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Abstract: Sound event detection (SED) recognizes the corresponding sound event of an incoming
signal and estimates its temporal boundary. Although SED has been recently developed and used in
various fields, achieving noise-robust SED in a real environment is typically challenging owing to the
performance degradation due to ambient noise. In this paper, we propose combining a pretrained
time-domain speech-separation-based noise suppression network (NS) and a pretrained classification
network to improve the SED performance in real noisy environments. We use group communication
with a context codec method (GC3)-equipped temporal convolutional network (TCN) for the noise
suppression model and a convolutional recurrent neural network for the SED model. The former
significantly reduce the model complexity while maintaining the same TCN module and performance
as a fully convolutional time-domain audio separation network (Conv-TasNet). We also do not update
the weights of some layers (i.e., freeze) in the joint fine-tuning process and add an attention module
in the SED model to further improve the performance and prevent overfitting. We evaluate our
proposed method using both simulation and real recorded datasets. The experimental results show
that our method improves the classification performance in a noisy environment under various
signal-to-noise-ratio conditions.

Keywords: noise-robust classification; noise suppression; sound event detection; joint training; deep
neural network; attention

1. Introduction

Sound event detection (SED) aims to detect the type of event corresponding to an
incoming sound and to obtain its onset and offset. SED is applied to various fields, and with
the development of technology, it is commonly used in fields closely related to human lives.
For instance, it is being used in automatic assistance driving [1], smart meeting rooms [2],
drone detection [3], multimedia [4], social care [5], audio surveillance system [6].

Early research in the field of SED used traditional shallow learning model approaches,
such as Gaussian mixture models [7], hidden Markov models [8], and random regression
forests [9]. Approaches based on support vector machines [10–12] and non-negative matrix
factorization [13–15] were also proposed. In recent years, deep neural network (DNN)-
based approaches such as convolutional neural network (CNN) [16–18], recurrent neural
network (RNN) [19,20], and convolutional recurrent neural network (CRNN) [18,21] have
presented high classification performance.

The above-mentioned recent studies were focused on improving the SED performance,
which demonstrated its potential for applications in real environments. However, such
applications are affected by ambient noise and cannot detect and classify the desired target
sound. Therefore, it is important to overcome the interference of a noise signal. In this
regard, in some fields, studies focused on the characteristics of noise have been conducted.
Some studies focused on the point that noise components have non-Gaussian properties in
communication and radar systems and suggested solutions related to this, and a study to
improve the robustness of the DOA estimation against the interference and noise signals
was conducted [22–24]. Research related to noise-robust SED also has been performed as the
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growing importance of being robust in noise signals for application in a real environment.
Methods such as weak-level noise reduction approaches [25], adaptive noise reduction [26],
and optimally modified log-spectral amplitude-based noise filtering [27] were presented.
In addition, studies combining DNN-based dereverberation and beamforming at the front
end [28] were conducted. However, there is limited research on noise-robust SED using
DNN-based audio enhancement at the front end. In particular, a good-performance time-
domain audio enhancement model, such as convolutional time-domain audio separation
network (Conv-TasNet) [29], has not been studied for use at the front end of SED. However,
in the field of automatic speech recognition (ASR), various studies have been conducted
on combining DNN-based speech enhancement at the front end with DNN-based ASR at
the back end in the time–frequency domain to develop a noise-robust ASR system [30–34].
In the time-domain, for enhancing the noise-robust performance by speech denoising,
combining Conv-TasNet at the front end was proposed [35]. Furthermore, using a joint
fine-tuning method after combining with Conv-TasNet was suggested to improve the
performance of music-mixed speech recognition [36].

Motivated by the joint DNN-based audio enhancement actively conducted in the
ASR field, this paper proposes for the first time in the field of SED combining DNN-based
time-domain noise suppression (NS) at the front end to increase the SED performance
in a low signal-to-noise ratio (SNR) environment. For the NS model at the front end, we
use a temporal convolutional network with the group communication with context codec
method (GC3-TCN) [37], which reduce the model complexity of Conv-TasNet and secures
the same performance. In [37], time-domain GC3-TCN was originally used for audio and
speech separation; however, in this study, it is modified for NS. For the SED model at the
back end, a CRNN-based classification model is employed. Subsequently, the pretrained
NS and SED models are cascaded, which are trained for different objectives, and a joint
fine-tuning method by learning with the final SED loss is proposed. During the joint fine-
tuning process, we propose to freeze some layers’ weight and add an attention module
to prevent overfitting and improve the classification performance in a noisy environment.
The proposed method is evaluated using simulation and real recorded data.

The remainder of this paper is organized as follows: Section 2 describes the proposed
system, which is composed of building pretrained NS and SED models, a joint training
procedure, and an attention mechanism. The experimental settings and the evaluations are
presented in Section 3. Section 4 discusses the experimental results. Finally, in Section 5,
the conclusions are drawn.

2. Proposed System

In this section, we describe our proposed system, which consists of pretraining mod-
ules of each NS and SED, a joint training module of combined two models, and an attention
module used in the joint training process. Prior to the fine-tuning by joint training, the
pretrained models are NS and SED models, as shown in Figure 1. Each pretrained model
is used to create a deeper DNN model, an attention module is added in the joint training
stage, and fine-tuning is performed based on the SED loss. An input signal X undergoes
the following process:

Xenh = NS(X) (1)

X̂ = FE(Xenh) (2)

Yclassi f ier = SED(X̂) (3)

where Xenh denotes the enhanced waveform, FE(·) is the feature extraction, X̃ denotes
extracted log-mel spectrogram feature and Yclassi f ier is the classifier output.
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Figure 1. Overall structure showing pretraining process before joint training, where s and x denote the clean and enhanced
features, respectively. Additionally, m is the number of layers, Ωm(·) is the activation feature output of the mth layer, and
classifier output is the event presence probability output.

2.1. Noise Suppression Model

For the NS model at the front end, which is combined with the SED model at the
back end, the GC3-TCN method is applied. Its key concept is sub-band processing, which
divides the intermediate representations into a specific number of feature groups and
processes them separately. It reduces the model size and complexity by weight sharing
across all groups (group communication), and further decrease the number of multiply-
accumulate operation using encoder-decoder-based temporal compression method (context
codec). In the encoder part of the context codec, the temporal context of local feature is
summarized into a single feature representing the global characteristics of the context [37].
After passing the group communication-equipped separation module, the compressed
feature is transformed back to the context feature through the decoder part of the context
codec and reconstructed to the estimated waveforms through a decoding transformation.
Considering the model size of the joint model consisted of NS and SED, we used the
GC3-TCN for the NS model. More details are described in [37].



Sensors 2021, 21, 6718 4 of 13

2.1.1. Deep Feature Loss

The NS model is trained using deep feature loss. In [38], a pretrained auxiliary model
was used to train the enhancement model. Similar to the method in [38], in the NS model
training process in this study, a pretrained auxiliary network that was trained with a clean
dataset for classification is introduced and its weights are frozen. The deep feature loss
is the L1 loss in the difference between the activations of the clean input feature and the
predicted enhanced feature (that undergoes NS at the front-end process) through each
layer in the auxiliary model as follows:

L(s, n) =
M

∑
m=1
‖Ωm(F(s))−Ωm(F(N(n)))‖1 (4)

where s and n denote the clean and noisy input signals, respectively. In addition, N(·) is
the operation in the NS model, F(·) is the feature extraction, M is the number of layers, and
Ωm(·) is the activation feature output of the mth layer in the auxiliary model.

2.1.2. Auxiliary Model

The auxiliary model used for training the NS model is a CRNN-based classification
model, which is the same as the SED model at the back end with only differences in
the clean and noisy input features as shown in Figure 1. The model is trained with a
clean log-mel spectrogram feature, and its weights are frozen in the NS model training
procedure. Three convolutional layers with learnable kernel sizes of 3 × 3 are used to
learn high-level feature representations from the log-mel spectrogram feature. Each layer
is followed by a max-pooling layer with a 3 × 3 window size. The feature passes through
each convolutional layer followed by a max-pooling layer and is subsequently fed into
three bidirectional long short-term memory (Bi-LSTM) layers, which are used to capture
the temporal context dependencies. Finally, the feature is fed into a fully connected layer
and a sigmoid activation layer to obtain the event presence probability output.

2.2. Sound Event Detection Model

A CRNN-based classification model is used for the SED model, same as the auxiliary
network used in the NS model training procedure, as described above. A noisy log-mel
spectrogram feature is fed into the CRNN model, and the output is the event presence
probability for the same number of sound event classes as that in the dataset. The label is
one-hot encoded; therefore, the output range is [0, 1].

2.3. Joint Training

We propose joint fine-tuning to update all parameters except the last fully connected
layer by combining the GC3-TCN-based NS model and the CRNN-based SED model. The
overall structure is a network that simply cascades the pretrained NS and SED models, as
shown in Figure 2. In the input/output process, the input mixture waveform enters the NS
model to yield an estimated noise suppressed waveform output (blue section in Figure 2),
and after conversion into a log-mel spectrogram by feature extraction (purple section in
Figure 2), it is fed into the SED model to yield the event presence probability output (orange
section in Figure 2). In the joint training procedure, the loss is propagated down from the
back end to the front end by setting the SED loss as the loss of the combined network.
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Figure 2. Overall procedure of attention-based joint training.

2.4. Attention Mechanism

In the joint training process, an attention mechanism is added between the input
in the SED module and the output passing through each convolutional layer and max-
pooling layer. We exploit an attention mechanism of a similar form used in [39,40], but
with different stride sizes of each convolutional layer, normalization, and skip-connection.
As shown in Figure 3, i is set as a variable representing the order of blocks (convolutional
and max-pooling layers) to which the attention module is added. The input feature and
the ith feature from the ith convolutional and max-pooling layer output are mapped to the
two-dimensional (2-D) feature through a 2-D convolutional layer with a 3× 3 kernel size.
The 2-D features each obtained from different inputs, the input and ith output in Figure 3,
have the same dimensions as the ith output, by setting different stride sizes for the conv2D
layer before they are added. An attention mask is produced after passing through the
sigmoid activation, 2-D convolutional layer, and another sigmoid activation. The feature is
subsequently element-wise multiplied with the obtained attention mask, and the masked
feature is added to the ith convolutional and max-pooling layer output.

Figure 3. Attention mechanism.



Sensors 2021, 21, 6718 6 of 13

3. Experiment
3.1. Dataset

The proposed system was evaluated using a mixture generated by mixing clean
sound events data with the noise data. In addition, to verify the SED performance in a
real environment, not only simulated noise data but also noise data recorded in a real
environment were used. As for sound events audio data, we used the TAU Spatial Sound
Events 2019 dataset [41]. The dataset consists of ambisonic and microphone array datasets.
The ambisonic dataset contains four-channel first-order ambisonic recordings, and the
microphone array dataset comprises four-channel directional microphone recordings from
a tetrahedral array configuration [41]. In this study, we used the microphone array dataset.
The microphone array dataset consists of a total of 500 audio data, 400 for development,
and 100 for evaluation. Each audio clip is 1-min long and has a sampling rate of 48 kHz.
The recordings were synthesized using spatial room impulse response collected from five
indoor locations, with 504 unique azimuth–elevation–distance combinations [41]. The IRs
were convolved with isolated sound events from DCASE 2016 task 2 dataset. The dataset
consists of 11 classes such as clearing throat, coughing, door knock, door slam, drawer,
human laughter, keyboard, keys (put on table), page turning, phone ringing, and speech.
In this study, the development dataset was used, and each 60-s audio clip was divided
into 10-s audio clips. Prior to the joint training, the divided dataset was used as the NS
model, auxiliary network, and SED model dataset. In the joint training stage, the dataset
was divided into 5-s audio clips to double the total dataset.

For the simulated noise data, we used the DNS Challenge Noise-full band dataset [42],
which were selected from Audioset [43] and Freesound. The dataset contains approximately
150 audio classes, such as music, speech, toothbrush, creak, etc., and 60,000 clips from
Audioset and additional 10,000 noise clips from Freesound and the DEMAND dataset [44].
Each audio clip is 10-s long and has a sampling frequency of 48 kHz.

For the real experimental noise data, we recorded a real sound source in a noisy
environment created using a robot vacuum cleaner manufactured by LG Electronics. We
mounted a four-channel microphone array on a robot in the form of a tetrahedron, and
only the single channel closest to the robot was used for the experiment. In the recording
environment, the robot cleaner moved freely, and there were two modes and an additional
turbo on/off mode; therefore, a total of four types of vacuum noises were recorded. All
signals were recorded at a sampling frequency of 48 kHz. To construct a dataset considering
the noisy environment, the TAU Sound Events dataset was mixed with the DNS Challenge
Noise-full band dataset, whereas the real noisy data were built by mixing with the real
recorded noise dataset. In the mixture data generation process, one of the numerous noise
data was selected and mixed in an audio clip of the divided sound event dataset, as
described above. The SNR range for the training data consisted of −10, −5, 0, 5, and 10 dB,
and that for the validation and test data comprised 2, 0, −2, −5, −7, −10, and −12 dB. The
dataset consisted of training, validation, and test sets in a ratio of 8:1:1.

3.2. Metrics

To evaluate the SED performance, the segment-based level F-score and error rate were
used [45], which were calculated in one-second segments without overlapping. The F-score
is calculated using P and R, where P is the precision and R is the recall, which are defined
as follows:

P =
∑K

k=1 TP(k)

∑K
k=1 TP(k) + ∑K

k=1 FP(k)
, R =

∑K
k=1 TP(k)

∑K
k=1 TP(k) + ∑K

k=1 FN(k)
(5)

where K is the total number of segments, TP(k), FP(k), and FN(k) denote the total num-
ber of true positives, false positives, and false negatives in the kth one-second segment,
respectively. Subsequently, the F-score is calculated as follows:
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F =
2·P·R
P + R

(6)

In addition, error rate was measured by calculating the total number of insertions (I),
deletions (D), and substitutions (S) relative to the number of active sound events in the
reference, N, and each is defined as follows:

S(k) = min(FN(k), FP(k)), (7)

D(k) = max(0, FN(k)− FP(k)), (8)

I(k) = max(0, FP(k)− FN(k)) (9)

Thus, the error rate is calculated as:

ER =
∑K

k=1 S(k) + ∑K
k=1 D(k) + ∑K

k=1 I(k)

∑K
k=1 N(k)

(10)

where N(k) is the number of sound events active in segment k.

3.3. Feature Extraction for SED Model

It is important to extract feature that can be used efficiently in one domain or in
the process of converting to another domain and this technique has also been applied to
several different fields [46–49]. In this study, as the input feature for the SED network, we
used a log-mel spectrogram. We applied a window length of 40 ms, hop length of 20 ms,
Hanning window size of 40 ms, and fast Fourier transform size of 2048 points. The log-mel
spectrogram was extracted as a 128-dimensional feature. We obtain 500 frames in a single
10-s long dataset for the NS, auxiliary, and SED models before the joint training, and by
slicing whole the frame in a half, 250 frames in a single 5-s long dataset were used for the
cascaded model in the joint training. The input to the SED model was a 128× T log-mel
spectrogram feature map, in which T denotes the number of frames and is set to 64.

3.4. Baseline Model

To verify the SED performance of the proposed system, a baseline model was es-
tablished by training with noisy data. The baseline model was a CRNN-based classifi-
cation model, with the same configuration as the auxiliary and SED models. We set the
baseline as described above to compare the results based on the joint training and the
attention mechanism.

3.5. Training Details and Evaluation

This section describes the NS model, auxiliary model in the NS model training proce-
dure, SED model, and joint training.

3.5.1. Noise Suppression Model

The configuration of the NS model, i.e., GC3-TCN, was set using the hyperparameters
and notations (described in Table 1) in [29,37] as follows: N = 256, L = 96, H = 128, P =
3, X = 2, R = 4, K = 4, M = 16, C = 32, B = 24. The number of channels in the bottleneck
and residual paths of the one-dimensional (1-D) conv-blocks and the number of channels
in the skip-connection paths of 1-D conv-blocks was 128 each. The NS model was trained
for 200 epochs with a deep feature loss and the Adam optimizer at a learning rate of 0.0001.
An early stopping method was applied when no best validation model was obtained for 15
consecutive epochs.
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Table 1. Hyperparameters and notations used in GC3-TCN.

Hyperparameters Notation

Number of encoder filters N
Length of the filters L

Number of channels in convolutional blocks H
Kernel size in convolutional blocks P

Number of convolutional blocks in each repeat X
Number of repeats R
Number of groups K

Group size M
Context size (in frames) C

TCN block size (in frames) B

3.5.2. Auxiliary Model and Sound Event Detection Model

The two models had the same training procedure and configuration, with differences
only in the input data, regardless of them being noisy or clean. The configuration of the
classification model is summarized in Table 2. Both models were trained for 150 epochs with
binary cross entropy loss and the Adam optimizer at a learning rate of 0.001. A dropout
rate of 0.5 was applied to the output of the last convolutional layer and the Bi-LSTM layer.
An early stopping method was also applied when no best validation model was found for
10 consecutive epochs.

Table 2. Configuration of CRNN.

Layers Output Size

Input 1 × 128 ×T
Convolution 1 16 × 64 × T
Max-pooling 1 16 × 32 × T
Convolution 2 32 × 16 × T
Max-pooling 2 32 × 8 × T
Convolution 3 64 × 4 × T
Max-pooling 3 64 × 2 × T

Reshape T × 128
BLSTM × 3 T × 128

Fully connected T × 128
Output T × 11

3.5.3. Joint Training Model

As described in Section 2.3, the joint training model is a fine-tuning process that
combines the NS and SED models. In this process, to prevent overfitting and increase
the performance of the classifier output, the weights of some layers were frozen, and an
attention mechanism was applied to reflect the estimated enhanced information during
learning. The hyperparameters of the NS model, SED model, and feature extraction process
are the same as during the pretrained model construction. The combined model was trained
with binary cross entropy loss and the Adam optimizer at a learning rate of 0.0001. An
early stopping method was applied equally.

3.5.4. Evaluation

In the evaluation, we compared the performance of three cases. First, using noisy data
as the input, we compared the results of simply combining the NS model at the front end
without joint training against those of the baseline model. Subsequently, we compared the
before and after joint training results. Finally, based on the range of layer’s weight freezing
and the application of the attention mechanism, we compared the performance with those
of the previous cases.
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4. Results and Discussion
4.1. Simulation Results

Table 3 summarizes the results of using noisy simulated data mixed with the DNS
Challenge Noise-full band dataset and the TAU Spatial Sound Events 2019-Microphone
Array Development dataset. The F-score of simply combining the NS and SED models
before the joint training was 2.3% lower than the baseline performance. Noise suppression
aims to achieve the enhanced signal close to the original clean audio. The model was
trained on a different loss function at the pretraining process independently from the SED
model. This mismatch between the NS and SED model leads to sub-optimum and degrades
the SED performance at the back end with some possible distortions in the audio signal
when simply combining both models [30,34]. This results also exhibited the effectiveness
of combining both models and optimized on the final SED loss. After joint training with
the SED loss, as expected, the F-score and the error rate were improved by 8.7% over the
baseline performance and by approximately 0.08, respectively. In addition, the result of
the joint training by freezing the weights of the last dense layer resulted in a 1.2% F-score
improvement compared to that without freezing. Furthermore, the effectiveness of using
the attention module was investigated by comparing the results obtained by the proposed
algorithm without/with the attention module. The proposed method with the attention
module achieved a superior performance that without the attention module, which verifies
its usefulness in the joint training procedure. Thus, the joint training with the NS model at
the front end is effective for increasing the SED performance in a low SNR environment.

Table 3. Performance comparison using the simulated noise dataset for input mixture. JT denotes
joint training.

Method
Model Evaluation

NS SED F-Score (%) Error Rate

Baseline - CRNN 33.7 0.78

Before JT
(pretrained) GC3-TCN CRNN 31.4 0.81

After JT
(fine-tuned) GC3-TCN

CRNN w/o attention
w/o freeze 42.4 0.70
freeze dense 43.6 0.68
+ CNN 38.0 0.74
+ RNN 34.3 0.78

CRNN w/ attention
+ freeze dense 45.2 0.66

Figure 4 presents the results of each case per SNR of the test data. Although the total
dataset ratio was fixed, the number of datasets for each SNR was not exactly the same
because the SNR was randomly selected while creating noisy data. Therefore, there is
a possibility that a certain SNR may have been formed high in the evaluation as many
datasets were involved in training, and some may have been formed low. However, as
a result, when looking at each SNR, it showed improved classification performance by
combining the NS at the front end and joint training as expected. In addition, it was shown
that the fact that the performance was improved by fixing the weights of the dense layer
and applying attention during the joint training process did not change. Furthermore,
for the unseen SNR conditions, the proposed method was effective for improving the
SED performance.
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Figure 4. Performance comparison of the test data in different cases based on joint training method
and use of additional attention mechanism under different SNR environments. SNR levels of test
data are 2, 0, –2, –5, –7, –10, and –12 dB.

4.2. Real Experimental Results

Table 4 summarizes the results of the noisy data created by mixing the real recorded
noise data obtained using a robot cleaner with the TAU Spatial Sound Events 2019- Mi-
crophone Array Development dataset. Similar to the simulated results, joint training with
NS achieved better performance in terms of the F-score and lower error rate than the
baseline method. In addition, as a result of freezing the weights of the dense layer and
applying the attention mechanism, the F-score increased by 8.6% and 10%, respectively.
This demonstrated that combining NS at the front end to improve the SED performance in
a noisy environment leads to enhanced results with both simulation and real data.

Table 4. Performance comparison using the real recorded noise dataset for input mixture. JT denotes
joint training.

Method
Model Evaluation

NS SED F-Score (%) Error Rate

Baseline - CRNN 41.9 0.71

Before JT
(pretrained) GC3-TCN CRNN 36.0 0.75

After JT
(fine-tuned) GC3-TCN

CRNN w/o attention
w/o freeze 48.7 0.66
freeze dense 50.5 0.64
+ CNN 47.8 0.66
+ RNN 44.6 0.69

CRNN w/ attention
+ freeze dense 51.9 0.62
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5. Conclusions

In this paper, we proposed combining a time-domain sound separation-based NS
model, GC3-TCN, with a SED model, a CRNN, for noise-robust classification. First, the
two models were trained for NS and SED, respectively. Subsequently, a joint model was
constructed by combining the two pretrained models. The combined model was jointly
fine-tuned with the final SED loss. In the joint training procedure, the dense layer was
frozen, and an attention mechanism was added to reflect the enhanced features passed
through the NS model in the training. We tested the proposed method on both simulation
and real recorded datasets, which showed that using the DNN-based NS at the front end is
effective for achieving noise-robust classification.

As for future works, we plan to employ the soft parameter sharing method, which is
widely used in multi-task learning in the field of sound event detection and localization,
during the joint training process instead of the attention mechanism. Additionally, we
consider using the knowledge distillation, also known as a teacher-student method, to
further improve the noise-robust classification.
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