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Abstract: In cognitive radio wireless sensor networks (CRSN), the nodes act as secondary users.
Therefore, they can access a channel whenever its primary user (PU) is absent. Thus, the nodes are
assumed to be equipped with a spectrum sensing (SS) module to monitor the PU activity. In this
manuscript, we focus on a clustered CRSN, where the cluster head (CH) performs SS, gathers the
data, and sends it toward a central base station by adopting an ad hoc topology with in-network data
aggregation (IDA) capability. In such networks, when the number of clusters increases, the consumed
energy by the data transmission decreases, while the total consumed energy of SS increases, since
more CHs need to perform SS before transmitting. The effect of IDA on CRSN performance is
investigated in this manuscript. To select the best number of clusters, a study is derived aiming to
extend the network lifespan, taking the SS requirements, the IDA effect, and the energy consumed
by both SS and transmission into consideration. Furthermore, the collision rate between primary
and secondary transmissions and the network latency are theoretically derived. Numerical results
corroborate the efficiency of IDA to extend the network lifespan and minimize both the collision rate
and the network latency.

Keywords: cognitive radio; wireless sensor network; in-network data aggregation; network lifespan;
multihop routing

1. Introduction

Currently, wireless sensor networks (WSNs) play an important role in several ap-
plications generating a large amount of data. Various applications require continuous
updates of critical information—for example, the video streaming of security cameras.
These applications need huge spectrum resources. However, the radio spectrum becomes
congested by different applications and available channels become scarce. Cognitive radio
(CR) has gradually emerged in order to solve the channel scarcity problem [1–3].

CR ensures a high spectral efficiency by sharing the frequency band between two
kinds of users: primary user (PU) and secondary user (SU). In CR networks, a SU can
access, in an opportunistic way, an idle channel licensed to a PU. In order to avoid any
harmful interference to the PU, the SU must sense the channel to keep aware of the PU
status. When the PU resumes its activities, the SU should immediately vacate the channel.
Therefore, the SU should be equipped with a spectrum sensing (SS) unit [4–6]. IEEE 802.22
is a CR-based standard used for CR applications. It uses white spaces in the television
(VHF/UHF TV broadcast bands) within various frequency bandwidths, such as 54 MHz
and 862 MHz, potentially in the 1300 to 1750 MHz and 2700 to 3700 MHz [7].

Applying CR in WSN results in the cognitive-radio-based WSN (CRSN), where the
nodes behave as SUs. Thus, they should be aware of their channel status by performing
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SS to monitor the PU activity. Even the incorporation of CR capability in WSN enhances
the spectrum efficiency by exploiting the unused or less used spectrum; this efficiency
increase comes at the cost of an additional power consumption due to the performed
sensing operations [8,9].

In WSN, clustering, multihop routing (MHR), and data aggregation are efficient
techniques adopted to reduce the transmission energy and to maintain the transmission
quality and reliability [10–14]. They reduce the transmission radius of the nodes, as each
one sends its data via the cluster head (CH) to the central base station (BS). Each node in a
CRSN may perform various physical sensing, such as temperature, humidity, moisture,
etc., and then transmits its data toward its designated CH. Distances among the nodes and
their CHs can be decreased by increasing the number of clusters in the WSN. In addition,
clustering decreases the redundancy of the nodes’ data, since the CH may apply an in-
network data aggregation (IDA) procedure (based on the mean, the max, or the min of
the received data [15]) from the nodes and only transmits aggregated data, using MHR, to
the next nearest CH toward the BS, which is the final destination. Like WSN, CRSN nodes
consume energy to perform several operations: physical sensing, clustering election, data
transmission, etc. In addition to these operations, CRSN consumes energy to perform SS.
This inevitable function becomes an energy consuming challenge for the CRSN. Our work
focuses on the two potential energy consumption sources, SS and data transmission. Other
energy consumption sources are ignored, since the data transmission is the most consuming
one in a traditional WSN [16]. In our model, the SS is the exclusive responsibility of CH.
Before gathering the data from the cluster nodes and previous CHs, CH should perform SS
to avoid any interference with the PU. As mentioned previously, a small number of clusters
leads to high energy consumption during the data transmission phase due to the distance
among CHs. On the other hand, a big number of clusters leads to drain in energy during
the SS phase. Furthermore, the CHs perform IDA in order to reduce the data redundancy.
This will impact both the size of the data and the transmission duration. Accordingly, the
collision rate between the PU and SU transmissions is influenced by the data aggregation
as well as the latency of the data delivery.

In this paper, we investigate the optimization of the CHs number within a CRSN
given several parameters, such as the IDA, the energy consumption by physical sensing,
energy consumed during the transmission, the SS performance that fulfils the predefined
protection level for the PU against the interference of the CRSN nodes, and the high
spectrum efficiency to be exploited by these nodes. The existing research works in the
literature did not explicitly address the role of SS in determining the optimal number of
clusters in a CRSN. The SS requirements should be respected since the CRSN operates as
secondary network, and it should respect minimum tolerance of collision with the primary
network. Furthermore, to the best of the authors’ knowledge, this is the first research study
that addresses the impact of IDA on the collision rate between primary and secondary
transmission, the average number of the relayed packets by each CH, and the network
latency. The main contributions of this paper are summarized as follows:

1. Seeking an optimal number of clusters of CRSN that takes into consideration several
parameters, such as the energy efficiency related to the transmission and the sensing
operations, detection, and false alarm probabilities of clustered CRSN.

2. The average number of relayed packets by each CH is obtained in a closed form.
3. Probability of collision and the latency of our energy-optimal clustered CRSN are

derived in closed forms, taken into consideration the data redundancy reduction
thanks to the IDA.

4. Numerical results are calculated to show the efficiency of choosing the optimal
number of clusters, and to figure out the related collision rate and the latency.

The rest of the paper is organized as follows. In Section 2, we present some related
works. In Section 3, we present the adopted system model with essential parameters
related to the nodes’ distribution, the ad hoc communication, and the data reduction of
the transmitted data due to their similarity among neighbor clusters. Problem formulation
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is detailed in Section 4, where the optimal number of clusters within a CRSN is derived
in addition to the optimal value of the consumed energy of the node and the lifespan of
the network. In Section 5, mathematical closed forms for both the collision probability
and the data delivery latency are given. Numerical results are shown in Section 6 and
they corroborate the efficiency of adopting the strategy of selecting the optimal number of
clusters, and reveal critical parameters, such as the lifetime of the network, the collision,
and the latency. In Section 7, we conclude our work and introduce future perspectives.

2. Related Works

By integrating CR features in WSN, sensor nodes in the CRSN can make the best
use of available spectrum resources. However, other challenges have arisen that neces-
sitate investigation in order to identify effective solutions. Clustering, routing, and data
aggregation are all significant areas of research and solution development.

Clustering and MHR based networks are addressed in several works in WSN. In [17],
the authors proposed a protocol to improve the setting up cluster and the data transmission
route. Their simulations showed the effectiveness of the proposed algorithm, which
extends the network lifetime and reduces the energy consumption. Thus, the authors
of [18] proposed a clustering routing algorithm that prohibits nodes with a low residual
energy from becoming CH. In addition, the residual energy is assumed to be an energy
control factor to balance the energy consumption.

In [19], the authors propose an adaptive clustering routing algorithm for WSNs to
solve the scalability problem in a large-scale case for WSNs. This algorithm divides the
network nodes into clusters; then, it selects one node inside each cluster to play the role of
CH. Finally, MHR paths are set according to the energy balance principle of the algorithm
based on the residual energy, the load, and the number of nodes in the network. In [20],
the authors use the Gustafson–Kessel algorithm, which optimizes the number of clusters in
order to reduce the energy consumption based on the shape and the volume of clusters, the
initial setup of a clustering algorithm, the distribution of the data objects, and the number
of clusters. The authors of [21] showed that the optimal number of cluster heads (ONCH)
algorithm over LEACH (the low-energy adaptive clustering hierarchy algorithm) is better
than LEACH without ONCH as the energy consumption is reduced and the life of the
sensor network is extended.

Clustering and MHR have also been addressed for CRSN due to their effect on the
secondary interference to the PU as well as the energy efficiency. The authors of [22]
proposed a novel clustering process for CRSN in which a pair of nodes close to each other
and sharing the same channel can be coupled together. One of these two nodes should go
into sleep mode while the other one should stay awake during a single communication
interval. Then, they exchange their states after each interval. This technique improves the
energy efficiency, as only the awake nodes perform the SS and participate in the election of
the cluster head. The authors of [23,24] used the optimal cluster number to improve their
groupwise spectrum-aware clustering algorithm. In [23], the authors proposed a novel
distributed spectrum-aware clustering (DSAC) algorithm in order to make the spectrum-
aware clustering more reliable and practical, while in [24], the authors suggested an optimal
cluster number to build up their energy-aware cluster-based routing protocol. In these
works, the optimal number of clusters was obtained based on the energy consumed in
an intracluster communication related to a phase of gathering data in each cluster, and
the energy consumed while transmitting data in intercluster from each CH to the BS in a
single-hop transmission. Using MHR [11], the number of relays increases with the hops
between sources and destinations [25].

In our work, CH plays the role of a relaying node. Therefore, in order to reduce the
transmission range, we must increase the number of clusters and CHs in the network. On
the one hand, the energy consumption decreases in MHR-based networks because the
radio transmission distance decreases. The collision with the PU may be reduced due to
restricted transmission range. On the other hand, the latency and the error probability
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may increase [26]. However, another factor should be taken into consideration in CRSN,
which is the SS. Thus, the optimal number of clusters in a CRSN should be obtained by
optimizing the energy consumption, but also, by maintaining a target performance of the
SS, the energy consumption in our system is compared to the energy consumption when
using the optimal number of cluster calculated in DSAC.

On the other side, data aggregation is one of the most important compression tech-
niques used for wireless networks. This technique reduces the energy consumption during
the data gathering phase and accelerates it due to parallel data collection (each CH collects
data independently and simultaneously with other CHs in the network). Data aggregation
for CRSN was addressed in several works such [27–30]. The authors of [27] incorporated
the basic CRSN characteristics in an information theoretical capacity maximization frame-
work with the combination of energy-adaptive mechanisms and the information correlation
for a multihop CRSN topology. A small network is used in their simulations (three sensors
by hop and three hops toward the sink); it was concluded that an energy-adaptive mecha-
nism outperforms a nonadaptive mechanism. They also concluded that the networks that
use information correlation in data aggregations outperform the other networks. Works
of [28–30] addressed the minimum latency data aggregation scheduling (MLDAS). In [28],
a dense CRSN was considered. The authors assumed an unsymmetrical communication
links among SUs and a possible SU–SU collision. To reduce the number of collisions
and better sharing of the spectrum resources, SU should be in a competitor mode. Two
practical distributed algorithms under a unit disk graph interference model and physical
interference model were proposed in order to investigate the MLDAS problem. The authors
of [29] focused on a probabilistic network model, i.e., links are not always guaranteed
between nodes. Two networks are considered: a regular wireless network (RWN) with
regular users and an auxiliary wireless network (AWN) with auxiliary users. Any user
may send its data over the RWN spectrum with an equal chance with other users, or it can
opportunistically operate on AWN if and only if the AWN spectrum is not occupied by any
auxiliary user. The authors of [30] constructed the aggregation tree and the computation of
a conflict-free schedule simultaneously without any predetermined structure. MLDAS was
extended to multiple-channels access. Additionally, a scheduled node cannot participate in
the aggregation process; thus, a new aggregation mode called data aggregation scheduling
in the dark was proposed in order to utilize the spectrum opportunities of scheduled nodes.

As previously stated, numerous researchers have proposed alternative approaches
to tackle major challenges facing the CRSN system. One can also notice the tremendous
efforts and the persistent pursuit to reduce energy consumption and maximize the lifespan
of the CRSN. In this paper, we introduce the energy consumed during the SS procedure
into an optimization problem in order to find the best number of clusters that extends
the network lifespan. As we will see later, SS is a costly operation that, if not properly
considered, might result in an early energy depletion.

3. CRSN’s System Model

Let us consider a CRSN operating opportunistically over a licensed channel reserved
to a PU. For the sake of simplicity, we assume a deterministic network model, where the
node links are stable, and symmetrical communication links between SUs are considered.
The CRSN contains N homogeneous sensor nodes [31] distributed over a large circular
geographical zone [32] with a radius R. In this zone, all physical records should be
transmitted toward a BS located at the center [33]. The CRSN is assumed operating on
a band allocated to a PU, i.e., the PU activity throughout all the CRSN is homogeneous.
Such an assumption is suitable to the realistic scenarios means that the PU coverage is
large and the whole CRSN falls into this coverage, e.g., the Global System Mobile (GSM)
network [34]. Another case study is the radio FM or TV white space, where the same
frequency may be used by the same PU within a whole country [35].

As shown in Figure 1, the network is divided into a set of k rings, called SS rings in
reference to spectrum sensing. Rings are spaced by R

k , and each ring is divided into several
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clusters called SS clusters with equal size. We suppose that the first ring (near the BS)

contains three clusters; then, the area of each cluster is equal to: π
3

(
R
k

)2
. The area of the ith

ring can be evaluated as follows:

Ai = π

(
i
R
k

)2
− π

(
(i− 1)

R
k

)2

= π(2i− 1)
(

R
k

)2
(1)

where i ∈ [1, k] is the index of the ring. Hence, the ith ring contains a total number mi of
clusters equals to:

mi =
π
(

R
k

)2
(2i− 1)

π
3 (

R
k )

2
= 3(2i− 1) (2)

Notice that the closest ring to BS (i = 1) contains three clusters.
Using Equation (2), we can find the total number of clusters M in the overall network:

M =
k

∑
i=1

3(2i− 1) = 3k2 (3)

Figure 1. Clustering network with equal cluster size where k = 3 is the number of rings splitting a
network of radius R.

At this point, the clustering algorithm with all its features (clustering mechanism,
clustering cycle, and wake-up scheme) is beyond the scope of our investigation. In our
research, we assume that clusters are initially existing and evenly distributed over the
whole network. The topology of our adopted system model is inspired from the behavior
of the well known K-means clustering algorithm when applied to a circular WSN. Figure 2
gives an example of K-mean clustering, in which the topology may be approximated to our
model with three rings. As shown in this figure, the ring around the origin (where the BS is
located) contains three clusters, similarly to our system model.
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Figure 2. K-means applied on a circular CRSN uniformly distributed; the number of cluster was
predefined.

Our network is considered as a homogeneous network. However, we can also extend
our work on a heterogeneous network with A nodes where only N nodes, N ≤ A, can be
elected as CHs, because they have the required capability to fulfill the CH role.

In our model, a multihop transmission system is adopted among the CHs. Thus, the
message sent from a far CH to BS should pass by the CHs in between.

According to our model, CRSN carries out an IDA technique [36], where CH gathers
the data of the nodes inside its cluster and aggregates the data collected from farther CHs.
Figure 3 shows an example of the process of collecting data. Nodes, other than CHs, are
called cluster nodes (CNs).

Figure 3. Gathering data from CNs and CHs.

CNs collect data on a regular basis and send it to CHs whenever requested. In turn,
CH makes SS, if the channel is free; then, it requests data from their CNs as well as from
neighboring CHs. All CNs transmit their packets toward their appropriate CH. In order
to avoid collision among CHs transmission, CSMA/CA and TDMA techniques can be
used [37].

Generally, CNs and CHs close to each other may collect similar physical values, such
as humidity, temperature, etc. Figure 4 shows a part of CRSN divided into clusters and
virtual physical zones with similar clusters (dashed lines) that have similar data packets.
The network is also divided into virtual physical rings, and contains kp physical rings. Each
physical zones contains k

kp
rings where kp ≤ k. In average, each physical ring contains a

number of physical zones, formed by an equal number of SS clusters. Let our CRSN has P
similar physical value zones generating in average P distinct packets in the entire CRSN.
Each physical zone contains several SS clusters. Hence, the maximum number of distinct
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packets retransmitted by the nearest CHs to the BS is P
3 , where 3 is the number of clusters

corresponding to the first ring (see Figure 1). In our system, a cluster receives the packets
coming from its previous CHs’ peers. Then, it compares received packets with each other
and with its own packet collected from its cluster members. Subsequently, it compacts the
similar packets into a single packet by counting the number of the occurrence and merging
them into a new packet before sending it. In the end result, this cluster sends packets that
differ from each other by a predetermined threshold amount. There are many methods for
calculating the difference between data packets; the method used in our previous work
based on the Euclidean distance can be used such as [38]. Figure 4 shows that if a CH
receives p data packets from a neighbor CH located in the same physical zone, then it
retransmits p packets to the next CH, whereas if a CH receives p data packets from a CH in
a different physical zone, it then retransmits p + 1 data packets to the forward CH [39].

Figure 4. Data routing between CHs located in different similar physical value zones.

To detail the IDA process above, after collecting data coming from its CNs and
neighboring CHs, a CH performs three steps to reduce the data redundancy, as described
in our previous study [38]:

1. CH aggregates the data received from CNs in a fixed size packet [38].
2. The CH applies a similarity test performing IDA process, based on the Euclidean’s

norm, applied to all packets.
3. Finally, a CH just transmits distinct packets toward the next CH.

Obviously, CHs are prone to depletion of energy first. Therefore, the CH role is
periodically rotated among potential nodes [12,32]. The number of hops from the CH to the
BS depends on the distance between them. The ring number in the CRSN can be considered
as the maximum number of hops between the farthest CH and BS. A high number of hops
means that a low amount of energy will be consumed by the transmission, but the energy
consumed by SS will be increased, and vice versa.

Hereinafter, we discuss how to find the optimal number of clusters that saves energy
and improves the network lifespan while satisfying an acceptable level of protection for
the PU against the interference characterized by a high probability of PU signal detection
and achieving high spectrum efficiency by reducing the probability of false alarm on the
PU presence.

4. Problem Formulation

In WSN, each node collects data from its environment and transmits them toward CH.
In our model, a CH has two major roles:

1. Performing the SS before requesting the data from the CNs and its previous CHs.
2. IDA based data gathering and retransmitting from its CNs and its backward CHs as

per ad hoc topology.

Therefore, the main energy consumption of the CH comes from two operations:
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• When performing the SS operation, an energy amount es is needed.
• The transmission of the data from a given CH toward the next CH in the direction of

destination also consumes energy.

The energy of data transmission depends on the decision outcome of SS performed by
CH giving the permission to transmit the data:

1. CH makes a miss detection decision on the PU status, i.e., PU is detected absent while
it is truly active. Thus, a collision may take place.

2. CH makes a true decision on the absence of PU. In this case, CH can send its data
toward the next CH freely on the PU channel.

Accordingly, the probability that a CH transmits the data is given by:

pt = p(H0)(1− p f a) + p(H1)(1− pd) (4)

where p(H0) and p(H1) are the prior probabilities that the channel is idle or active, re-
spectively. p f a and pd are the desired false alarm and detection probabilities, respectively,
ensuring the SS requirements.

The number of SS operations and the transmission range are directly related to the
number of rings k. Therefore, finding the optimal number of rings k, which extends the
network lifespan L, becomes essential for the network. Furthermore, network lifespan is
directly affected by the energy consumption along CHs and CNs in our network. Because of
the obvious difference in power consumption between the CHs and the CNs, our problem
can be formulated as finding the optimal k according to energy consumed by the CHs only.

Let us define ei, the average energy consumed by a network node (CH or cluster
member) located in the ith ring:

ei =

[
er

(
R
k

)2
ptNpi + es + e0Npi

]
M
N

+

[
er

(
R
k

)2

pt + e0

](
1− M

N

)
(5)

where Npi is the average number of packets relayed by CHs in the ith ring, er is the energy

density at the receiver antenna and er

(
R
k

)2
is the amount of energy consumed by CH

during the data transmission. N is the total number of nodes and M
N denotes the probability

of a node to be a CH, and the term multiplied by M
N is the energy consumed by a CH

(transmission, SS, running time), whereas (1− M
N ) is the probability of a node to be a CN,

and it is multiplied by the energy consumed by the CN (transmitting data to CH, running
time). e0 is the energy consumed by the node in the running mode.

Let us define emax as the maximum consumed energy per CHs in the CRSN network.
In this work, the optimization is performed with respect to the first node dies (FND)
criterion. Lifespan is assumed to be the number of iterations that can be performed by the
CRSN before the extinction of the first CH in the network [40].

Assuming that each node is initially provided with an amount of energy called the
initial energy eint. Hence, lifespan L can be calculated as follows:

L =
eint
emax

(6)

where:

emax = max
1≤i≤k

ei (7)

The optimization problem, looking for extending the network lifespan, can be defined
as follows:
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max
k 6=0

eint
emax

s.t. M ≤ N (8)

Since eint is constant, the maximization of (8) can be reformulated as a minimization
problem as follows:

min
k 6=0

emax

s.t. M ≤ N
(9)

Using Equation (5), we substitute emax by its value in Equation (9) to obtain:

min
k 6=0

[
max

i

(
er

(
R
k

)2
ptNpi + es + e0Npi

)
M
N

+

(
er

(
R
k

)2

pt + e0

)(
1− M

N

)]
s.t. M ≤ N

(10)

It becomes obvious that the closest CHs to the BS (ring 1) consume the largest amount
of energy due to the relaying role. Hence, our problem can be reformulated as:

min
k 6=0

[(
er

(
R
k

)2
ptk2

p + es + e0k2
p

)
M
N

+

(
er

(
R
k

)2

pt + e0

)(
1− M

N

)]
s.t. M ≤ N

(11)

Proof. See Appendix C.

Now, replacing M, the number of CHs in the network, with its value M = 3k2 as seen
in Section 3 in our problem:

min
k 6=0

[(
er

(
R
k

)2
ptk2

p + es + e0k2
p

)
3k2

N
+

(
er

(
R
k

)2

pt + e0

)(
1− 3k2

N

)]
s.t. M ≤ N

(12)

Theorem 1. If f(x) is a unimodal function defined on G ⊂ R+ having a minimum as ex-
tremum at x0 > 0, then f (n), n ∈ {N ∩ G}, is a set of points having a minimum M =
min{ f (bx0c), f (dx0e)}.

where b·c and d·e stands for the floor and ceiling operator, respectively.

Proof. Let f (x) be a unimodal function defined on G ⊂ R+ with
d f
dx
∣∣
x=x0

= 0 and f (x0) =

min{ f (x)} for x ∈ G. Let n ∈ {N ∩ G} be a natural variable and Un = { f (n) | n ≤ x0}
and Vn = { f (n) | n ≥ x0} are two numerical sequences, knowing that Un is monotoni-
cally descendant, and Vn is monotonically ascendant; thus, f (bx0c) and f (dx0e) are the
minimum of Un and Vn at bx0c and dx0e, respectively. Obviously, the min of f (n) is
M = min{min{Un}, min{Vn}}; hence, M = min{ f (bx0c), f (dx0e)}.

Using Theorem 1, we can show that our Equation (12) can be associated to a unimodal
function with a single minimum on its defined domain. Thus, our problem can be simplified
into a simple optimization problem. Replacing k with a continuous variable x in Equation (12),
and differentiating ei with respect to x, we obtain the optimal value:
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kopt = argmin

eR 4

√√√√ er ptD
es + e0(k2

p − 1)

, eR 4

√√√√ er ptD
es + e0(k2

p − 1)



 (13)

where d.e stands for the ceiling operator and b.c stands for the floor operator. if kopt >> 1,
we can approximate kopt to:

kopt =

⌊
R 4

√
er ptD

es + e0(k2
p − 1)

⌋
(14)

where D = N
πR2 is the density of the network. Since FND is adopted in this work, the

optimal value eopt of emax is given by substituting kopt in Equation (5):

eopt = 2
√

er ptes

D
+

(
k2

p − 1
)(

e0

√
er pt

esD
+

er pt

D

)
(15)

Figure 5 shows the lifetime of the nearest node with respect to the number of clusters. As
it can be seen, the theoretical results coincide with the simulated ones approving Equation (5).
Lifespan increases until reaching a maximum before decreasing again. Indeed, when the
number of clusters is low, the size of a cluster becomes large, then nodes consume a great
amount of transmission energy. Subsequently, the energy consumed while transmission
becomes greater than the energy consumed to perform the SS by CH. As the number of
clusters increases, their size decreases; hence, the transmission energy consumed by CHs
decreases. Therefore, the lifespan increases until a maximum value at a specific value of k is
reached. However, if the number of cluster continues to decrease, the energy consumed by SS
is considerably high compared to the low transmission energy, so the lifespan decreases.

Figure 5. Theoretical and simulation results of the lifespan vs. number of rings in CRSN.

The number of clusters is related directly to the number of rings k as shown in
Equation (3). Hence, the optimal value kopt of k should maximize the lifespan of the net-
work.

5. Network Latency and Collision Probability

In this section, we derive the average time taken by each round of data gathering in
the network, and the probability of collision with the PU. Furthermore, using the analytical
expressions of the collision and the latency, we prove analytically that the first ring (k = 1)
of the network spends the larger amount of energy across the network.
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5.1. Collision Probability and Latency

Each time the BS requests data from nodes, the CNs start sending to the CHs toward
the BS. In turn, before receiving data from CNs and backward CHs, CH should sense the
channel in order to ensure that PU is absent to avoid any collision.

The state of PU (active or idle) is modeled using a discrete Markov chain as shown in
Figure 6 [41], where aij is the transition probability of the PU from the state i to the state j.
The time in this Markov chain is divided into equal slots of τs seconds.

Figure 6. The PU activity modeled as a two-state Markov chain.

Each CH, acting as SU, has four tasks to do:

1. Performing SS to avoid any collision with PU.
2. Broadcasting a message to CNs and neighboring CHs indicating that it can receive

collected data.
3. Gathering data from CNs and neighboring CHs and aggregating that data.
4. Waiting a broadcasting message from the next CH before transmitting packets to-

ward it.

The data sending starts from the CHs of the farthest ring to the next one toward the
BS. The probability that a collision occurs during the data transmission from the farthest
ring until the BS is given by:

Pc = 1−
k

∏
i=1

(1− Pci ) (16)

where Pci is the probability of collision with PU in the ith ring in a network. Such a collision
may take place in one of the following scenarios:

1. A miss detection decision on the PU presence is made by the CH.
2. The CH makes a correct decision on the PU absence, but the latter resumes its activity

during the transmission period of the CH.

Consequently, Pci could be evaluated as follows:

Pci = P(H1)
(
1− pmi

d
)
+ P(H0)

(
1− pmi

f a

)(
1− a

Tai
τs

00

)
(17)

a00 is the transition probability that the PU will stay in the idle state at the next time slot τs,
and Tai is the average time of transmission activity of CH in the ith ring:

Tai =
N × TCN

3k2 + τTi Vi (18)

where N is the total number of CNs in the overall CRSN, TCN is the period of transmission
data packet from a single CN to its appropriate CH, and τTi is the average time of collecting
data of a CH in ring i from one of its Vi previous CHs in the previous SS ring i + 1.
Equation (18) reflects the adoption of the time division multiple access (TDMA) technique
by the CNs, as only one channel is assumed to be used by these nodes to send their data to
CH. TDMA, in our case, prevents the interference between the transmissions of the CNs
and lets the CH collect the data properly.
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As mentioned previously, Vi is the average number of CHs that transmit data packets
to a single CH in the ring i, in other words, the average number of previous CHs of any
CH in the ith ring in our CRSN. This value can be calculated as follows:

Vi =
3(2(i + 1)− 1)

3(2i− 1)
=

2i + 1
2i− 1

(19)

where i ∈ [1, k− 1].
Neighbor CNs may collect similar data. Therefore, we assume that there are P distinct

physical zones with similar areas. Thus, the average time of transmission τTi of each CH
member of ring i can be presented as follows:

τTi =
TP
mi

kp

∑
j=
⌈ kp

k i
⌉

mi

∑
t=1

(⌈mpj

mi
t
⌉
−
⌊mpj

mi
(t− 1)

⌋)
(20)

where TP is the period of a single CH packet transmission, kp is the number of physical
ring, mpj is the number of physical zones in a physical ring j, and mi is the number of SS
clusters in the ith ring.

Proof. See Appendix A.

Equation (20) can be rewritten as:

τTi =
TP
mi

kp

∑
j=
⌈ kp

k i
⌉(mpj + mi −mpj ∧mi) (21)

with:

mpj + mi −mpj ∧mi =
mi

∑
t=1

(⌈mpj

mi
t
⌉
−
⌊mpj

mi
(t− 1)

⌋)
(22)

where (m ∧ n) stands for the greatest common divisor operator of m and n.

Proof. See Appendix B.

Consequently, the period of overall collecting data cycle from the network becomes:

Tc =
1

P(H0)(1− p f a)

k

∑
i=1

Tai

=
1

P(H0)(1− p f a)

k

∑
i=1

τB +
NTCN

3k2 +
TpVi

mi

kp

∑
j=
⌈ kp

k i
⌉mpj + mi − (mpj ∧mi)

 (23)

In Equation (23), we assume that any transmission between two CHs, or CNs and
CHs, cannot succeed in presence of PU; Therefore, we divide the term ∑k

i=1 Tai (the total
time of collecting data without interruption of PU) over the probability of transmission
data without presence of PU.

5.2. Maximal Consumed Energy

Regarding Equation (15) on eopt, in order to prove that the CHs in the first ring
consume the maximum amount of energy among all other CHs, we can instead prove that
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the CHs in that ring relay the maximum number of packets toward the BS. The average
number of packets relaying by CHs in the ith ring, Npi can be derived from Equation (21):

Npi =
1

mi

kp

∑
j=
⌈ kp

k i
⌉
(

mpj + mi −mpj ∧mi

)
(24)

Therefore, each CH in the ring i relay Npi packets, in this case, a CH at the first ring
should aggregate Np1 packets:

Np1 =
1
3

 kp

∑
j=1

3(2j− 1) + 3
kp

∑
j=1

1−
kp

∑
j=1

(3(2j− 1) ∧ 3)

 = k2
p (25)

Hereinafter, we show that:

Np1 > Npi , ∀i > 1. (26)

Proof. See Appendix C.

6. Numerical Results

In this section, we investigate our theoretical results and show the effectiveness of
the IDA in reducing both the collision probability and the network latency. The results
are compared with the classical CR without IDA techniques, and we compare our energy
consumption, data latency, and collision probability with the DSAC system [23].

In our simulations, we consider a circular network containing N nodes with a radius
R = 100 m and 3 physical similar rings. According to Equation (A2) in Appendix A, the
number of physical zones is P = 27. The processing energy of nodes during the receiving is
e0 = 50 nJ/packet and the transmission energy constant is er = 0.1 nJ/bit/m2 [42]. For the
sensing process, a SNR of −1 dB is considered, and pd = 0.9 and p f a = 0.1 are set as the
target probabilities to meet the SS requirement. An energy detection method is considered
for SS, and the consumed energy by the sensing es is evaluated according to the number of
samples Ns needed for the sensing process [43] and the energy consumed per sample Es:

es = NsEs (27)

Figure 7 depicts the effects of the ring number k on the energy consumption by
iteration with different values of node density D. It can be shown that increasing the
density of nodes inside the network leads to decrease the energy consumed during an
iteration. As for the impact of the number of rings k, the energy consumption per iteration
decreases with the increase of k until the latter reaches an optimal value, at which point this
energy consumption becomes minimal. If k continues increasing, the energy consumption
per iteration reincreases, leading to shortening of the network lifespan.
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Figure 7. The effects of the ring number on the energy consumption per iteration on emax with
different network densities.

Figures 8 and 9 highlight the effects of the nodes number on the energy consumption
and lifespan respectively for various values of k including the optimal value. As the two
figures show, for all the considered values of k, the energy consumption per iteration de-
creases with respect to the number of nodes while the network lifespan increases. However,
when setting k to its optimal value for each nodes number N, Figure 8 shows the energy
consumption per iteration decreases compared to the other considered values of k, which
leads to extend the network lifespan as presented in Figure 9. Note that, with a node
number less than 7000, the lifespan with k = 60 is longer than the one observed with
k = 80, but it appears shorter when the number of nodes is more than 7000. In fact, with
less than 7000 nodes, the optimal number of k becomes closer to 60. However, this number
increases with the number of nodes, and it approaches to 80 when the number of node is
above 7000, as shown in Figure 10.

Figure 8. The effects of the number of nodes on the energy consumption with different values of k.
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Figure 9. The effects of the number of nodes on lifespan with respect to various values of k.

Figure 10. The optimal number of rings k vs. the node numbers.

Hereinafter, we investigate the performance of the CRSN with and without IDA in
terms of the collision probability and the data delivery latency. The numerical results are
based on the data size effect. Indeed, other message contents, such as the header and the
trailer of the message, may affect the performance, but these contents are not considered in
our work.

The collision probability of CHs with PU in the middle ring (ring d k
2e) of the network

during the PU activity, with and without IDA, are shown in Figure 11. For both cases
(with and without IDA), the collision rate increases with N due to the increasing number
of messages to be transmitted. When IDA is applied, the probability of collision with PU
decreases with respect to the number of rings. This effect is due to both the aggregation
of the messages and the reduction of the number of CNs in each cluster. Hence, the time
of collecting data in each cluster decreases leading to decrease the probability of collision.
By contrast, without IDA, the probability of collision increases after reaching a minimum
value. This refers to the huge number of packets retransmitted by each CH coming from
the previous CHs. Without IDA, the packet length increases linearly with the number of
rings and results in long transmission time of CHs.
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Figure 11. The collision probability of CH with PU during its activity with and without IDA.

Figure 12 shows the duration of the complete collecting data cycle from CN to the BS.
As clearly shown in this figure, IDA leads the CRSN to highly reduce the data collection
cycle period compared to the case without IDA. For all cases and for a small number of
rings, the CH spends a great amount of time collecting data from its cluster nodes. This
time decreases with an increasing k until the latter surpasses a certain value. Beyond this
value of k, collecting time increases again. This effect is due to the multihop transmission,
where a big number of routes results from the high values of k and procures a big time of
transmission between CHs and BS.

Figure 12. The duration of the complete data collection cycle from CN to the BS with and without
IDA.

Figure 13 depicts the collision probability with and without IDA, during a transition
of rings: k = 1, k = 10, and k = 20, with respect to the number of nodes in the network.
Clear effect of the IDA can be noticed on reducing the collision compared to case of no IDA
for the three considered values of k. For instance, for k = 1 and N = 1000, the collision
rate is about 0.5 when IDA is adopted, whereas it is closed to 1 for no IDA. However, the
collision rate exhibits an increasing with N for both cases due to the increase in the number
of messages to send.
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Figure 13. The collision probability of CH with PU during its activity with and without IDA with
different rings.

Figure 14 shows the collision probability in networks, with and without IDA, in
different rings where the number of nodes is fixed to N = 1000. It can be shown that, at
the nearest ring from the BS (ring 1), we could notice a big difference between the two
curves due to the redundancy reduction of the message obtained when IDA is applied.
This must reduce the message length and, thus, alleviate the collision rate. Moving forward
to the farthest ring from the BS (in our example it is ring 20), the curves begin to converge
until they intersect at the last ring. This is because the collision with PU at the last ring
during the SU activity is the same for both cases, with and without IDA, since there are
no packets coming to the last ring, i.e., the CHs at this ring do not relay any packet from
previous rings.

Figure 14. The collision probability of CH with PU during its activity among all network rings.

In Figure 15, we compare our system with the DSAC system mentioned in [23]. The
DSAC authors have calculated the optimum value for the number of clusters in the network
based on the maximum transmission distance at the sensor nodes and the density of the
sensor nodes in the network. We should highlight that our simulations showed that the
energy consumption in our system is significantly lower than that of DSAC. The reason
here is because we have taken into consideration the amount of energy consumed during
the SS process when we optimize our problem.
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Figure 15. Comparison of energy consumption between our system and the DSAC.

We also compare the latency (Figure 16) and the collision probability with the PU
(Figure 17) of the overall network in our system with the DSAC. The simulation shows that
our system outperforms the DSAC in terms of collision probability and the delay.

Figure 16. Comparison of data latency between our system and the DSAC.

Figure 17. Comparison of collision with the PU transmission between our system and the DSAC.
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7. Conclusions

In our study, we consider a CRSN where all nodes are provided with SS module. This
network is divided into clusters and each cluster contains a number of nodes and one CH.
The communication among CHs and the base station is multihop-based using a licensed
channel dedicated to PU. SS is the responsibility of CHs. Upon a decision that PU is absent,
CH broadcasts a request to its cluster’s nodes and its backward CHs to gather the data. In
this network, a low number of clusters leads to an increase in the energy consumption due
to the data transmission, while a high number of clusters increases the energy consumption
due to the SS. Thus, we calculate the optimal number of clusters that saves the consumed
energy within CRSN and extends the network lifespan. Latency in delivering the message
and collision rate between the CH and PU transmission are also derived given the IDA
adoption by the CRSN, after calculating the average number of packets retransmitted
by each CH. Numerical results show that the selection of an optimal value of the cluster
number and adopting IDA may considerably extend the network lifespan.

Our work makes no attempt to quantify the energy consumed during the clustering
process, although clustering may consume a significant amount of energy. Therefore, as
future work, we will consider all aspects related to the clustering algorithm that will be
optimzed in energy consumption and simple to be implemented in CRSN. We will also de-
rive the optimal number of clusters considering energy-harvesting-based CRSN. Moreover,
it would be interesting to study the impact of number of clusters on the sustainability of
the network. Another interesting perspective is to study the heterogeneous PU activity, i.e.,
more than one PU existing within the CRSN, on the system performance, in asymmetric
links within a probabilistic network model.
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Abbreviations
The following abbreviations are used in this manuscript:

N Total node numbers in the network
M Number of CHs in the network
R Geographical zone radius
k Number of rings in network
Ai Area of ring i
mi Number of cluster inside ring i
M Total number of clusters in the network
kp Number of physical rings in the network
p Number of distinct packet received by a CH
p(H0) Probability of the PU to be idle
p(H1) Probability of the PU to be active
p f a Probability of false alarm
pd Probability of miss detection
pt Probability of transmission of a CH
Npi Average number of relayed packets by CHs in the ring i
er Energy density at the receiver antenna
es Energy consumed during SS process
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e0 Energy consumed by the node in the running mode
ei Average of energy consumed by a node in ring i
L Lifespan of the network
eint Initial stored energy of the node
emax Maximum energy consumed by a node within a cycle
D Density of the nodes in the network
Kopt Optimal number of rings
eopt Optimal consumed energy
Pc Collision probability with PU during overall data gathering
Pci Probability of collision with PU in the ring i
τs Time slot of the PU activity Marcov model
Tai Average time of transmission activity of CH in ring i
TCN Period of data packet transmission from one single CN to its CH
τTi Average time of collecting data of a CH in ring i from one of its previous CHs
Vi Average number of previous CHs in the ring i + 1 of a CH in the ring i
TP Period of a single CH packet transmission
mpj Number of physical zones in a physical ring j

Appendix A. Proof of Equation (20)

We assume that our CRSN contains P equal physical zones, as shown in Figure A1.
Each zone contains an equal number of CHs collecting similar physical data packets. We
can divide our network into kp physical rings, where the smallest ring is divided into three
physical zones. Hence, the area of one physical zone is:

Ap =
π

3

(
R
kp

)2

(A1)

The number of the physical zone P in the overall network is:

P =
πR2

π
3 (

R
kp
)2

= 3k2
p (A2)

where R is the radius of overall CRSN. Similarly to Equation (1), the area of the ith physical
ring is:

PAi = π

(
R
kp

)2

(2i− 1) (A3)

where i ∈ [1, kp]. The number mpj of physical zones in physical ring j is equal to:

mpj =
PAi

AP
= 3(2i− 1) (A4)
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Figure A1. Physical zones in CRSN.

As shown in Figure A2, CHs in the SS ring i forward packets coming from physical
zones located in the physical ring j. Obviously, in this example, we have CHs that forward
one packet and others forward two packets coming from the same physical zone. In general,
in the same SS ring, we have a set of CHs that forward n packets and others that forward
n + 1 packets coming from the same physical ring. The average avi,j of the number of
forwarding packets coming from a physical ring j by the CHs in SS ring i is calculated as:

avi,j =
1

mi

mi

∑
t=1

(⌈mpj

mi
t
⌉
−
⌊mpj

mi
(t− 1)

⌋)
(A5)

Figure A2. The forwarding packets coming from the physical ring j by the CHs in spectrum ring i.

The sum of average avi of the number of forwarding packets coming from all physical
zones by the CHs in spectrum ring i is:

avi =
kp

∑
j=d kp

k ie

1
mi

mi

∑
t=1

(⌈mpj

mi
t
⌉
−
⌊mpj

mi
(t− 1)

⌋)
(A6)

where j = d kp
k ie is the index of the physical ring containing the current SS ring i.
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Finally, on average, a CH located in the ring i in our CRSN spends τTi to forwarding
packets toward its next CH located in the ring i + 1 in the way to the BS:

τTi =
TP
mi

kp

∑
j=d kp

k ie

mi

∑
t=1

(⌈mpj

mi
t
⌉
−
⌊mpj

mi
(t− 1)

⌋)
(A7)

Appendix B. Proof of Equation (21)

Let a = mpj and b = mi, then:

b

∑
i=1

(⌈
a
b

i
⌉
−
⌊

a
b
(i− 1)

⌋)
= a + b− (a ∧ b) (A8)

Therefore, we have:

(a ∧ b) = a + b−
b

∑
i=1

(⌈
a
b

i
⌉
−
⌊

a
b
(i− 1)

⌋)
(A9)

Let (a ∧ b) = c, then a = cM and b = cN with M ∧ N = 1.

1. If a = b, then (a ∧ a) = a and:

a + b−
b

∑
i=1

(⌈
a
b

i
⌉
−
⌊

a
b
(i− 1)

⌋)
(A10)

=a + b−
b

∑
i=1

(die − bi− 1c) (A11)

=a + b−
b

∑
i=1

1 = a (A12)

2. If a > b, then we get:

a + b−
b

∑
i=1

(⌈
M
N

i
⌉
−
⌊

M
N
(i− 1)

⌋)
= b−

b−1

∑
i=1

(⌈
M
N

i
⌉
−
⌊

M
N

i
⌋)

(A13)

As we can see, if M
N i ∈ N, then

⌈
M
N i
⌉
−
⌊

M
N i
⌋
= 0

In this case, we have i ∈ S = {N, 2N, ..., (c− 1)N}; then, we get:

b−∑b−1
i=1

(⌈
M
N i
⌉
−
⌊

M
N i
⌋)

= b−
(

∑b−1
i=1 1− card(S)

)
= b− b + c = c

(A14)

3. If b > a, it can be proved similarly to the case of a > b.

Appendix C. Proof of Equation (26)

According to Equation (A2), if kp = 1, that means that we have just three distinct
physical zones, in this case:

Npi =
1

mi

1

∑
j=1

(
mp1 + mi − (mp1 ∧mi)

)
(A15)
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where, according to Equation (A4), mp1 = 3. We get:

Npi =
1

mi

1

∑
j=1

mi = 1 (A16)

which means all CHs in the overall network relay just one packet. So, let us consider the
case where kp ≥ 2. Hence, to demonstrate that Np1 > Npi , ∀i > 1, we should prove that:

k2
p −

1
mi

kp

∑
j=α

(
mpj + mi − (mpj ∧mi)

)
> 0 (A17)

where α = d kp
k ie. Having:

1
mi

kp

∑
j=α

(
mpj + mi

)
>

1
mi

kp

∑
j=α

(
mpj + mi − (mpj ∧mi)

)
(A18)

Inequality (A17) can be bounded by inequality (A18). We should prove:

k2
p −

1
mi

kp

∑
j=α

(
mpj + mi

)
> 0 (A19)

Hence:

k2
p −

1
mi

kp

∑
j=α

(
mpj + mi

)

= k2
p −

1
3(2i− 1)

kp

∑
j=α

(
3(2j− 1) + 3(2i− 1)

)

= k2
p −

1
(2i− 1)

kp

∑
j=α

(
(2j− 1) + (2i− 1)

)

= k2
p −

1
(2i− 1)

(
k2

p + kp(2i− 1) + (1− α)(2i + α− 2)
)

= k2
p(2i− 2)− kp(2i− 1) + (α− 1)(2i + α− 2) (A20)

In the last equation, (α− 1)(2i + α− 2) ≥ 0 since 1 ≤ α ≤ kp and i > 1. Finally, we
have to prove that k2

p(2i− 2)− kp(2i− 1) > 0. For this, we solve the following equation:

k2
p(2i− 2)− kp(2i− 1) = 0 (A21)

Solving the equation above, we get:

kp = 0, unacceptable since kp ≥ 2

kp =
2i− 1
2i− 2

<
3
2

, ∀i > 0, unacceptable since kp ≥ 2

Therefore, the last equation has the same sign as k2
p. Hence, Equation (A20) is always

positive. Finally, the inequality (A17) is proved.
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