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Abstract: The absorbance spectra for air-dried and ground soil samples from Ontario, Canada were
collected in the visible and near-infrared (VIS-NIR) region from 343 to 2200 nm. The study examined
thirteen combination of six preprocessing (1st derivative, 2nd derivative, Savitzky-Golay, Gap, SNV
and Detrend) method included in ‘prospectr’ R package along with four modeling approaches:
partial least square regression (PLSR), cubist, random forest (RF), and extreme learning machine
(ELM) for prediction of the soil organic matter (SOM). The 1st derivative + gap, 2nd derivative + gap
and standard normal variance (SNV) were the best preprocessing algorithms. Thus, only these three
preprocessing algorithms along with four modeling approaches were used for prediction of soil
pH, electrical conductively (EC), %sand, %silt, %clay, %very coarse sand (VCS), %coarse sand (CS),
%medium sand (ms) and %fine sand (fs). The results showed that OM, pH, %sand, %silt and %CS
were all predicted with confidence (R2 > 0.60) and the combination of 1st derivative + gap and RF
gained the best performance. A detailed comparison of the preprocessing and modeling algorithms
for various soil properties in this study demonstrate that for better prediction of soil properties
using VIS-NIR spectroscopy requires different preprocessing and modeling algorithms. However,
in general RF and 1st derivative + gap can be labeled at the best combination of preprocessing and
modelling algorithms.

Keywords: proximal soil sensing; precision agriculture; digital soil maps; soil characterization; soil
core profiles

1. Introduction

The global food demand of an increasing population poses tremendous pressure on
our limited land resources. This calls for an improved and efficient management of soil,
one of the three most important natural resources, which requires detailed information
(FAO [1]). Increasing demand for soil data in agriculture has brought the need for a timely
and cost-efficient method of soil analysis [2]. Soil data is used by farmers to make informed
decisions on what crops they grow and what inputs they use [3]. Traditionally, several
soil samples across the sampling area or a field are collected and sent to the laboratory for
analysis which can be a lengthy and costly process. Owning to the inherent nature of the
soil variability, a large number of samples following an intensive sampling strategy are
required to characterize the variability in an agricultural field [4].

Spectroscopy, sensing the reflectance of electromagnetic radiation (EMR) from the soil’s
surface [5] offers a promising alternate approach for rapid prediction of soil properties [2].
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Soil properties influence the reflectance of light at diagnostic wavelengths, soil spectroscopy
can be used to simultaneously estimate several soil properties [5].The soil organic carbon
(SOC), texture, pH, and EC were among the most commonly predicted soil properties in the
literature (Table 1). An average prediction accuracy (R2) using VIS-NIR for SOC, sand, silt,
clay, pH and EC were reported 0.79, 0.70, 0.59, 0.76, 0.61 and 0.38 respectively [6].

Table 1. Literature review of most commonly predicted soil properties using VIS-NIR spectroscopy with corresponding
coefficient of determination (R2) on validation dataset.

References Region n Model
R2 Validation

SOC/SOM pH EC Sand Clay Silt

Johnson, et al. [7] SSA 2845 PLSR - 0.59 0.37 0.54 0.70 0.47
Gupta, et al. [8] India 954 PLSRLW 0.70 - - 0.72 0.61 -
Zhang et al. [2] Canada 257 Cubist 0.66 0.67 0.12 0.50 0.70 0.00

Conforti, et al. [9] Italy 267 PLSR 0.88 0.70 - 0.81 0.80 0.70
Terra, et al. [10] Brazil 1259 SVM 0.65 0.24 - 0.89 0.86 -

Gholizade, et al. [11] Malaysia 118 SMLR 0.81 0.59 0.51 - - -
P Leone, et al. [12] Italy 374 PLSR 0.91 - - 0.58 0.83 0.51

Lee, et al. [13] USA 165 SMLR - - - 0.76 0.80 0.80
Viscarra Rossel, et al. [14] Australia 116 PLSR 0.72 0.73 0.29 0.75 0.67 0.52

Islam, et al. [15] Australia 161 PCR 0.76 0.71 0.10 0.53 0.72 0.05

SSA: sub-Saharan Africa.

Several different algorithms were used in these studies for preprocessing and mod-
elling of spectral data. Zhang et al. [2], Gholizade et al. [11] and Leone et al. [12] used
the Savitzky-Golay algorithms for the preprocessing of spectral data. Zhang et al. [2]
and Leone et al. [12] also used standard normal variance (SNV) algorithm for prepro-
cessing. While Terra et al. [10] did not preprocess the spectral data before modelling.
Viscarra Rossel et al. [14] did not include comparisons of different preprocessing algo-
rithms, however, they did compare modelling algorithms, including partial least squares
regression (PLSR), principle component analysis, stepwise multi-linear regression (SMLR)
and nearest neighbor modelling algorithms which can all be found in the review Viscarra
Rossel et al. [14]. Additional modelling algorithms found in the literature include: (i) ran-
dom forest (RF): This model tries to take benefit from random feature selection in addition
to bagging. When growing a tree in a random forest, each node is split utilizing a best selec-
tion amongst a subset of features picked randomly at that node. Decision trees are grown
until a specific number of nodes is reached which can be predetermined by the user [16];
(ii) cubist: It is a prediction-oriented rule–based regression model which is a combination
of ideas of Quinlan’s M5 model tree wherein the prediction depends on terminating leaves
consisting of linear regression models [17], and (iii) extreme learning machine (ELM) is
preferred approach in batch learning, sequential learning and incremental learning because
of its rapidness and generalization ability. The approach is popular in recent time in the
spectroscopic modeling for classification, regression and estimating SOM [18,19]. Variation
in R2 values could be attributed to the range of preprocessing algorithms and modelling
algorithms used.

Preprocessing algorithms are used to normalize spectra, enhance relevant spectral
fingerprint regions, and remove any physical noise before modelling of the spectral
data [12,20]. Several different algorithms have been used for preprocessing of spectral data.
Commonly used preprocessing algorithms include moving averages, binning, smooth-
ing such as Savitzky-Golay filtering, normalization, continuum removal, derivatives, gap
derivatives, multiplicative scatter and SNV computation [20–23]. Savitzky-Golay is a
smoothing function which reduces noise by using a weighted sum of neighboring values,
while derivatives remove additive or multiplicative effects between spectra [20]. The SNV
normalizes data to reduce light scatter effects [20]. Preprocessing models can be used
alone to focus on a specific correction, or they can be used in combination to correct more
than one area of the data. For example, adding a gap to a derivative can help to smooth



Sensors 2021, 21, 6745 3 of 18

any noise created from the derivative itself [20]. Individual data sets, when processed
with different preprocessing and modelling algorithms can have varying results; thus, it is
important to determine the combination best suited to the data set. Although the literature
demonstrates the use of several preprocessing algorithms, to the best of our knowledge no
study used multiple preprocessing and their combination on a single data set. This study
would assist researchers in selecting the optimal preprocessing algorithms to use when
using spectral data for predicting soil properties.

Modelling is an important part in the success of the spectroscopic predictions. Gener-
ally, spectral data is used against some known values of soil properties form laboratory
analysis to develop a predictive relationship using various multi-variate statistical analysis.
The model can then be used to predict the attribute using spectral data acquired from a soil
sample. Two types of models are used in spectral predictions; statistical-based models and
machine learning-based or algorithmic models [24]. Research comparing combination of
preprocessing and modeling algorithms on single spectral dataset for prediction of various
soil properties are very rare and mostly studying SOC or soil clay content [21,23,25,26].
Statistical-based models are based on assumptions made by the user; while machine learn-
ing models are data driven and learn from the data set without the user assuming any
parameters [27]. Statistical models may limit the user’s ability to deal with statistical
problems in the data, where with machine learning models the data and any problems
or trends associated with it will guide the solution [27]. Some commonly used statistical
modelling algorithms are PLSR and PCA. The RF and ELM are examples of the machine
learning-based data-driven approach and are less commonly used modelling algorithms,
but have shown promising results in spectroscopy [24]. We could not find a study which
used combinations of preprocessing and modelling algorithms on a single spectral data
set for the prediction of soil properties. A study of this nature is needed to determine
which combination of preprocessing and modelling algorithms are optimal for the use in
analyzing spectral data.

Limited research has also been completed on the use of VIS-NIR spectroscopy in
Canadian soils. The large area of glacial deposits in Canada has greatly impacted the
development of its farmland [28]. Highly variable soils have developed in Canada and
Ontario due to the occurrence of multiple glaciations. The diversity of the soils available in
Ontario make it suitable for testing VIS-NIR spectroscopy, as we will be able to determine
how VIS-NIR spectroscopy predicts on a variety of soils. The goal of this research was: (1)
to examine the suitability of VIS-NIR spectroscopy to predict soil properties up to 1 m in
depth using laboratory processed and airdried samples; (2) optimize various preprocessing
and modeling algorithms and evaluate their performance in predicting soil properties.

2. Materials and Methods
2.1. Study Area and Sample Collection

This study was conducted on 13 cash crop farms, located in Ontario, Canada and
managed by Woodrill Limited (Guelph, ON, Canada) (Figure 1). Twelve of the farms are
located within Wellington County, while 1 farm is located with Dufferin County. Wellington
County is comprised of a variation of soils, including 12 catenae which are made up of
39 different soil series; while Dufferin County is comprised of 21 catenae which are made
up of 43 soil series [29,30].
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Canada) that was modified to drive a reinforced 120 cm steel coring tube fitted with a 4.5 
cm diameter plastic insert (Figure 2a) (Doug Aspinall and Dan Breckon, personal commu-
nication, 30 May 2019). The soil sampling was carried out between August and October 
for both 2016 and 2017. The cores were labelled, capped, and stored in a cool dark room 
prior to analysis. A soil profile description was completed for each core during the winters 
of 2016 and 2017. The soil core was placed into a trough (half piece of PVC pipe) and the 
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Figure 1. Location of the 13 farms selected for sampling within Dufferin and Wellington County, Ontario, Canada. The
black line on the Farm Locations map represents the boundary of Wellington County. The yellow stars and yellow text
represent the locations of the farms where soil samples were collected.

Wellington and Dufferin Counties are both topographically diverse areas, shaped by
repeated glaciations in history. Sandstone, limestone and shale bedrock can all be found
underlying the soils of Wellington and Dufferin Counties [29,30]. Surface deposits of till,
outwash, kame, esker, deltaic and lacustrine can also be found. Variation in physiographic
features is also seen within the counties including spillways, eskers (gravel ridge), kames
(sandy hill), drumlins and swamps [29,30]. An average temperature ranges in the areas
from −6.6 ◦C to 20.0 ◦C on average; however, the lowest of −31.9 ◦C and highest of 36.5 ◦C
have been recorded [31].The average yearly rainfall in the area is 916.5 mm and the average
yearly humidity is 87.8% [31].

A total of 205 sample points within the 13 farms were pre-selected by the soils team at
Woodrill Ltd. Predictive digital soil mapping procedures were used to segment each farm
into soil management zones using a unique combination of topographic, crop performance
and apparent electrical conductivity parameters. Raster cells with the highest membership
values for a soil management zone were selected for core sampling (Doug Aspinall and
Dan Breckon, personal communication, 30 May 2019).

Soil profiles were collected with a Post Pounder (Deer Fence Canada, Dunrobin, ON,
Canada) that was modified to drive a reinforced 120 cm steel coring tube fitted with a
4.5 cm diameter plastic insert (Figure 2a) (Doug Aspinall and Dan Breckon, personal
communication, 30 May 2019). The soil sampling was carried out between August and
October for both 2016 and 2017. The cores were labelled, capped, and stored in a cool
dark room prior to analysis. A soil profile description was completed for each core during
the winters of 2016 and 2017. The soil core was placed into a trough (half piece of PVC
pipe) and the plastic insert was cut carefully on 2 sides to minimize any smearing. The
top half of the plastic insert was carefully removed from the soil core. Next, the core was
gently rolled onto a sliding table and then split into two to expose the soil profile. The
soil profile description included horizon names, upper and lower horizon depth of the
horizons, parent material, hand texture assessment and drainage class. A soil type name
was assigned to the profile after the profile description was completed (Doug Aspinall and
Dan Breckon, personal communication, 30 May 2019). The soil horizons were classified
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according to the Canadian System of Soil Classification [32]. Drainage classification and
hand texture were determined using the Field Manual for describing soils in Ontario [33].
The horizon images were later stitched together (Hugin-panorama photo stitcher) to create
full profile images (Figure 2b) (Doug Aspinall and Dan Breckon, personal communication,
30 May 2019). Each horizon was bagged, labelled, and taken to the laboratory for further
analysis. In total 1046 horizon samples were collected.
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Figure 2. (a) Photo of modified post pounder (Deer Fence Canada, Dunrobin, ON, Canada) (b) a split core soil profile.

2.2. Laboratory Methods

The soil pH was measured adopting method by Thomas [34] using a Fisher Scientific
Accumet AE150 soil pH meter (Fisher Scientific, Hampton, NH, USA). The soil EC was
measured using a Fisher Scientific Accumet XL600 (Fisher Scientific) according to methods
outlined by Rhoades and Oster [35]. The SOM was estimated using loss on ignition (LOI)
modified from Veres’s study [36] and OM was calculated using the equation below:

SOM(%) =
Wi −W f

Wi
× 100 (1)

where Wi = Initial weight of soil sample and Wf = Final weight of soil sample. The soil
texture analyzed using modified sieve methods from Gee and Bauder [37] and hydrometer.
The clay and silt percent were determined hydrometer method, while sand fractions
(1–2 mm very coarse sand (VCS), 0.5–1 mm coarse sand (CS), 0.25–0.5 mm medium sand
(ms), 0.05–0.25 mm fine sand (fs)) were determined through sieving (Standard sieves #18,
35, and 60). The percent very fine sand (vfs) could not be calculated separately and was
included in the overall sand portion. Due to some errors, we could measure pH, EC, and
OM for 1041, 1038 and 1025 soil samples respectively. Texture analysis was completed on a
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subset of 238 samples, sand fractions could only be determined on 230 or the 238 samples
due to sieving errors.

2.3. Spectral Collection

Three spectral scans were taken on each air-dried and ground (<2 mm) sample. The
spectrometer consists of two sensors: (i) USB2000 spectrometers (Ocean Optic Inc., Dunedin,
FL, USA) covering the visible (VIS) spectrum 342 to 1023 nm with a resolution of 6 nm;
(ii) a C9914GB Mini-Spectrometer (Hammatsu Photonics K.K., Tokyo, Japan) covering
the spectral range of 1070 to 2220 nm with a resolution of 4 nm. The instrument has
its own li halogen light source (2700 K) were used to collect the spectral data. Samples
were tightly packed in a petri-dish and held directly against the spectrometer’s light to
ensure no outside light would interfere with the reading. The three scans were taken from
different areas of each air-dried and ground (<2 mm) soil sample to ensure an accurate
representation of the sample, an average of these three-scan used for spectral analysis.

2.4. Optimization of Data Processing

The first step in processing of spectral data involved data cleaning to reduce the
existing noise. All spectral data below 397 nm and above 2212 nm (i.e., the beginning and
end of the scan) were removed to avoid any edge effects (Figure 3).
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Figure 3. Spectra and the average spectra of first 10 soil samples used in this study. Effects of different
preprocessing algorithms are also shown individually.

The measurements at 1086 nm and 1092 nm were also removed, resulting in 371 spec-
tral points with a resolution of 6 nm in the visible region and 4 nm in the near infrared
region (resampled at 4 nm resolution from 6 nm raw measurements). The spectra signa-
tures (absorbance) associated with each wavelength then used for further processing. We
used the spectral data in absorbance format since it reduces nonlinearity and shows higher
correlation with soil properties [2,14,38,39]. The quality of VNIR spectra can be affected by
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various factors such as particle size, variation of optical path, soil aggregation, moisture, and
carbon content. A well-defined protocol for soil spectral acquisition aid to minimize these
errors. The preprocessing methods reduce these interferences (Figure 3), thereby improving
the accuracy of predictive algorithms. The commonly used preprocessing methods in soil
spectroscopy are smoothing, mean centering, derivatives, normalization, standard normal
variate, and multiplicative scatter correction. Organic matter data was used to optimize the
preprocessing and model algorithms, as OM has shown to have the greatest correlation with
VIS-NIR spectroscopy [2]. Details of six preprocessing algorithm provided in the Table 2. A
few examples of the effects of preprocessing algorithms on soil spectra is shown in Figure 3
along with the original spectra collected and the average spectra used for modelling. Thirteen
combinations of six preprocessing algorithms were tested in combination with 4 modeling
algorithms (Table 3).

Table 2. Description of six preprocessing algorithms used in this study.

Preprocessing Algorithm Impact Equation

1st Derivative Reduce the drift of the baseline and highlight some
parts of the spectral information [38]. FD(R) = Rn+1−Rn

λn+1−λn

2nd Derivative Reduce the drift of the baseline and liner trend. Also
highlight some parts of the spectral information [38]. SD(R) = FDn+1−FDn

0.5(λn+2−λn)

Gap Derivative
Remove both additive and multiplicative effects.
These methods enhance spectral resolution and

eliminate background effects.

Savitzky-Golay Remove the high frequency noise from samples

Standard Normal Variate (SNV)
It performs both the centeringand scaling together by

subtracting the mean and normalizing with the
standard deviation for each reflectance spectrum [38].

SNV(R) = R−µR
σR

Detrend
It involves fitting a 2nd order polynomial to the SNV

transformed spectrum and subtracted from it to
correct for wavelength dependent scattering effects

Table 3. List of 13 preprocessing algorithms that were tested in combination with the 4
modelling algorithms.

Preprocessing

1st Derivative, 2nd Derivative, Gap Derivative,
Savitzky-Golay, SNV,
1st Derivative + Gap,

2nd Derivative + Gap, Savitzky-Golay + Gap,
Savitzky-Golay + 1st Derivative,

Savitzky-Golay + 2nd Derivative,
Savitzky-Golay + SNV,

Savitzky-Golay + SNV + Detrend,
SNV + Detrend

Modeling
Partial Least Square Regression (PLSR),

Random Forest (RF), Cubist,
Extreme Learning Machine (ELM)

Partial least squares regression (PLSR) is a statistical-based algorithm and is the most
commonly used model in spectral processing [40]. This method uses inference to model a
linear relationship with the spectral data and the attribute [40,41] and is a suitable approach
when dealing with missing values and data noise [14]. A detailed description on PLSR
can be found in Viscarra Rossel et al. [14] and beyond the scope of this paper. Briefly, the
predictor matrix X, where X = [x1,x2,, . . . , xi,] was used as independent variables. Each xi
represents one data layer from all the proximal soil sensors. Each soil property, y, was used
as a dependent variable in PLSR, with both mean-centered. A few linear combinations
(called component, or factors) T, of the original predictor matrix X were extracted. Then
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both X and y were regressed onto T as follows, X = TPT + E, and y = Tq+ f , where P were
predictor loadings and q were soil property loadings, describing how the variables in T were
related to X and y. E and f were residuals and represented noise or irrelevant variability in
X and y. Estimated model parameters were then combined into the final prediction model
as ŷ = b̂ixi + b0 where b0 was the intercept and b̂i were the regression vectors.

Cubist, RF and ELM are machine learning model algorithms and have been used
less frequently in spectral predictions but are of growing interest. Cubist is a unique
algorithm as its predictions are not based on discrete values but are instead based on linear
regression [17]. It is an extension of a tree-based model, M5 developed by [42]. A model
tree is first created in this rule-based regression and then reduced to a series of rules based
on spectral partition. Following this, a linear model is developed and applied to predict
the target variables or soil properties. Cubist has advantages as it can utilize boosting
(communities) and adjust its predictions using the neighbors withing the training dataset
(neighbors). Detailed methodology on cubist can be found in Rossel, et al. [43] and Minasny
and McBratney [17]. In this study, the committees and neighbors were determined using
the RMSE (the lowest) in the calibration set. Leave-one-out cross validation was used to
calculate the RMSE. The R package ‘Cubist’ was used for this study.

Random Forest (RF) uses decision trees and are trained by both a random subset of
predicted variables and a different random data set; decision trees grow until they reach a
predetermines number of nodes [16]. It is an ensemble machine learning approach that
merges thousands of individual trees [44]. Each individual tree is built by bootstrapping
on calibration data, and the random subspace method (the size of the subspace is denoted
by mtry) is applied at each node split in the tree. The final prediction is the average of the
predicted values from all the trees. RF generally has a better generalization ability, which is
used for both regression and classification.

Finally, extreme learning machine (ELM) is a generalized single hidden layer feedfor-
ward network with a weight and first-layer hidden layer threshold and does not requires
any tuning or parameter setting [45]. The thresholds in the first layer are generally ran-
domly assigned and a least square method us used to directly calculate weight in the output
layer It has an extremely fast learning speed as the whole process is completed in one
round with no iterations and is more straightforward and simpler than other learning algo-
rithms as it tends to not have issues such as improper learning rate and overfitting [45]. A
simplified scheme of ELM model structure is presented in Figure 4. Detailed methodology
of the methods can be found in Yang, et al. [46].

Briefly, for N distinct samples (xi, yi), where:

xi = [xi1, xi2, . . . , xin,]
T ∈ Rn

where, xi = soil spectra, and ti = where the observed values of target soil properties.
For given a hidden node number Ň, the activation function can be defined as follows:

g(x) =
Ň

∑
j=1

β j gj(xi) =
Ň

∑
j=1

β jg
(
wj ∗ xi + bj

)
= Oi, i = 1, 2 . . . ., N; j = 1, 2, . . . Ň (2)

where, wj ∈ Rn is the weight vector connecting the input nodes to the jth hidden node
and β j ∈ R is the threshold of the jth hidden node and the output nodes. To approach the
real results of the training data infinitely, the prediction result Oi must be consistent with

real result ti, in which case
Ň
∑

i=1
|| Oi − ti || = 0. Under these conditions, Equation (1) can be

expressed as follows
N
∑

i=1
β jg
(
wj ∗ xi + bj

)
= ti, which is represented by a matrix:

Hβ = T
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where:

H =

 g(w1 ∗ x1 + b1) . . . g
(
wŇ ∗ x1 + bŇ

)
...

...
g(w1 ∗ xN + b1) . . . g

(
wŇ ∗ xN + bŇ

)


N∗Ň

β =

 β1
...

βŇ


Ň∗1

T =

 t1
...

tN


T

where input weight wj ∈ Rn and bias β j ∈ R are randomly assigned, the output matrix H
in the hidden layer can be calculated by ELM, after which the output weight β is calculated
by β’ = H+T where H+ is the Mosse-Penrose generalized inverse of H.
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The ‘R’ statistical package [47] was used to carry out the optimization analysis. Pre-
processing algorithms were available using the ‘prospectr’ package [20]. While modelling
algorithms were available in the ‘caret’, ‘cubist’, ‘elmNN’, ‘pls’ and ‘randomforest’ pack-
ages [27,45,48–50]. The initial spectral data was split into a 70% calibration set and a 30%
validation set by Kennard and Stone method [51] and the 30% dataset was kept separate as
external validation dataset. The calibration spectral dataset was further divided in to a 70%
calibration and 30% as cross-validation or internal validation dataset. The calibrated model
was separately tested for external validation dataset. The optimization was carried out by
testing each of thirteen preprocessing and four modelling algorithms for the prediction of
OM. In order to compare the performance of the optimization or the preprocessing and
modelling algorithms, a series of indicators were calculated (Table 4).
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Table 4. Brief description of the model performance indicators used in this study with their formula.

Indicator Meaning Formula

R2
Correlation coefficient of determination explains how well
the variance of the spectral predicted values align with the

lab measured values

1− SSresiduals
SStotal

; SSresiduals is the sum of squared of
residuals or predicted, SStotal is the total sum

of squared

R2
adj

Adjusted R2 or modified version of R2 adjusts for the
number variables in the prediction model. While more

predictor variables tend to increase (called overfitting) and
often return an unwarranted high R2, adjusted R2 can
determine how reliable the correlation is and how it is

determined by the addition of more predictor variables. It
compensates for addition of variables and only increase if

the new variable enhances the model above what that
would be obtained by chance.

1− SSresiduals/(n−k)
SStotal /(n−1) ; SSresiduals is the sum of

squared of residuals or predicted, y-measured,
x; SStotal is the total sum of squared, n is the

number of data points and k is the number of
variables in the model.

CCC

Concordance correlation coefficient measuring the
agreement between the measured and predicted values of

soil properties or reproducibility or how close the
predicted values are to the measured values (closeness to

1:1 line).

2rsxsy

(x−y)2+s2
x+s2

y
; r is the correlation coefficient, x is

the mean of the measured, y is the mean of the
predicted, s2

x variance of measured and s2
y is

the variance of the predicted values.

MSE
Mean squared error measures the average squares of the

error or the difference between predicted and
measured values.

1
n ∑n

i=1(yi − xi)
2; n is the number of data

points, yi are the predicted values and xi are
the measured values.

RMSE
Root mean squared error measures the difference between

values predicted by a model and is the square root of
the MSE.

√
MSE

MSEc Mean squared error of calibration dataset measuring how
well the calibration worked Same as MSE but for calibration dataset

RMSEc Root mean squared error of calibration measuring how
well the calibration worked Same as RMSE but for calibration dataset

RPD
Ratio of performance of deviation or the ratio between the

standard deviation of a variable and the standard error
of prediction

SD
SEP ; SD is the standard deviation of the sample√

1
n−1 ∑n

i=1(yi − y)2 and SEP is the standard
error of prediction (calculated as RMSE)

RPIQ
Ratio of performance of interquartile distance is the

interquartile range of the measured values divided by
the RMSE

IQ
SEP ; IQ is the interquartile range and SEP is
the standard error of prediction (calculated

as RMSE)

Though these performance indicators were calculated during optimization process,
we adopted adjusted R2 (R2

adj) as the main criteria to compare the performance of the
combinations. Based on the adjusted R2 values, the three best combinations were selected.
The selected three best combinations were used for the prediction of all other soil properties.

3. Results
3.1. Descriptive Statistics of Selected Soil Properties

The soil properties varied greatly within the studied fields (Table 5). For example,
the range of SOM for this data set was 0.39% to 17.13%, pH ranged from 5.08 to 9.10 and
EC ranged from 26.25 to 2034 µs cm−1. A large range was also observed in soil texture
fractions reflecting the diversity of the sampled area. The sand content ranged from 0.49%
to 93.91%, silt ranged from 4.7% to 87.86%, and clay ranged from 1.38% to 31.73%. The
variability of the soil properties can be attributed to the spatial variability of the sample set.
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Table 5. Descriptive statistics for laboratory measured soil properties.

Properties Mean Median Min Max σ n

EC, µs cm−1 309.30 265.90 26.25 2034.00 197.86 1038
SOM, % 2.69 2.11 0.39 17.13 1.82 1025

pH 7.71 7.71 5.08 9.10 0.55 1041
Sand, % 45.11 41.85 0.49 93.91 20.20 238
Silt, % 43.23 45.46 4.70 87.86 17.07 238

Clay, % 11.67 10.68 1.38 31.73 6.23 238
VCS, % 3.69 2.06 0.03 41.29 5.57 208
CS, % 5.66 3.80 0.00 46.15 6.45 208
ms, % 15.57 12.28 0.91 69.94 10.96 208
fs, % 22.82 21.66 1.32 68.47 11.23 208

σ is standard deviation and, n is number of samples.

3.2. Optimization of Spectral Preprocessing and Modelling
3.2.1. Preprocessing Performance Evaluation

The prediction of SOM using all combination of preprocessing and modeling al-
gorithms performed for the selection of best preprocessing algorithms for subsequent
prediction of other soil properties. The R2

adj ranges 0.14 to 0.97 and 0.13 to 0.89 for calibra-
tion and validation dataset respectively (Table 6). The PLSR yielded R2

adj ranges 0.72 to
0.81 and 0.14 to 0.75 for calibration and validation, respectively (Table 6). The calibration
and validation R2

adj for cubist ranges from 0.61 to 0.91 and 0.37 to 0.89, respectively. The
R2

adj resulted using RF ranges 0.96 to 0.97 and 0.66 to 0.87 for calibration and validation,
respectively, while calibration and validation R2

adj for ELM ranges from 0.14 to 0.75 and
0.13 to 0.81, respectively. The cubist appeared to be the best modelling algorithm with the
highest validation R2

adj of 0.89; however, PLSR and RF also produced relatively high R2
adj

of 0.84 and 0.87, respectively. The results showed the lower R2
adj for the validation than

that of calibration dataset except few instances where 1st Derivative, 1st Derivative + Gap,
2nd Derivative + Gap, Savitzky-Golay + Gap and Savitzky-Golay used for preprocessing
along with PLSR or ELM modeling algorithms.

Table 6. The calibration and validation R2
adj resulting from all possible preprocessing and modeling

algorithms for prediction of SOM.

Preprocessing
Algorithms Calibration R2

adj Validation R2
adj

PLSR Cubist RF ELM PLSR Cubist RF ELM

1st Derivative 0.81 0.84 0.97 0.45 0.75 0.79 0.79 0.62
1st Derivative + Gap 0.77 0.91 0.97 0.63 0.83 0.89 0.87 0.77

2nd Derivative 0.73 0.76 0.97 0.14 0.70 0.70 0.70 0.13
2nd Derivative + Gap 0.76 0.88 0.97 0.49 0.84 0.88 0.87 0.81
Savitzky-Golay + Gap 0.74 0.75 0.97 0.67 0.83 0.69 0.84 0.76

Gap Derivative 0.77 0.80 0.97 0.75 0.71 0.77 0.77 0.70
Savitzky-Golay 0.77 0.89 0.97 0.71 0.78 0.82 0.80 0.70

Savitzky-Golay + 1st
Derivative 0.79 0.70 0.97 0.62 0.74 0.61 0.78 0.40

Savitzky-Golay + 2nd
Derivative 0.78 0.61 0.97 0.40 0.68 0.37 0.71 0.29

Savitzky-Golay + SNV 0.72 0.92 0.96 0.28 0.64 0.76 0.75 0.20
Savitzky-Golay + SNV +

Detrend 0.74 0.89 0.96 0.58 0.52 0.64 0.66 0.32

SNV 0.77 0.90 0.96 0.71 0.59 0.70 0.66 0.56
SNV + Detrend 0.78 0.90 0.96 0.57 0.59 0.65 0.71 0.26

The 1st Derivative + Gap and 2nd Derivative + Gap were selected as the best perform-
ing preprocessing algorithms for further analysis, based on good R2

adj (>0.5) values, along
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with a general increase of R2
adj from calibration to validation (Figure 5). Although no im-

provement was seen from calibration to validation for SNV, it was also selected for further
analysis based on consistently high R2

adj calibration values across all modelling algorithms.
In addition to the R2

adj, several other parameters were also calculated to finalize
the decision. A list of performance indices is presented in Table 7 for SOM. Consistent
performance of the models developed on the calibration dataset, internal validation dataset
and external validation dataset was observed for the cubist model, while the highest
performance was recorded in the results of RF model. ELM produced consistent low
performance as observed in the values of each performance indicator (Table 7).

3.2.2. Spectral Prediction for All Soil Properties

Based on R2
adj the SOM, silt and sand content were the best predicted soil properties,

while VCS was the poorest (Table 8). The SOM, sand, silt, pH, and CS were all predicted
very well using VIS-NIR spectroscopy with R2

adj greater than 0.60. The ms content pre-
dicted fairly with R2

adj of 0.53. However, the fs, clay, EC, and VCS were poorly predicted
with R2

adj of 0.49, 0.26, 0.22, and 0.18 respectively.
The highest prediction accuracy for the SOM was obtained using 1st Derivative + Gap

as preprocessing and cubist as modeling algorithm. The RF produced highest prediction
accuracy for the soil pH, sand, silt, ms, with 1st Derivative + Gap and second highest
for SOM with 2nd Derivative + Gap as preprocessing algorithm. The highest prediction
accuracy for soil CS content was obtained with PLSR while the prediction accuracy for ms
content was as good as obtained by RF. The 1st Derivative + Gap was the most successful
preprocessing algorithm yielding the best accuracy for all the soil properties except EC.
The results depict 1st Derivative and RF as best preprocessing and modeling algorithms
for this study.
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the (a) calibration dataset, (b) internal validation dataset, and (c) external validation dataset. 
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Figure 5. Measured versus predicted soil organic matter (%) using four different models (PLSR,
Cubist, RF and ELM) for the (a) calibration dataset, (b) internal validation dataset, and (c) external
validation dataset.

Table 7. Model performance indicators of SOM prediction calculated in finalizing the right combination of preprocessing
and modelling algorithms for all other soil properties.

R2 CCC MSE RMSE Bias MSEc RMSEc RPD RPIQ

PLSR

Calibration 0.76 0.86 0.88 0.94 0.00 0.88 0.94 2.03 2.46

Validation 0.73 0.85 0.76 0.87 0.04 0.76 0.87 1.86 2.11

External Validation 0.75 0.86 0.72 0.85 0.00 0.72 0.85 2.00 2.52
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Table 7. Cont.

R2 CCC MSE RMSE Bias MSEc RMSEc RPD RPIQ

Cubist

Calibration 0.83 0.90 0.63 0.79 −0.08 0.62 0.79 2.41 2.91

Validation 0.82 0.89 0.48 0.69 0.03 0.48 0.69 2.35 2.65

External Validation 0.81 0.89 0.56 0.75 −0.08 0.55 0.74 2.27 2.87

RF

Calibration 0.94 0.95 0.29 0.54 0.01 0.29 0.54 3.53 4.28

Validation 0.65 0.76 0.95 0.97 0.09 0.94 0.97 1.67 1.89

External Validation 0.67 0.78 0.96 0.98 0.03 0.96 0.98 1.73 2.18

ELM

Calibration 0.57 0.72 1.57 1.25 0.00 1.57 1.25 1.52 1.84

Validation 0.60 0.75 1.13 1.06 0.23 1.08 1.04 1.53 1.73

External Validation 0.60 0.76 1.17 1.08 0.11 1.16 1.08 1.57 1.98

Table 8. The validation R2
adj for various soil properties using selected best preprocessing and four modeling algorithms.

Properties.
1st Derivative + Gap 2nd Derivative + Gap SNV

A B C D A B C D A B C D

SOM, % 0.83 0.89 0.87 0.77 0.84 0.88 0.87 0.81 0.59 0.70 0.66 0.56
EC, µs cm−1 −0.02 0.00 −0.02 −0.02 −0.01 −0.03 −0.03 0.22 −0.01 −0.03 −0.03 0.22

pH 0.57 0.62 0.63 0.52 0.48 0.54 0.53 0.48 0.48 0.54 0.53 0.48
Sand, % 0.48 0.47 0.70 0.53 0.29 0.40 0.46 0.45 0.29 0.40 0.46 0.45
Silt, % 0.46 0.53 0.70 0.60 0.40 0.39 0.42 0.25 0.4 0.39 0.42 0.25

Clay, % 0.13 0.26 0.20 0.19 0.23 0.20 0.25 0.25 0.23 0.20 0.25 0.25
VCS, % 0.18 −0.02 0.17 0.04 0.11 0.00 0.02 −0.01 0.11 0.00 0.02 −0.01
CS, % 0.68 0.08 0.15 0.46 0.30 0.58 0.22 0.02 0.30 0.58 0.22 0.02
ms, % 0.50 0.24 0.53 0.39 0.31 0.28 0.32 0.09 0.31 0.28 0.32 0.09
fs, % −0.01 0.49 −0.02 −0.02 0.01 0.03 0.14 −0.01 0.01 0.03 0.14 −0.01

A: PLSR; B: Cubist; C: RF; and D: ELM modeling algorithms.

4. Discussion

Soil properties were predicted with varying amounts of accuracy using VIS-NIR
spectroscopy. Some of the soil properties could have been predicted better with inclusion
of short-wave infrared (SWIR), such as ASD Field Spec series sensors (350 to 2500 nm).
However, the spectroradiometer we used for this study has a spectral range of 342 to
2220 and the removal of edge effects lead to a further narrower spectral range (397 to
2212) for prediction model development. Though the advantages of this spectroradiometer
include cost and ability to scan depth samples in-situ. When examining model prediction
results it is important to note the occurrence of negative R2 values. Because 1—[Sum
of Squares Error (SSE)/Sum of Squares Treatment (SST)] was used to calculate R2

adj,
negative values are possible when model performance is very poor. In agreement with
Islam et al. [15] SOM/SOC was the best predicted soil property with R2 value of 0.89.
Research by Terra et al. [10] found SOC to correspond better in the MID infrared region
of spectral data; however, they reported a lower R2 value (0.77) compared to the current
research. The dark colour associated with SOM can be easily detected by broad absorptions
in the visible region [6], which may explain why better predictions were seen in the current
research compared to Terra et al. [10]. The current research found RF with 1st derivative +
Gap to yield the best results. It is likely that 1st derivative + Gap performed the best due
to its ability to enhance small spectral absorptions and increase predictive accuracy for
complex data sets [52]. The machine learning approach that RF applies was also likely to
help improve predictions. Islam et al. [15] and Terra et al. [10] both used PCA for modelling
during their research. The differences achieved from different modelling algorithms is
important to note for supporting the testing of several models in this study.
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Soil pH was strongly predicted in the current research with an external validation
R2

adj of 0.63 when using RF for modelling. However, Reeves and McCarty [53] and
Reeves et al. [54] both achieved higher R2 of 0.74 and 0.73, respectively, for the prediction
of pH when using PLSR. In contrast, Terra et al. [10] achieved a lower R2 of 0.54 for
the prediction of pH when using PCA. The EC was the one of most poorly predicted
soil property in this research with an external validation R2

adj value of 0.22. Similarly,
Islam et al. [15] also predicted EC with R2 of 0.10. Poor predictions of EC likely occurred
for several reasons: (1) EC is strongly associated with water content and dry samples were
used in this research; (2) Laboratory measured EC values are extremely low and would be
difficult to pick up with the spectrometer; (3) VIS-NIR spectroscopy does not have enough
energy to measure electronic transitions and it is likely that the unique spectral fingerprint
of EC is present in the another area of the light spectrum [55].

Overall, the sand, silt and CS were well predicted with R2
adj of 0.70, 0.70 and 0.68,

respectively, while other texture fractions were more poorly predicted (Table 5). In this
study, RF was found to better predict sand, silt, and ms, when compared to PLSR, cubist
and ELM algorithms. However, PLSR better predicted CS, while cubist better predicted
fs content. A study by Hobley and Prater [56] also reported promising results for the
prediction of texture fractions using VIS-NIR spectroscopy; however, contradictory to
the current research they found PLSR to perform better than RF. Hobley and Prater [56],
used Log10 transformation to invert their spectral data which could have an effect on the
performance of modelling algorithms. A much smaller data set was also used in this study
compared to the current research which also may affect the accuracy of model prediction.
Conforti et al. [9] predicted sand and clay content with higher accuracy R2 of 0.81, and 0.83
respectively, while the silt content was predicted with similar prediction accuracy R2 of
0.70. Like Hobley and Prater [56], Conforti et al. [9] transformed the spectral data from
reflectance to absorbance which may have influenced model accuracy.

Clay content is generally well predicted by VIS-NIR spectroscopy with its unique
absorptions fingerprint displaying around 1395, 1415, 2160 and 2208 nm for kaolinite,
2206 and 2230 nm for smectite and, 2206, 2340 and 2450 nm for illite clay minerals [24].
Contradictory to the current research sand and silt are generally more poorly predicted
than clay. The poor prediction of clay in the current research is likely attributed to the lower
clay content in these samples than those reported in the literature. The absence of SWIR
region in the spectroradiometer used in this study also contribute to poor prediction of clay,
as clay mineral have unique absorbance signature in this spectral range. Sand content is
generally better predicted in the mid-IR region of the light spectrum; however, predictions
can be seen in the VIS-NIR spectrum due to iron oxide contents on the sand grains [24].

Overall, the current research yielded promising results for the use of VIS-NIR spec-
troscopy to predict soil properties. This research demonstrated the use of several prepro-
cessing and modelling algorithms when analyzing spectral data. The 1st Derivative + Gap
was found to be the optimal preprocessing algorithm. Its ability to enhance small spectral
absorptions and known benefits for complex data sets explain why 1st Derivative + Gap
outperformed other preprocessing algorithms [52]. The 1st Derivative + Gap performed
best in combination with RF as a modeling algorithm. The RF is known to work well with
large amount of data and is quick in training [57]. The quick training of RF in combination
with the enhanced spectral absorption from 1st Derivative + Gap likely contributed to the
increase in prediction accuracy of soil properties using VIS-NIR spectroscopy.

5. Conclusions

In conclusion, soil properties were predicted with varying degrees of success. The
study demonstrated that VIS-NIR spectroscopy can be used to predict soil properties on
air-dried ground samples for heterogenous soils of Ontario. However, it is not advanced
enough to completely replace traditional sampling techniques. The findings of this study
demonstrated the need to use several preprocessing and modelling algorithms when
predicting soil properties with VIS-NIR spectroscopy as different algorithms performed
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differently depending on the soil property it was predicting. However, in general RF
and 1st Derivative + gap can be labeled at the best combination of preprocessing and
modelling algorithms.
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