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Abstract: A drone-borne microwave radiometer requires a high sampling frequency and a continuous
acquisition capability to detect and mitigate radio frequency interference (RFI), but existing methods
cannot store such a large amount of data. In this paper, the dual polling write method (DPSM) for
secure digital cards triggered by a timer under a multitask framework based on STM32 MCU is
proposed to meet the requirements of continuous data storage. The card programming step was
changed from a query waiting structure to a polling query flag bit structure, and time-sharing
processing and parallel processing were used to simulate multithreading. The experimental results
were as follows: (1) the time consumption of the whole storage procedure was reduced from
4000 microseconds to 200–400 microseconds; (2) the time consumption of the card programming step
was reduced from 3000 microseconds in the first block and 1000 microseconds in the second and
subsequent blocks to 17–174 microseconds and 18–71 microseconds, respectively, compared with the
existing method; (3) the delay in the whole sampling cycle was reduced from 3942 microseconds to
0 microseconds. The results of this paper can meet the data storage requirements of a drone-borne
microwave radiometer and be applied to the high-speed storage of other devices.

Keywords: drone-borne microwave radiometer; SD card storage; STM32 MCU; time-sharing pro-
cessing; dual polling

1. Introduction

A microwave radiometer is a high-sensitivity broadband noise receiver working in the
microwave band, which can extract the variation in weak microwave radiation signals from
strong background noise, and it mainly deals with the Gaussian white noise radiated by
ground objects [1]. A spaceborne radiometer cannot be used for medium and small-scale
applications due to its coarse resolution (≈25 km) [2,3]. The disadvantages of a ground-
based radiometer [4,5] include its small observation range, poor mobility, and terrain
limitation, while an airborne radiometer has the advantages of high spatial resolution and
relatively large observation range, which fill the scale gap between space-based and ground-
based radiation observations. In addition, the advantages of a drone-borne microwave
radiometer include the convenient operation, strong real-time performance, and low cost [6,
7], which can be used for brightness temperature observation at the block scale and can
provide data support for soil moisture monitoring, snow observation model inversion, and
satellite ground verification [8–11].

When a ground-based radiometer is used, electromagnetic signals with similar fre-
quencies, usually from radar, cell phone base stations, automotive electronics, and other
wireless devices can interfere with the signals received by the receiver [12,13]. In addition
to these interferences, a drone-borne microwave radiometer can also be affected by elec-
tromagnetic interference coupled with a high-speed rotor coil and the internal vibration
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caused by an uneven rotor speed during flight. For rapidly changing ground object targets,
in order to ensure data quality and to detect and mitigate interference [1,14–17], reducing
the integration time and increasing the sampling frequency are necessary, and they lead to
a substantial increase in the amount of data. When considering power consumption and
stability, having sufficient on-board storage is the best way to ensure complete recording of
data.

At present, the microcontrollers launched by various chip manufacturers are inte-
grated with rich peripheral resources, such as SPI, I2C, SDIO, CAN, Ethernet, etc. The
early mature peripherals (USART and SPI) are relatively simple to control and use, while
the SDIO and Ethernet with relatively complex control protocols require multiple control
steps to complete one operation, and the control consists of mostly ‘command–response’
operations. Even with DMA, many valuable CPU cycles are required to query the status
of each step. The radiometer used in this study was designed based on an STM32 micro
control unit (MCU). There are two communication protocol modes in a secure digital (SD)
card based on a STM32 processor: namely, the SPI mode and the SD mode [18]. Writing to
the drive is simple in the SPI mode, and the host uses the SPI bus to access the card. Limited
by its hardware structure, the transmission rate is low, so the SPI mode is suitable for tasks
with short development cycles and small amounts of storage and transmission data [19–21].
In contrast, the SD mode has complex drivers and numerous internal functions, but its
transmission rate is fast and its performance is stable, which makes it suitable for projects
with a large amount of data storage [22,23]. Therefore, the SD mode is selected for this
study for its higher transmission rate.

The MCU is connected to the SD card through secure digital input and output (SDIO)
and is generally transmitted in the form of a data block. The main operations include
an initialization parameter setting, a power-on status query, data block read and write
operations, etc. The SD card initialization parameter setting and power-on status query
process can be referenced in the official manual [24]. Data block reading and writing
includes single-block or multi-block reading and writing. The block writing procedure
consists of five steps: setting the block size, obtaining the card status, setting the write
address, selecting and enabling the device mode, and waiting for the card programming to
finish. The device mode can select the polling mode, the interrupt mode, and the direct
memory access (DMA) mode.

The polling mode occupies the most MCU time compared with the other two modes,
which is not suitable for the multitasking framework of this study; the interrupt mode also
takes up more time and has a medium speed; while the DMA mode copies data from one
address space to another. When the CPU initializes the transfer action, the transfer action
itself is performed and completed by the DMA controller. Using DMA does not delay
the processor’s work and can be rescheduled to accommodate other work [25]. Therefore,
SDIO + DMA is suitable for high-speed SD card storage in this study.

From the perspective of hardware, a STM32 single core MCU can only run within a
single thread at a time. Storage operations usually need to be carried out after acquisition
and processing processes are stopped. For tasks in which the storage time consumed is less
than the idle time, we define them as low-speed sampling tasks:

TStored < TIDLE = TPer − TSam, (1)

where TStored and TSam are the time consumptions of the stored procedure and sampling
procedure, respectively; TPer is the sampling period, and TIDLE is the idle time of a single
sampling period. A continuous time sequence in the main function infinite loop or the
interrupt is usually allocated to complete the storage operation between two acquisitions.
Since the storage time is less than the idle time of a single sampling period, the whole
sampling cycle will not be delayed. This method is simple, and the development cycle
is short. Therefore, many devices adopt this method [18,26]. After a certain number of
acquisitions, the data are encoded and stored. The time sequence is shown in Figure 1.
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Figure 1. The time sequence diagram of low-speed sampling tasks for (a) storage in the main function loop and (b) storage
in the interrupt.

However, this method is not suitable for a drone-borne radiometer, which requires
continuous and rapid data acquisition for time domain pulse detection in order to detect
and mitigate RFI because the idle time of a single sampling cycle is far less than the storage
time. If the acquisition is temporarily stopped for storage by turning off the timer that
triggers acquisition or storage in the interrupt, taking higher priority, a delay will occur in
the whole sampling period

TDelay = TStored − TIDLE. (2)

As shown in Figure 2b, the task requirements of continuous sampling are not met. In
contrast, if the acquisition process is not suspended as shown in Figure 2c, namely, carried
out in the main function loop, the program will enter the timer interrupt frequently due to
the high AD sampling frequency connected to the SPI port, which may cause the storage
procedure to be interrupted frequently and can cause program exception. If the whole
sampling cycle time is less than the time required for storage, the data from the previous
cycle will not have been stored, and the data collected in the following cycle will need to be
stored. Then, the data cache is blocked, which causes a program crash and does not meet
the design requirements.

This paper analyzes the impact of existing storage methods, the main function storage
method (MFSM), and the interrupt-triggered storage method (ITSM), on the radiometer
acquisition process and the underlying functions of each step in the write procedure,
despite other kinds of processing chips being used, such as STM32f4 series, which was
faster, or FPGA, with parallel and pipelined technology [27,28]; the same problem is
encountered when MFSM and ITSM are used for storage after data acquisition with high
sampling frequency, but their threshold is higher. Therefore, a new time-sharing processing
fast storage method for SD cards, a dual polling storage method (DPSM) triggered by timer
interrupt under a multitask framework based on STM32 MCU, is proposed to realize the fast
SD storage of a drone-borne microwave radiometer under the requirement of continuous
acquisition. The research also has a certain role in promoting the multiperipheral, multitask,
and high-speed cooperative work of various microcontrollers.
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Figure 2. The time sequence diagram for (a) no storage operation is performed, (b) storage in the interrupt, and (c) storage
in the main function loop.

2. Materials and Methods and Experiments
2.1. Dual Polling Storage Method (DPSM) Triggered by Timer Interrupt

In the case of fast acquisition, using MFSM would cause frequent timer interruptions
and program exceptions. While using ITSM could avoid this problem and improve the
stability of the program, it will cause delays and cannot meet the task requirements of
continuous acquisition. To solve the problems mentioned above, this study designed
and built a hardware test environment to monitor each step of the single-block writing
procedure. Based on the results of statistical analysis, a new and improved method, DPSM,
is proposed. The framework was redesigned, and the underlying algorithm function of the
single-block writing procedure was scattered and reorganized to provide a stable, reliable,
and high-speed SD card storage scheme.

The study used time-sharing processing technology to divide the run time of the
processor into very short time slices, reasonably arranging the timing of the sampling task,
the data processing task, the data coding task, and the data storage task; made full use of
the resources; and improved the utilization rate of resources. At the same time, the idea
of the web solution polling structure was applied to the program. With the help of the
DMA device mode, the STM32 MCU with a single core and a single thread was simulated
as multithreading.

2.1.1. The Framework and Time Sequence of DPSM

Benefitting from the DMA device mode adopted by the SD card storage, the card
programming step was directly controlled by the SD card without the participation of the
main function. The SD card can be regarded as another core that provides the possibility of
reconstruction of the underlying framework of the block write operation. Compared with
ITSM shown in Figure 3b, the main improvement was the reconstruction of the underlying
logic of the writing procedure; that is, the card programming step was changed from the
query waiting order structure to the polling query flag bit structure, and time-sharing
processing and parallel processing were used to simulate a single thread as multithreading,
as shown in Figure 3c. As seen when comparing Figure 3b,c, the delay caused by storage
operation could be eliminated using this method.
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Figure 3. The time sequence diagram (a) when no storage operation is performed, (b) for ITSM, and (c) for DPSM.

Polling was originally a web application scheme. The client sent requests to the server
at a certain time interval to solve the problem of data synchronization. In the first polling,
the main function, as a server, sent a request to query flag bits after a time interval of the
whole sampling cycle to judge whether the writing process is completed. In the second
polling, the timer interrupt was used as a server; it sent a request to query flag bits after a
time interval of a sampling period to determine the progress of the stored procedure and
check the card status to determine whether the card programming step was complete.

2.1.2. Applicable Conditions and Theoretical Time Consumption

For the convenience of description, the first four steps (setting the block size, obtaining
the card status, setting the write address, and selecting and enabling the device mode) in
each block write procedure were defined as Procedure 1, and the card programming step,
which takes a longer time, was defined as Procedure 2; then, we have the time consumed
by the stored procedure:

TStored = TPro1 + TPro2, (3)

and
TStored < TCycle, (4)

where TPro1, TPro2, and TCycle are the time consumption of Procedure 1, Procedure 2, and
the whole sampling cycle, respectively.

Due to the polling mode adopted by Procedure 2, it can be directly entered into
Procedure 2 for query after Procedure 1 is completed, rather than jumping out of the inter-
rupt and waiting for the next sampling period for judgment, so that each write procedure
can reduce the number of interrupt judgments by at least one sampling period and can
reduce the burden of interrupt control. A query is performed to check if Procedure 2
finished after each sampling instead of waiting, and its time consumption is TQuery; then,
we have the new time consumption

T′Stored = TPro1 + T′Pro2 = TPro1 + ∑N
i=0 TQuery i, (5)
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where N is the number of queries,

N = round down {[TPro2 − (TPer − TSam)] × (TPer)−1} + 3. (6)

2.1.3. The Logic Flow Chart and Algorithm of DPSM

An idle time sequence after collection is specially allocated for transcoding in the main
function to avoid small delay caused by too many operations in the same time sequence.
Considering that the time consumption of the storage procedure for the first block differed
from the others, writing more than two blocks was the same in principle, so two data blocks
written at a time was chosen as an example.

Figure 4 is the storage logic flow chart of DPSM. The framework itself formed a closed
loop and had good robustness. It had the ability to correct abnormal events and handle
emergent situations. We define two flag bits: the write status flag (WSF) and the write
finish flag (WFF). For the convenience of description, the framework flow chart in this
paper used the following convention: I and J in the structure (I, J) represent the values of
the WSF and WFF, respectively. For example, the state (4,4) indicates that the write status
flag bit was 4 and that the write finish flag bit was 4, which was also a flag that the block
write process was completed. The logic of the flow chart was as follows.

Figure 4. The storage logic flow chart of DPSM of storing two data blocks.

(a) The main program polled the write status flag bit to determine whether the previous
stored procedure was completed (WSF = 4?). If the procedure was not completed, the
procedure had timed out; otherwise, it would be initialized, and the flag bit would be
cleared.

(b) Wait until the data acquisition was ready, complete the coding, and set the WSF.
(c) When the main function infinite loop was running, the program would trigger the

timer for interrupt when the counter of the timer accumulated a certain value, and
the update flag would then be set. The main function would poll whether the WSF is
set each time the interrupt was entered. If set, the state should be (1,0), and the next
operation, step d, would be performed; otherwise, wait for the next timer interrupt.
The timer interrupt threshold should be set to the frequency of AD sampling.
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(d) The WSF increased automatically and performed Block 1 Procedure 1. After the
process was completed, the WFF increased automatically and initiated the next
operation. At that time, the state should be (2,1).

(e) When the state was (2,1), Block 1 Procedure 2 should be performed. The WFF was
polled to determine whether card programming had finished. If finished, the WFF
increased; the state should be (2,2); and the next operation, step f, should be performed.
Otherwise, exit the interrupt and wait for the next interrupt.

(f) Repeat the above steps for data Block 2. The state should be (3,4) after the stored
procedure finishes.

(g) Poll the flag bit until all of the above steps are completed and the WSF increased
automatically. At this time, the status is (4,4), and all of the stored procedures are
completed. Then, returned to step a.

2.2. Comparative Experiments

In this study, the ARM Cortex-M3 core 32-bit high-performance microcontroller
STM32F103ZET6 chip was selected as the micro control unit. The maximum internal
working clock frequency of the chip could reach 72 mhz. SPI, USART, SDIO, DMA, and
other peripherals were integrated in the chip, which could be called directly to facilitate de-
velopment. The hardware running environment of the experiment was built by connecting
the corresponding devices through the development board. The connection circuit of the
SDIO interface is shown in Figure 5.

Figure 5. SDIO interface schematics.

The developmental environment of the STM32 micro control unit was the RealView
microcontroller development kit (MDK), and the version was Keil µVision5, which was an
embedded software development tool for ARM processors launched by the ARM company
based on µVision interface, which provided a perfect C/C++ development environment.
Additionally, the J-LINK V9 downloader was used to download the code to flash memory.

In this study, two groups of experiments were carried out. The first experiment in
Section 2.2.1 was to monitor the time consumption of all of the procedures of each data
block, and there was no acquisition process. The purpose was to analyze and locate the
reasons for the long duration of the storage operation and to count the probability and
distribution of abnormal time consumption of each process. The second experiment in
Section 2.2.2 aimed to verify the performance of the three storage methods under the multi-
acquisition task. The experiment was carried out on the PCB with the same configuration as
the microwave radiometer. Since the front end of a radiometer had not been debugged, the
SPI pin connected to ADC (ad7866 used in this paper) was temporarily NC (not connected),
without signal input. In fact, the acquisition was still carried out, the working state and
other process were the same as that of microwave radiometer except for the front end that
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really worked and that would not be affected by the key link of this study—later data
acquisition and processing. Therefore, the experiment in Section 2.2.2 collects real data
rather than simulated data.

2.2.1. Time Consumption of Single-Block Writing Steps

The block writing procedure consisted of five steps: setting the block size, obtaining the
card status, setting the write address, selecting and enabling the device mode, and waiting
for card programming to finish. By monitoring the corresponding time consumption of
these five steps of a single-block write procedure, a set of consecutive single-block write
experiments was designed to explore the impacts of data length and block writing order
on the write time.

The block size of each data block was 512 bytes. The impact of the data length on the
write time was explored by comparing the write time of each single data block. The impact
of the block writing order was explored by comparing the time consumption of each step
of each block, and whether the impact of the writing order on the time consumption was
caused by the physical layer writing mechanism could be determined through the time
consumption comparison among the first block and the second and subsequent blocks.

2.2.2. Performance Verification of Different Write Methods

By monitoring the overall and the various steps of the storage procedure time con-
sumption, the delay in the storage procedure to the whole sampling cycle, as well as
the time consumption of the sampling procedure, a set of comparative experiments was
designed to explore the impact of different sampling intervals on MFSM, ITSM, and DPSM,
and their applicable environment under the multi-acquisition task framework.

The data were stored once every 1000 instances of sampling into two data blocks
after integration and coding. Three general-purposed timers were used in the experiments,
TIM2 was used to trigger AD sampling at a short time interval, TIM3 was used to trigger
parameter sampling, which did not require frequent sampling, such as temperature, at a
relatively long time interval, and TIM4 was used to monitor the above parameters, which
would be sent to the host computer through a serial port for statistical analysis. The
sampling period or the update cycle of the timer interrupt could be controlled by changing
the value of the prescaler register (PSC) and auto-reload register (ARR). The following
experiments were carried out.

(a) The overall time consumption and success rate of the three methods under different
sampling interval conditions were monitored to find their applicable environments.

(b) The time consumption of each step of DPSM under different sampling interval condi-
tions was monitored in order to verify the proposed method.

(c) The delay caused by the storage procedure to the whole sampling cycle can be
calculated by monitoring the time consumption of the corresponding position of the
sampling cycle when storing or not storing.

3. Results and Discussions
3.1. Time Consumption Results of Single-Block Writing Steps

The typical time consumption of each step of the consecutive single-block writing
experiment is shown in Figure 6. Procedure 1 was composed of four steps: setting the
block size, obtaining the card status, setting the write address, and DMA mode enabling,
consuming a total of 80 microseconds. The first three steps consumed no more than
10 microseconds. The DMA transmission step, which sent data and parameters from
the host to the SD card cache, consumed approximately 52 microseconds. Compared
with the sampling period, these steps had a high probability of not affecting the process.
Additionally, the last step of the card programming process (Procedure 2) consumed
approximately 3000 microseconds for the first block and 1000 microseconds for the second
and subsequent blocks, which was significantly less than that of the former. From the
results of the experiment, we found that (1) the data length affected the total write time and
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the average write time of each block, in which the longer the data, the shorter the average
time; (2) due to the SD card’s physical layer driver or other reasons, the write time mainly
depended on whether the write order is the first block; and (3) the write time was hardly
affected by the content.

Figure 6. Histogram of the typical value distribution of the time consumption of each write procedure (in microseconds).

The time consumption of each step may exceed the typical value (±1 microsecond)
during a mass write stress test, and the statistical results are shown in Table 1. The
probability of a timeout occurrence of the first four steps was no more than 0.04‰, and the
timeout was less than 100 microseconds, which had little impact on the write procedure,
and most task requirements can be met by certain restrictions. The time consumption of
the card programming showed strong volatility and a proportion far beyond the typical
value range (more than 10 milliseconds), which could reach 1.75‰.

Table 1. Proportion of typical value and timeout value of each step.

Steps Set the Block Size Obtain the Card
Status

Set the Write
Address DMA Mode Enable Card Programming

Proportion of typical
value (‰) 999.989 999.989 999.993 999.962 998.243

Proportion of timeout
value (‰) 0.011 0.011 0.007 0.038 1.757

The card programming step accounted for more than 92% of the whole stored proce-
dure (Figure 6), which was the key object to be studied. At the same time, if a larger buffer
was set up, the average time consumption of centralized writing for each block would
be reduced. However, due to the limitation of high sampling frequencies of multitasking
frameworks, no large amount of continuous time sequence was allocated to SD card storage
procedures. Therefore, the structure of the card programming was reconstructed to reduce
the storage time consumption, and DPSM was proposed.

3.2. Performance Result of Different Write Methods

A large number of block writing experiments have been conducted. The overall
and various steps of the stored procedure time consumption and the delay in the storage
procedure for the whole sampling cycle were monitored. The performance and applicable
environment of the three storage methods, MFSM, ITSM, and DPSM, under the multi-
acquisition task framework were verified.

(a) Total Time Consumption and Success Rate
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The test results of the total time consumption TStored and success rate of the three
storage methods under different sampling intervals are shown in Table 2. The results show
the following: (1) MFSM was only suitable for tasks with a few acquisition tasks of which
the sampling period was greater than the sum of the storage time and sampling time. In this
experiment, each sampling procedure took about 82 microseconds, and the storage time
consumption was about 4000 microseconds. In order to ensure the success rate of storage
and the robustness of the program, the sampling period was recommended to be greater
than 10 milliseconds. This method would not cause delay to the whole sampling cycle.
Continuous and fast sampling would frequently interrupt the main program process, cause
data blocking, and finally lead to program exception. (2) ITSM was applicable to tasks
with a sampling period no less than 170 microseconds when performing dual acquisition
tasks. A delay of about 4000 microseconds would be seen in the whole sampling cycle, and
this delay was hardly affected by the sampling period. (3) The improved writing method
DPSM in this study was also suitable for tasks with a sampling period of no less than
170 microseconds when performing dual acquisition tasks. The storage procedure took a
total of 200–400 microseconds, which was negatively correlated with the sampling period.
Compared with ITSM, the storage operations were scattered within the idle time of each
sampling period, and the time consumption of each operation was less than that idle time;
thus, the whole sampling cycle would not be delayed. No matter how many acquisition
tasks were added, DPSM can complete the storage task well as long as the acquisition time
did not exceed the idle time of a single sampling period. In addition, the storage time
was limited to within 70 sampling periods in this study, for we preferred to allocate the
rest of the idle time (930 of 1000 sampling periods) to other operations, resulting in some
‘unsuccessful’ storage, which would cause some data loss. Theoretically, the limit could
be up to the whole sampling cycle time, which could basically avoid this phenomenon.
If the event did occur, the probability of occurrence was less than 0.2%, and a very small
amount of data would be lost. However, the results of applications such as radio frequency
interference detection of drone-borne microwave radiometer data and surface parameter
inversion would not be affected.

Table 2. Total time consumption and success rate of three storage methods under different sampling intervals in a
multi-acquisition task framework.

TIM2
Sampling

Period

TIM3
Sampling

Period

Number of
Experiment

Repeats

MFSM ITSM DPSM

Success
Rate (%) TStored (us) Success

Rate (%) TStored (us) Success
Rate (%)

T’Stored
(us)

>10 ms 10 s 1000 100 3942.1 100 3946.7 100 200.7
1 ms 1 s 2000 0 / 100 3917.8 100 220

200 us 200 ms 5000 0 / 99.82 3904.3 99.8 358.9
180 us 180 ms 5000 0 / 99.82 3942.5 100 379.1
170 us 170 ms 5000 0 / 99.76 3967 99.96 390.1
160 us 160 ms 5000 0 / 0 / 0 /

(b) Time Consumption of Two Procedures of DPSM

The test results of the time consumption of two procedures of DPSM under different
sampling intervals are shown in Table 3. For different sampling periods, the time con-
sumption of Procedure 1 for each write command remained unchanged, and the time
consumption of Procedure 2 was negatively correlated with the sampling period, which
was the main reason for the difference in total time consumption. The threshold of the
sampling period needed to be greater than the sum of the time-consuming of the sampling
procedure and Procedure 1 to ensure that the whole sampling cycle would not be delayed
and that the acquisitions were uniform and continuous.
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Table 3. The time consumption of each step of DPSM under different sampling intervals.

TIM2
Sampling

Period

TIM3
Sampling

Period

Total
Duration

(us)

Block 1
Procedure 1

(us)

Block 1
Procedure 2

(us)

Number of
Queries

Block 2
Procedure 1

(us)

Block 2
Procedure 2

(us)

Number of
Queries

10 ms 10 s 200.7 82 17 2 82 18 2
1 ms 1 s 220 82 44 5 82 26 3

200 us 200 ms 358.9 82 143 17 82 53 6
180 us 180 ms 397.1 82 153 18 82 62 7
170 us 170 ms 390.1 82 160 19 82 71 8

Compared with the MFSM and ITSM, the time consumption of Procedure 2 was
reduced from about 3000 microseconds (seen in Figure 6) to 17–174 microseconds, which
was 0.6–6% for the first block, and from about 1000 microseconds (seen in Figure 6) to
18–71 microseconds, which was 2–7% for the second and subsequent blocks. Additionally,
these processes were carried out during the idle time of the sampling period, which would
not cause delay to the whole sampling cycle. Note that the time consumption of Procedure 2
here refers to the integration time of several times querying whether Procedure 2 was
completed, rather than the actual time consumption of Procedure 2. After the completion
of Procedure 1, each time the timer interrupt was triggered, a query of whether Procedure 2
was completed would initiate, which takes about 8 to 9 microseconds. As for the total
DMA time that was almost constant, the longer sampling period meant a longer interval
between two queries, that is, the longer the DMA run time, which resulted in fewer queries
and less time consumed by Procedure 2.

In addition, the time consumed for the interrupt query can be further limited in the
program. For example, the query was performed once every several interruptions, which
can reduce the number of queries N to reduce the integration time, and the time saved
can be used to carry out more other alternative operations. If an inappropriate value was
selected, the delay might become longer, which may occur in some extreme settings. For
most cases, we recommend setting this value to 10, which can reduce the Procedure 2 time
consumption the most: to within 20 microseconds, that is, up to 11% of the original time.

(c) The Delay to the Whole Sampling Cycle Caused by the Stored Procedure

The delay to the whole sampling cycle caused by the stored procedure was calculated
by monitoring the time consumption of the corresponding locations of the sampling cycle
when ITSM and DPSM were applied. The results are shown in Figure 7. The time consump-
tion of the corresponding position for ITSM increased from 13,915 microseconds when no
storage operation was performed to 17,857 microseconds when a storage operation was
performed, resulting in a delay of 3942 microseconds. As for DPSM, the time consumption
of the corresponding position remained unchanged at 14,000 microseconds regardless of
whether a storage operation was performed, without causing any delay, which was in line
with our expected assumption.

In addition, some steps in Procedure 1 could also be changed from the query waiting
order structure to the polling query flag bit structure, and the time consumption can be
further reduced, but the improvement was not very large.
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Figure 7. Comparison of the average time consumption between whether to perform storage procedure for ITSM or for
DPSM (in milliseconds).

4. Conclusions

For the continuous acquisition storage problem based on STM32 MCU, this paper stud-
ies the advantages and disadvantages as well as the applicable conditions of the existing
storage method, and it proposes a new fast storage method: the dual polling write method
(DPSM) for SD card triggered by timer under a multitask framework. The time-sharing
processing technology and the polling structure are effectively used to realize stable, reli-
able, and high-speed storage, which solves the problem of data storage during continuous
acquisition of a drone-borne passive microwave radiation measurement. Experiments were
designed, and the stability and feasibility of the framework were verified on the hardware
test environment. Compared with the existing methods, the storage procedure does not
delay the whole sampling cycle, the overall time consumption is reduced by 90–95%, and
the time consumption of the card programming step is reduced by 93–99%, which greatly
saves the time sequence occupied by storage.

The proposed method should be applied to a drone-borne microwave radiometer to
ensure that the radiometer carries out equal-interval high-frequency sampling in time as
much as possible, which ensures the spatial continuity of ground data to a great extent,
and it is very helpful for subsequent data processing and image mosaic. The dual polling
storage method itself forms a closed loop and has the ability to correct for abnormal
events and to handle emergent situations, with good robustness. The storage method
has good portability and can be applied to improve the efficiency of data storage under
a multitasking framework besides for a drone-borne radiometer. For better chips, this
method could further improve storage capacities.
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