting the fall of the firefighter, as the combination of EWTA, where the chest part is
excluded, has the lowest Ac, Se, and Sp of 90.32%, 90.72%, and 90.21%, respectively. In
addition, the IMU combinations of CET, CA, and a single C also achieved Acs of over 92%
(Ses over 90% and Sps over 92%). This further emphasized that the placement of an IMU
on the chest is essential in detecting falls. In the group of two placements, combinations
that involved the chest achieved fairly high Acs of over 90% and Sps of over 90%, but Ses
as low as 86.94%. Similarly, with only one IMU placement, the chest also presents a much
higher efficiency than the others.

It is also interesting to note that the combinations of EA and ET, with IMUs placed
on the elbows (PJ) and either the ankles or thighs (PT), also have Acs of over 90%, out-
performing the rest of the IMU combinations. Moreover, the fall-detection performance
based on PJ only (CEW) and PT only (TA) achieved Acs of 91.26% and 89.20%, respectively,
indicating that adding IMUs from PT (either the thighs or ankles) can improve the overall
fall-detection Ac by at least 2%.

In summary, the results indicated that the IMU combinations of CEWTA, CEWT, and
CET had the best performance among all metrics. Moreover, the chest position proves to
be the most important placement of the IMU in fall detection for firefighters.
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Table 4. Performance of 30 IMU combinations.

IMU Quantity Combination AUC Se Sp Ac

9 CEWTA 0.97 92.25% 94.59% 94.10%
7 CEWT 0.98 91.22% 94.72% 93.98%
7 CEWA 0.95 89.04% 94.25% 93.15%
7 CETA 0.95 88.01% 95.37% 93.82%
7 CWTA 0.95 90.35% 94.21% 93.38%
8 EWTA 0.94 90.72% 90.21% 90.32%
5 CEW 0.94 88.72% 91.94% 91.26%
5 CEA 0.95 88.39% 92.24% 91.43%
5 CWT 0.98 88.39% 92.24% 91.43%
6 EWA 0.93 85.06% 92.42% 90.87%
6 EWT 0.96 89.14% 91.42% 90.94%
5 CWA 0.96 90.84% 93.02% 92.56%
5 CET 0.97 91.61% 94.06% 93.55%
5 ETA 0.96 90.54% 92.30% 91.93%
5 WTA 0.93 90.54% 92.30% 91.93%
3 CE 0.96 92.88% 89.92% 90.54%
3 CW 0.95 90.96% 93.49% 92.96%
3 CT 0.95 86.94% 92.97% 91.70%
3 CA 0.94 90.23% 93.97% 93.18%
4 TA 0.92 83.92% 90.61% 89.20%
4 ET 0.91 85.34% 92.19% 90.75%
4 EA 0.95 87.40% 93.49% 92.21%
4 WT 0.91 85.99% 84.76% 85.02%
4 WA 0.90 81.98% 90.72% 88.88%
4 EW 0.94 83.01% 90.75% 89.14%
2 E 0.91 85.08% 88.70% 87.94%
2 W 0.84 71.99% 80.65% 78.83%
2 T 0.88 78.56% 86.56% 84.87%
2 A 0.89 73.97% 92.44% 88.55%
1 C 0.96 92.82% 92.43% 92.51%

Furthermore, the most efficient combinations of each quantity group were evaluated.
Figure 14 presents the results of the trained models in terms of accuracy and loss. The results
illustrate that the fewer the placements, the lower the efficiency in the small-epoch training
model, although the accuracy and loss were quite similar after training for 100 epochs.
Moreover, Figure 15 illustrates the ROC curves and AUC values of these five models.
The results show that all five models perform well and have similar ROC curves. To
further evaluate the performance of these models, the efficiencies of each collected activity
were compared.

Figure 14. Performance of the five trained models, evaluated with accuracy (left) and loss (right).
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Figure 15. ROC curves and AUC values of the five models.

Table 5 presents the detailed performance of these models for each activity. To clarify,
the sensitivity values are zero for fall-like activities because no falling happens; hence, no
true falling labels appear. According to the average results of these five models, F1 and F6
in the falling activities have lower sensitivities than the other four types. This is mainly
because these two activities have an action to reduce the impact before falling, while the
others fall directly to the ground. In F1, the knees touch the ground first before falling, and
the firefighter sits on the ground, when simulating a backward fall in F2.

Meanwhile, for the fall-like activities, the model is more likely to wrongly predict
FL2 (walking with a stoop) as falling. This is because the physical status of the upper
body is quite like a fall; hence, it is more difficult to distinguish FL2, if fewer of the lower
body’s features are utilized. It is also important to notice that the specificities of the falls
are much higher than those of the fall-like activities, which illustrates that fall-like motions
indeed have some similarities with falling motions, while normal walking is very different
from falling.

In terms of the performance of each model, all five models are sufficient for fall
detection (Se over 90% and Ac over 92%); however, the CA and C models are insufficient
for a specific fall activity (F2 and F4, respectively). This illustrates that it is difficult to detect
some of the falling activities with fewer IMUs and fewer features. Moreover, CEWTA shows
a better ability to distinguish falls and non-falls because the specificity of each activity
is generally higher than that of the other models. This illustrates that the fall-detection
system can indeed be improved by using more IMUs in different positions. In general, the
IMU combinations of CEWTA, CEWT, and CET performed the best in each activity.

Van Thanh et al. devoted considerable effort to FDSs for firefighters. Their group
presented an acceleration-based algorithm in [27] and proposed four improved algorithms
in [28]. The four improved algorithms all have reduced physical performance because of
a double-check method used to reduce false detections. Algorithm 1 utilized all features,
while the others used parts of the features. Table 6 shows a performance comparison with
their studies, as well as some recent FDS studies in other fields.



Sensors 2021, 21, 6770 15 of 18

Table 5. Detection efficiency for each fall activity.

Activity CEWTA CEWT CET
Se Sp Ac Se Sp Ac Se Sp Ac

F1 91.45% 96.87% 95.42% 87.28% 98.40% 95.42% 89.11% 98.25% 95.80%
F2 94.48% 98.34% 97.15% 93.54% 98.26% 96.81% 95.22% 98.38% 97.41%
F3 96.55% 97.20% 97.00% 95.69% 97.58% 97.07% 97.09% 97.10% 97.10%
F4 95.02% 98.72% 97.62% 94.91% 99.02% 97.79% 95.37% 98.72% 97.72%
F5 96.62% 97.40% 97.22% 98.46% 97.22% 97.50% 97.23% 97.22% 97.22%
F6 78.38% 99.05% 92.80% 80.70% 99.27% 93.66% 76.71% 99.11% 92.33%

FL1 0% 90.31% 90.31% 0% 90.06% 90.06% 0% 89.38% 89.38%
FL2 0% 89.92% 89.92% 0% 84.17% 84.17% 0% 82.21% 82.21%
FL3 0% 87.79% 87.79% 0% 89.87% 89.87% 0% 87.60% 87.60%

Total 92.25% 94.59% 94.10% 91.22% 94.72% 93.98% 91.61% 94.06% 93.55%

Activity CA C Average
Se Sp Ac Se Sp Ac Se Sp Ac

F1 91.25% 94.31% 93.49% 90.84% 95.31% 94.11% 89.99% 96.63% 94.85%
F2 81.84% 95.89% 91.58% 97.66% 95.81% 96.38% 92.55% 97.34% 95.87%
F3 93.64% 97.44% 96.27% 99.68% 95.80% 97.00% 96.53% 97.02% 96.89%
F4 94.61% 98.08% 94.07% 84.14% 96.61% 92.90% 92.81% 98.23% 96.02%
F5 98.46% 96.32% 96.80% 96.61% 97.04% 96.94% 97.48% 97.04% 97.14%
F6 78.38% 97.60% 91.79% 88.55% 97.88% 95.06% 80.54% 98.58% 93.13%

FL1 0% 83.72% 83.72% 0% 99.61% 99.61% 0% 90.62% 90.62%
FL2 0% 86.88% 86.88% 0% 80.88% 80.88% 0% 84.81% 84.81%
FL3 0% 89.99% 89.99% 0% 93.05% 93.05% 0% 89.66% 89.66%

Total 90.23% 93.97% 93.18% 92.82% 92.43% 92.51% / / /

Table 6. Comparison of fall-detection results with the proposed FDS and some previously developed FDSs, where SR, Se,
Sp, and Acc represent the sampling rate of IMUs, sensitivity, specificity, and accuracy, respectively.

Reference Application Methodology Algorithm SR Se Sp Ac

Van et al.
(2018) [27]

Firefighters

1 3-DOF accelerometer
and 1 barometer on

the thigh pocket, and
1 CO sensor on the
mask (they raised 4

algorithms in [27] and
1 algorithm in [28])

Algorithm 1

100Hz

100% 100% 100%
Algorithm 2 100% 94.44% 95.83%
Algorithm 3 100% 90.74% 93.05%
Algorithm 4 100% 91.67% 93.75%

Van et al.
(2018) [28] Algorithm 1 88.9% 94.45% 91.67%

Shi et al.(2020) [42] Elderly 1 IMU on waist / 100 Hz 95.54% 96.38% 95.96%
AnkFall (2021) [43] 1 IMU on ankle / 100 Hz 76.8% 92.8% /

Kiprijanovska et al.
(2020) [44]

Ordinary
being 2 IMUs in 2 smartwatches / 100 Hz 90.6% 86.2% 88.9%

Proposed method Firefighters
9 9-DOF IMUs on the chest,
wrists, elbows, thighs and

ankles
/ 15 Hz 92.25% 94.59% 94.10%

First, the proposed method only utilized a low data-sampling rate (15 Hz) to achieve
higher performance in sensitivity, specificity, and accuracy rate, compared to the other
studies (100 Hz), which indicates a cost reduction in the data-processing complexity and
power consumption. Compared with the results of the Van Thanh group, the improved
algorithms have higher sensitivities than the proposed method, while the one without the
double-check algorithm is less efficient. Meanwhile, the algorithm presented by [27] also
indicated that fall detection with a single sensor showed worse performance, compared
with our multisensory approach.

In comparison with the FDSs in other fields, the results illustrated that IMUs on
the ankles [43] and wrists [44] are less efficient than our proposed method in all metrics.
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However, the study in [42] performed better than our method, which also suggests that
a higher sampling rate (100 Hz) could improve the fall-detection accuracy. Moreover,
according to [42] and our results, the optimal placement of the IMU could not only be on
the chest, but also on the trunk. In general, this proposed study delivers high fall-detection
performance by considering the motions from both the upper and lower parts of the body,
which increased the detection probability.

5. Conclusions

This paper proposed a novel wearable FDS fall-detection system for firefighters by
embedding motion sensors on the firefighting PPC. The study revealed that the classifica-
tion of falls and fall-like activities can be distinguished with an accuracy of approximately
94% with all nine IMUs embedded. The study also revealed that an IMU placed on the
chest was critical for achieving the best fall-detection performance. Furthermore, the study
also concluded that placing IMUs on the chest, elbows, and thighs could also achieve an
acceptable fall-detection performance with higher cost efficiency.

In this study, the simulated falling events were based on the experiences and feedback
collected from firefighters. This preliminary study denoted the potential of wearable
embedded motion sensors for identifying the falling activities of firefighters. Furthermore,
the proposed study achieved results similar to those of existing studies, but with a lower
sampling rate; hence, reducing the computation cost in general.

A detail plan that covers the ethics and safety issues are currently ongoing and
higher realistic falling events will be collected in the future, potentially during actual
firefighting rescue missions. Meanwhile, alternative sensors to reduce the false detection
will be evaluated. Future studies include fall detection in actual firegrounds, and exploring
alternatives to reduce false fall detections, such as utilizing firefighters’ physiological
signals (heart rate, brainwave signal) and fireground environmental conditions (CO2
concentration level, etc.). The proposed smart wearable PPC can also be expanded to detect
the micro-activities of firefighters, which may increase their safety. In addition, future work
also considers the new design of wireless communication framework and infrastructure
that can meet the requirements of firefighting activities. Moreover, the sensor components
and circuits need further improvements in the aspects of heat-proof, water-proof and
washable to overcome the damage issues under the harsh environment in fireground.
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