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Abstract: This paper proposes a new optical angle measurement method in the optical frequency
domain based on second harmonic generation with a mode-locked femtosecond laser source by
making use of the unique characteristic of the high peak power and wide spectral range of the
femtosecond laser pulses. To get a wide measurable range of angle measurement, a theoretical
calculation for several nonlinear optical crystals is performed. As a result, LiNbO3 crystal is employed
in the proposed method. In the experiment, the validity of the use of a parabolic mirror is also
demonstrated, where the chromatic aberration of the focusing beam caused the localization of second
harmonic generation in our previous research. Moreover, an experimental demonstration is also
carried out for the proposed angle measurement method. The measurable range of 10,000 arc-seconds
is achieved.

Keywords: mode-locked laser; angle measurement; second harmonic generation; frequency-domain
angle measurement; parabolic mirror

1. Introduction

Angle is one of the fundamental quantities for precision metrology and manufactur-
ing [1,2]. Optical measurements provide non-contact measurement solutions for these
precision angular measurements and are preferred over contact measurement methods for
measuring items with fragility, deformability, and ultra-precision. Optical rotary encoders
are the most well-used optical sensors in industries for measurement of the rotational angle
of the shaft of a rotary stage or a rotary motor [1]. In a rotary encoder, the circular scale
graduations fabricated on a scale disk, which is mounted on the shaft axis of rotation, are
read by an optical read head that is kept stationary. A rotary encoder can cover the full
360◦ range of the shaft rotation. On the other hand, in addition to the rotational angle
measurement of a shaft over full revolutions, tilt angle measurement over a small range,
such as the tilt error motions of a spindle in a machine tool, is also an important task [1].
Such a tilt error motion is typically smaller than ±1◦. However, it is difficult to employ
a rotary encoder for such a measurement since there is no shaft available for mounting
the encoder disk. Other types of optical measurement methods, which can be referred to
as the non-disk methods for clarity, including autocollimation [3–5], a method based on
the internal-reflection effect [6], and interferometry-based angular measurement [7], in
which the angular response of a reflector or a prism to an incident laser beam is utilized,
have then been developed for tilt angle measurement over a small range. Differing from
a rotary encoder in which a rotating shaft is required to mount the encoder disk and it
being necessary to keep a small and constant gap between the disk and the read head, it
is much easier and more flexible to arrange the laser beam and the target reflector/prism
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in the non-disk angle measurement methods. For this reason, such methods have also
been applied to the geometrical measurement of an object. For instance, measurement
of straightness [8–11], profile measurement of the surface [12,13], and measurement of
multi-axis positions [14–19].

The conventional non-disk angle measurement methods use a continuous wave (CW)
laser. The laser radiation widths are less than 0.1 nm, thus, they are called monochromatic
lasers. On the other hand, recently, mode-locked lasers emitting femtosecond pulses have
been used for precision measurements. The mode-locked laser is characterized by two
features: broadband in wavelength and high intensity. A measurement using a CW laser
is an incremental measurement. The disadvantages of incremental measurements are
counting errors and the need for zero positionings in case of power loss. On the other
hand, measurements by a mode-locked laser can provide absolute measurements due to its
information regarding the wavelength [20–24]. We have developed an absolute angular
measurement autocollimator by using the feature of broadband wavelength [20–23]. In
this method, a mode-locked laser beam is injected into a diffraction grating placed on the
measurement target, and the light of each dispersed wavelength is focused by a lens onto
an optical fiber which is the detector. Since the wavelength of the focused light on an
optical fiber varies with angular displacement, the angle can be determined by detecting
the optical wavelength. Meanwhile, we have also developed an angular measurement
method based on second harmonic generation (SHG) using high-intensity features [25].
In this method, a mode-locked laser is focused on a nonlinear optical crystal placed on
the measurement target. The angle can be detected because the intensity of the generated
second harmonic wave (SHW) varies depending on the angle between the optic axis of the
nonlinear optical crystal and the laser propagation direction. Nonlinear optical phenomena,
which are nonlinear with the optical intensity and are observed with pulsed lasers with high
intensity, are one of the promising techniques that have been continuously developed since
the first demonstration in 1961 [26–29]. This optical phenomenon has been used for various
applications, such as the characterization of short and ultrashort pulsed lasers [30–32]
and surface characterization [33,34], and is also used in image sensing techniques such as
bioimaging [35–38].

An angular measurement method based on SHG [25] produces the power change of
the converted SHW when a mode-locked laser is focused on a nonlinear optical crystal,
in which the SHW has half the wavelength of the mode-locked laser and is detected by a
photodiode. The efficiency depends on the angle between the optic axis of the nonlinear
optical crystal and the laser propagation direction. The angle at which the SHW conversion
efficiency is maximized is called the matching angle. In general, due to the dispersion
relation of the refractive index, the matching angle depends on the wavelength. In a
previous paper, beta-barium borate (BBO) was used as a nonlinear optical crystal, and
the matching angle of BBO has a very small wavelength dependence over the spectral
bandwidth from 1500 to 1620 nm of an Er-doped fiber laser [25]. Thus, the intensity of
the SHW is not wavelength dependent but depends on the matching angle. Therefore, we
developed an angular measurement method to obtain the angular displacement from the
strength of the SHW. However, there were some drawbacks to this method. First, since the
intensity of the SHW depends on the square of the fundamental wave (FW) intensity, the
stabilization of the FW intensity increases the measurement uncertainty. Secondly, if the
nonlinear optical crystal shifts from the point where the FW is focused, the intensity of
the SHW decreases, and the measurement uncertainty is increased. Third, the measurable
range is small, about 400 arc-seconds. Besides, the chromatic aberration of a lens employed
in the proposed method reduces the wavelength bandwidth contributing to the SHW, since
the localization of SHG occurs.

In this study, we propose an angular measurement method based on SHG in the
optical frequency domain to overcome the above drawbacks. Using a nonlinear optical
crystal with a large matching angle dispersion, the wavelength of the SHW depends on the
angular displacement. In this method, the measurement uncertainty does not depend on



Sensors 2021, 21, 670 3 of 14

the light intensity, and high measurement stability can be expected. Additionally, because
the wavelength of the SHW depends on the angle of incidence of the FW, absolute angle
measurement [20–23] is available. Therefore, we perform simulations on matching angles
and wavelength dependence for various nonlinear optical crystals and obtain conditions
with a wide measurable range of angles. The simulations also take into account refraction
at the interface between the nonlinear optical crystal and the air. We present a feasibility
study of angle measurements with a wide measurable range of angles based on calculations.
In this study, we change from refractive optics to reflective optics to avoid the localization
of SHG, which was a drawback of the focusing lens in the previous paper [25].

2. Theoretical Approach
2.1. The Difference of the Measurement Principle between the Previous and the Proposed Studies

Before discussing the theoretical approach, an overview of the present study and the
difference from the previous research is shown in Figure 1. In the previous research [25],
the laser beam (FW light) is focused onto the nonlinear optical crystal (BBO), and converted
to the SHW in the BBO. The power of the converted SHW is detected by a photodiode
and recorded by an oscilloscope. The angular displacement of the measurement target is
calculated from the obtained intensity. Meanwhile, in the proposed measurement system,
the lens is replaced by a parabolic mirror to avoid chromatic aberration. The laser beam is
focused by a parabolic mirror onto a nonlinear optical crystal and converted into an SHW,
which is focused by a lens onto a multimode fiber, and spectra are recorded by an optical
spectrum analyzer. From the obtained optical wavelengths, the angular displacement of
the target is calculated.

2.2. Angle Dependence of Second Harmonic Generation

Several kinds of anisotropic optical materials have birefringence. Birefringence is an
optical property of a material whose refractive index depends on the polarization of light
and the direction of propagation, that is to say, the refractive index of the ordinary beam
(no) does not depend on the propagation direction, whereas that of the extraordinary beam
(ne) depends on the propagation direction. Consider the case of type I negative uniaxial
crystals [28], as illustrated in Figure 2a, ne is less than no, therefore, FW propagates as
an ordinary beam and SHG wave as an extraordinary beam. By adjusting θ to obtain
the value of ne for making the refractive index of FW equal to the refractive index of
the SHG wave, i.e., no(λ1) = ne(θm, λ2), the wavenumber of both refractive indices (k) is
equal, and the phase-matching condition is satisfied. At this angle θm, the SHG output
power gains the highest efficiency due to the constructive interference of SHW [28,39,40],
as shown in Figure 2b. On the other hand, the case in which the phase-matching condition
is not satisfied is shown in Figure 2c. Here, the interference between SHWs is destructive.
Moreover, the refractive index also depends on the wavelength. A longer wavelength has
a smaller refractive index in general. The phase matching angle depends on both no(λ1)
and ne(θ, λ2). As shown in Figure 2d, the BBO used in the previous research changes the
matching angle θm slightly at around 1560 nm, when no(λ1) and ne(θ, λ2) are changed.
Therefore, it is ideal for intensity-based angle detection. On the other hand, in many
crystals, changes in no(λ1) and ne(θ, λ2) lead to changes in θm, as shown in Figure 2e. For
this reason, these crystals are preferred for the angle measurement method based on SHG
in the frequency domain.
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Figure 1. (a) A schematic of the previous research. (b) A schematic view of this research. Figure 1. (a) A schematic of the previous research. (b) A schematic view of this research.

To understand the proposed angle measurement method qualitatively, the power of
the SHW is discussed. For a certain wavelength, the power of the SHW, P2, varies with
angular displacement, as shown in the following equation [28].

P2 =
8π2deff

2

no(λ1)
2ne(θ, λ2)ε0cλ1

2
L2

S
P1

2sin c2 |∆k(θ)|L
2

(1)

where the effective nonlinear coefficient is denoted by deff, while λ1 and λ2 are wavelengths
of the FW and SHW, respectively, ε0 is the vacuum permittivity, c is the speed of light in
a vacuum, S is the cross-sectional area of the focused beam, and L is the crystal length.
Since the femtosecond laser is used as the laser source, the FW is estimated at its central
wavelength, around 1560 nm. As shown in the equation, P2 is proportional to the square
of the FW power P1 and is proportional to the square of the sinc function with respect to
the angle between the FW propagation direction and the crystal axis. The sinc function
is determined by the length of the nonlinear optical crystal and the phase mismatch (∆k)
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as a function of incident angle to the optic axis of the nonlinear crystal (θ), as shown
mathematically in the following equation.

sin c2 |∆k(θ)|L
2

=
sin2(|∆k(θ)|L/2)

(|∆k(θ)|L/2)2 (2)Sensors 2021, 21, x 5 of 14 
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In this study, the phase mismatch can be obtained by considering the refractive index
of the ordinary beam (no) as the function of the wavelength of FW and the refractive index
of the extraordinary beam (ne) as the function of the angle and wavelength of the SHW,
which is mathematically expressed in the following equation [28].

∆k(θ) =
4π

λ1
[no(λ1)− ne(θ, λ2)] (3)

For the transparent medium, the refractive index of the ordinary beam (no) and the
refractive index of the extraordinary beam (Ne) of the FW can be calculated empirically by
using the following equation.
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Ne
(
λj
)
, no
(
λj
)
=

√
A +

B
λj

2 − C
− Dλj

2 ; j = 1, 2 (4)

Here, to simplify the notation, the condition of ne(90◦, λj) is denoted by Ne(λj) and
the condition of ne(0◦, λj) is denoted by no(λj), while the medium-specific constants are
denoted by the coefficients A, B, C, and D. The constants for beta-barium borate (BBO),
lithium iodate (LiIO3), and lithium niobate (LiNbO3), as the parameters of the empirical
calculation, are presented in Table 1.

Table 1. Medium-specific constants as the parameters for the empirical calculation of refractive
indices [28,41].

Coefficients

Crystals

Beta-Barium Borate
BBO

Magnesium-Oxide-Doped
Lighium Niobate

MgO: LiNbO3

A
For no (θ = 0◦) 2.7359 4.8762

For Ne (θ = 90◦) 2.3753 4.5469

B (µm−2)
For no (θ = 0◦) 0.001878 0.11554

For Ne (θ = 90◦) 0.01224 0.094779

C (µm2)
For no (θ = 0◦) 0.01822 0.04674

For Ne (θ = 90◦) 0.01667 0.04439

D (µm−2)
For no (θ = 0◦) 0.01354 0.033119

For Ne (θ = 90◦) 0.01516 0.026721

Furthermore, to complete the calculation of Equation (3), the refractive index of the
extraordinary beam as the function of θ and λ2 is expressed by the equation below [40].

1
no2(λ1)

=
cos2 θm

no2(λ2)
+

sin2 θm

ne2(λ2)
(5)

In the condition of no(λ1) = ne(θ, λ2), Equation (5) can be transformed as follows.

ne(θ, λ2) =
1√

[sin θ/Ne(λ2)]
2 + [cos θ/no(λ2)]

2
(6)

According to Equation (1), the highest SHG power can be achieved in the case of a
sinc function equal to 1, that is to say, a phase mismatch condition equal to 0. To realize this
condition, the incident angle of the laser beam must be set at a certain angle toward the
optic axis of the nonlinear crystal, called the phase-matching angle. Thus, phase-matching
conditions occur as ∆k(θm) = 0 and no(λ1) = ne(θm, λ2). Since each nonlinear optical crystal
has its specific phase-matching angle, it is necessary to estimate the matching angle of each
crystal that satisfies with the following equations [39].

sin2 θm =
no
−2(λ1)− no

−2(λ2)

ne−2(λ2)− no−2(λ2)
(7)

Notice that ne(90◦, λ1) = ne(λ2) = Ne(λ2) in Figure 2, so Equation (7) can also be
expressed by the following equation.

θm = sin−1

(√
no−2(λ1)− no−2(λ2)

Ne
−2(λ2)− no−2(λ2)

)
(8)

Thus, it can be seen that θm depends on the birefringence. In other words, it depends
on the refractive index of the FW for ordinary light and the refractive index of the SHW for
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ordinary and extraordinary light. In the case of broadband light such as the femtosecond
laser, θm is expected to change a lot because both λ1 and λ2 have wide wavelength bands.

Note that a focused collimated laser beam propagates ideally in the form of the
Gaussian beam. Theoretically, the Gaussian beam converges and diverges from the beam
waist, which is the focused area where the beam radius reaches the minimum value and is
expressed by the following equation.

w0 =
2 f λ1

πd
(9)

The radius of beam waist by using a parabolic mirror depends on the focal length
of the parabolic mirror denoted by f, the collimated beam diameter made incident to the
parabolic mirror d, and the wavelength of FW λ1.

Phase-matching angles for BBO and LiNbO3 are calculated using Equation (8) and
the results are presented in Figure 3. By the calculation around the central fundamental
wavelength of 1560 nm of an Er3+-doped fiber laser, the measurement range can be found
and considered to select the suitable nonlinear optical crystal for the proposed angle
measurement method.
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As shown in the figure, the dispersion ranges of phase-matching angles for BBO,
LiIO3, and LiNbO3 crystals within the fundamental wavelengths of 1500 nm to 1620 nm
are 0.05◦, 1.12◦, and 2.17◦, respectively. In the case of frequency-based measurement, the
nonlinear crystal with a broader phase-matching dispersion range gives an advantage of
a wide measurable range of angles. For the widest measurable range, LiNbO3 is the best
suited to the proposed measurement system compared to the other crystals.

2.3. Effect of Crystal Diffraction on the Angular Displacement Sensitivity

The diffraction of a laser beam is one of the optical properties that cannot be eliminated
in verifying the proposed method due to crystal usage. In general, the incident laser
beam that passes through the boundary of two media with different refractive indices
will propagate following Snell’s law, as schematically shown in Figure 4 and expressed
as follows.

sin θi = nc sin θr (10)

The figure above considers a case where the crystal is assumed to be a rectangular
parallelepiped and the certain wavelength satisfies the phase-matching angle (θm). The
angle between the normal axis and optic axis crystal is marked as θspec, the incident angle
is θi, the refraction angle is θr, the refractive index of the crystal is nc, and the refractive
index of air is assumed as 1. The relations of those parameters are described by the
following equations.

θr = θspec − θm (11)
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θi = sin−1(nc sin θr) (12)
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Figure 4. Schematic of refraction effect due to crystal diffraction; the change in direction of an incident
laser beam through a nonlinear optical crystal.

It is noticed that crystal diffraction will affect the SHG calculation because the in-
cident angle to the optic axis of the nonlinear crystal (θ) to achieve the phase matching
condition must be greater than the assumed incident angle. Moreover, the sinc function
in Equation (1) will also change. Thus, this condition should be taken into account in
the calculation formula. The calculation result of both conditions, with and without the
diffraction consideration, will be explained further in the next section.

3. Experiments and Results

The experiment was performed to confirm the feasibility of the proposed method. A
schematic diagram and a photograph of the experimental setup are shown in Figure 5a,b,
respectively. A commercial femtosecond laser (C Fiber, Menlo System, Munich, German)
was employed as the beam source with the following specifications: a center wavelength
of 1560 nm, an average output power of 15mW, a repetition rate of 100 MHz, and a pulse
width of 150 fs. The beam was emitted from the fiber-connected femtosecond laser and
traveled through the collimating lens (F280FC-1550, Thorlabs, Newton, NJ, USA), the
polarizer (LPNIR050-C, Thorlabs), and the off-axis parabolic mirror (f = 50.8 mm, MPD029-
G01, Thorlabs). The SHW of the laser light focused by a parabolic mirror was generated
in the optical crystal. The nonlinear optical crystal was mounted on the rotary stage
as a demonstration measurement target, and the SHW and unconverted FW were both
injected into the multi-mode optical fiber with the objective lens and transmitted to the
optical spectrum analyzer (AQ6370C, Yokogawa Electric, Tokyo, Japan), where the optical
spectrum was recorded.

Firstly, a beam profiler (BP209-IR, Thorlabs) was installed at the focal point to investi-
gate the laser focal spot size. To prevent damage to the beam profiler, another polarizer
(LPNIR050-C, Thorlabs) was installed to reduce the intensity of light and to inject the laser
beam into the beam profiler. The diameter of the focal spot was measured to be 34 µm in
1/e2 width.
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In the next step of the experiment, the effect of the reduction of chromatic aberration
by the parabolic mirror was confirmed. A beta-barium borate (BBO) crystal was employed
as a nonlinear optical crystal, because the angular dispersion of BBO to the phase mismatch
is rather small [25]. The characteristics of the BBO employed in this experiment are shown
in Table 2. Figure 6a shows the light source spectrum before conversion. Figure 6b shows
the SHW spectrum when the laser light was focused by a parabolic mirror. Figure 6c shows
the SHW spectrum obtained by focusing the FW with a lens instead of a parabolic mirror.
As can be seen in Figure 6b,c, the spectral trends of the two SHWs are quite different. In
the case where the laser was focused by a parabolic mirror, the SHW spectrum had a shape
that reflected the shape of the FW spectrum, in other words, a spectral peak around 750 nm
was observed. In addition, the spectra are broader than the SHW spectra obtained when
the lens was used to focus the light. On the other hand, the SHW spectrum with the lens
focusing has a Gaussian-like shape. This is because when the light is focused by a parabolic
mirror, the localization of SHWs due to chromatic aberration shown in [25] does not occur.
As we discussed in [25], the conversion efficiency from the FW to SHW at the wavelength
apart from the central wavelength decreases due to less intensity at the focusing point
of the wavelength due to chromatic aberration. Therefore, by using a parabolic mirror,
it is expected that a wide measurable range can be achieved by eliminating the effect of
chromatic aberration.

Table 2. BBO crystal characteristics.

Components Value

Manufacturer CASTECH Inc.
Name BBO (β-BaB2O4)

Diameter 6.00 mm × 6.00 mm
Thickness 2 (±0.1) mm

Angle Tolerance θ = 19.8◦ ± 0.25◦; ϕ = 0◦ ± 0.25◦

Flatness ≤λ/8 at 633 nm
Coating S1: P-1560 nm; S2: P-780 nm

Then, a feasibility study of the proposed angular measurement method based on
second harmonic generation in the optical frequency domain was carried out. LiNbO3
was employed as a nonlinear optical crystal in the experiment. The properties of LiNbO3
used in this experiment are shown in Table 3. Figure 7 shows the picked experimental
spectra observed when the target stage was rotated. The characteristics of the rotary
stage are shown in Table 4. It can be seen that the spectral peak shifts with the rotational
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displacement of the rotary stage. Therefore, the central value of the spectra was evaluated
using the following formula [42].

λC =

∑
i

λi I(λi)

∑
i

I(λi)
(13)

where λi is the i-th sampling wavelength and I(λi) is the optical intensity at λi. The cutoff
strength is set to half of the maximum intensity as follows.

I(λi) =

{
0 if I(λi) < 0.5max{I(λi)}
I(λi) if I(λi) ≥ 0.5max{I(λi)}

(14)
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Figure 6. (a) FW spectrum before conversion; (b) second harmonic wave (SHW) spectrum focusing by a parabolic mirror;
(c) SHW spectrum focusing by a lens.

Table 3. LiNbO3 crystal characteristics.

Components Value

Manufacturer CASTECH Inc.
Name 5% MgO: LN

Diameter 5 (±0.1) mm × 5 (±0.1) mm
Thickness 2 (±0.1) mm

Angle Tolerance θ = 47◦ ± 0.5◦; ϕ = 30◦ ± 0.5◦

Flatness ≤λ/6 at 633 nm
Coating S1, S2: AR (1500–1600 nm/750–800 nm)
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Table 4. Rotary stage characteristics.

Components Value

Manufacturer SURUGA SEIKI Co., Ltd.
Model number KRB04017C
Travel Range ±8.5◦

Resolution (pulse) 0.0067◦ (Full)
Repeatability Positioning Accuracy ±0.003◦

The calculated λc dependence on the angular displacements is plotted in Figure 8.
It is found to be in good agreement with the calculated values, which have been modi-
fied to account for refraction. The angular measurable range of over 10,000 arc-seconds
was demonstrated.
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Figure 8. The sensitivity of the peak wavelength to the angular displacements.

In order to obtain the resolution of the proposed method, we evaluated the noise level
from experiments. Ten spectral measurements were made with a fixed rotary stage. The
standard deviation of the center wavelength of spectra is shown in Table 5. Table 5 also
shows the sensitivity of the proposed angular measurement method to angular displace-
ments obtained from Figures 8 and 9. In Figure 8, the slope of the modified calculation
considering Snell’s law agrees well with the experimental results. Here, the experimental
results are plotted in such a way that the angular displacement is consistent with the
modified calculation at a wavelength of 780 nm. The resolution is defined by dividing the
standard deviation of the noise by the sensitivity. A resolution of 3.00 arc-seconds was
obtained. In addition, the dynamic range of the measurement method was also evaluated
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as a ratio of measurable range to resolution. Table 6 shows the characteristics of the angle
measurement method in [25]. The angle measurable range is taken from 30% to 70% of the
measurement response curve. The dynamic ranges of both measurements are comparable.
Meanwhile, the advantage of the proposed method is that it has high measurement re-
producibility because the observed wavelength is not affected by the intensity fluctuation
of the FW which was unlikely in the previous research. By increasing the signal to noise
ratio with higher incident FW power, an even higher resolution and dynamic range can be
obtained. A supercontinuum source is another option to get a wider measurable range.

Table 5. The experimental results of the proposed angle measurement system.

Standard
Deviation
2 s (nm)

Sensitivity
(nm/Arc-
Second)

Resolution
(Arc-Second)

Measurable
Range

(Arc-Second)
Dynamic Range

0.00943 0.00314 3.00 10,752 3584
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Table 6. The characteristics of the angle measurement method in [24].

Resolution
(Arc-Seconds)

Measurable Range
(Arc-Seconds) Dynamic Range

0.36 1040 2889

4. Conclusions

A new optical angle measurement method has been proposed by making use of the
unique characteristics of high peak power and wide spectral range of the femtosecond
laser pulses, which can generate second harmonic waves in a wide spectral range. For this
purpose, we have proposed the method in the optical frequency domain. This method
enables absolute angle measurement by the spectrum measurement of SHG. In the ex-
periment, the validity of the use of a parabolic mirror has been demonstrated, where the
chromatic aberration of the focusing beam has caused the localization of SHG in previous
research. Besides, experimental results with the developed measurement system have
demonstrated the feasibility of the proposed angular measurement. Moreover, it has been
clarified that the refraction on the interface between the air and the nonlinear optical crystal
should be taken into account. As a result, a measurable range of 10,752 arc-seconds and a
measurement resolution of 3.00 arc-seconds have been achieved. The proposed method is
expected to make a reliable measurement of tilt angle motions of a spindle of a machine
tool as well as a reliable geometrical measurement, such as a surface profile measurement
of a precision workpiece.
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