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Abstract: Moisture of bulk material has a significant impact on energetic efficiency of dry grinding,
resultant particle size distribution and particle shape, and conditions of powder transport. As
a consequence, moisture needs to be measured or estimated (modelled) in many points. This
research investigates mutual relations between material moisture and particle classification process
in a grinding installation. The experimental setup involves an inertial-impingement classifier and
cyclone being part of dry grinding circuit with electromagnetic mill and recycle of coarse particles.
The tested granular material is copper ore of particle size 0–1.25 mm and relative moisture content
0.5–5%, fed to the installation at various rates. Higher moisture of input material is found to change
the operation of the classifier. Computed correlation coefficients show increased content of fine
particles in lower product of classification. Additionally, drying of lower and upper classification
products with respect to moisture of input material is modelled. Straight line models with and
without saturation are estimated with recursive least squares method accounting for measurement
errors in both predictor and response variables. These simple models are intended for use in
automatic control system of the grinding installation.

Keywords: moisture; moisture modelling; pneumatic classification of particles; particle size; grinding;
electromagnetic mill; bulk materials; copper ore processing

1. Introduction

Grinding is one of the most important technological processes used in many branches
of industry. For example, in the construction industry, grinding is used to crush components
of building materials; in metallurgy–for metal ores; in the chemical and pharmaceutical
industries–for substrates and reaction products; in the food industry–for food ingredients
and semi-finished products; in power plants–for coal in coal pulverizers [1].

Moisture of bulk material plays a very important role in the grinding process. It has
a significant impact on energetic efficiency of grinding, resultant particle size distribution
and particle shape [2–5]. Too dry powders pose the risk of explosion [6–8], whereas too
wet–clog transport pipes and other installation elements [9]. In addition, usability of the
grinding product (as a final product or as input for following technological processes)
often depends on contained moisture, e.g., because of its effect on powder flowability [10],
storage methods, and durability (shelf life) [9]. Summarizing, material moisture has
many effects on grinding process and on behaviour of powders. Thus, moisture content
needs monitoring and control on many stages: in input material and final product, and in
intermediate material streams as well [9].

The influence of moisture of bulk materials on the process of their grinding and
separation in pneumatic transport has been raised in many publications. Authors of [2]
focused on the overall and the specific comminution efficiency of a circuit consisting of
a high-pressure-grinding-rolls (HPGRs) unit followed by a batch ball mill as a function
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of the moisture level in the HPGR input material. The authors noticed that dry material
showed the lowest particle size reduction ratios irrespective of the specific grinding force
level. A comprehensive study of the effect of moisture material on the grinding process
in the food industry was described in [3]. Authors presented in detail the influence of
moisture content on the grinding characteristics, grinding methods for food materials,
including dry, semi-dry, and wet grinding. The effect of moisture on the grinding of natural
calcite using a ball mill was investigated with the use of different methods such as X-ray
diffraction and scanning electron microscopy [4]. The authors found that calcite powder
with the addition of 1 and 10 mass % of water was easy to grind to submicron size, but
more importantly, a much lower degree of contamination was achieved compared to dry
milling. In [5], authors investigated the comminution of dolomite at several different
moisture levels with laboratory high-pressure roll mills. The performed study allowed
the authors to determine the impact of input material moisture on product characteristics,
specific energy consumption, also on applied load, roll gap, and roll speed.

The influence of particle moisture on the separation process was addressed in [11],
where the authors proposed a wetted wall cyclone, which allowed them to increase separa-
tion efficiency. The significantly expanded research in this area is presented in [12]. The
authors analyze the influence of particle moisture on particle size distribution, overall effi-
ciency and grade efficiency in an axial cyclone separator. The conclusion is that the grade
efficiency improves with higher moisture of material but only for particles of diameter over
10 μm. For smaller diameters the contrary trend was observed. However, the study focuses
exclusively on the separation of dust with a diameter of 0–50 μm with moisture content
not exceeding 0.3%. In review [13], the authors note that air classifiers fed with ground
minerals usually perform best when input moisture does not exceed 1.5–2%, or 1–1.5% for
more sticky materials.

All the aforementioned research was carried out using very different types of equip-
ment, different loose materials and process parameters. Generalising the obtained results
to other cases may lead to wrong conclusions, which justifies research based on specific
equipment, products and process parameters.

As was mentioned before, grinding is an essential process for multiple industries.
Thus, they continuously search for better comminution methods: cheaper, more energy-
efficient, faster, quieter, allowing to shape particle features and so on. One of recent
inventions in this field is electromagnetic mill [14]. It is a three-phase inductor of rotating
electromagnetic field which moves small ferromagnetic elements (grinding media) inside
a cylindrical working chamber. The device is capable of fast, fine and ultrafine grinding
in continuous-flow or batch manner, in gas or liquid environments [15–17]. Target raw
materials are mostly non-organical granular substances [14].

An innovative complete grinding system employing the electromagnetic mill is a dry
grinding circuit with recycle of too coarse material, underpressure transport system and
layered automatic control system, as described in [16,18] and shown in Figure 1.

Input material and grinding media enter the working chamber of the mill through
a screw feeder. After grinding, the particles are lifted by the air towards the classifiers
(separators). The precise one is an inertial-impingement classifier. It divides the airborne
particles into two streams: recycle (coarse particles) and final product (fine particles). The
latter are separated from the transport air in the cyclone and then collected in a tank.
The whole installation is equipped with numerous direct and indirect sensors measuring
flows, temperatures, pressures, air humidities, material moistures, consumed electrical
power, fill level of the working chamber, particle size distribution and other quantities
(see e.g., [16,18]). These measurements are used by a hierarchical control system built of
programmable logic controllers (PLCs) and the Supervisory Control And Data Acquisition
(SCADA) system [16,18]. The layered structure and complexity of the control system
creates a need for various models on which the control algorithms may rely.
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Figure 1. Installation for dry grinding with electromagnetic mill: (a) diagram, (b) photo–with
cyclone in the foreground and precise classifier in the background. Credits: a–by authors, b–by
Szymon Ogonowski.

The methods of online moisture measurement for input material and product streams
in grinding system with the electromagnetic mill were already studied by the authors of
present publication in [9,19]. However, material moisture needs to be monitored also in
other parts of the installation—inside the grinding chamber, throughout the pneumatic
transport pipeline, etc. In these locations, direct measurements are difficult or impossible to
make because of harsh environment. So, moisture in these parts of the installation needs to
be modelled (estimated), not measured. The first attempt to solve this modelling problem
for the classification subsystem of the grinding circuit was reported by the authors in [20].
It proposed a general model of material moisture changes in the installation. The model
was divided into: (1) moisture model of the electromagnetic mill with humidification
system for the recycled material, and (2) moisture model of the material classification and
separation path. The experimental results obtained in the study were approximated by
using polynomials of 4th order. Such a model is not well suited for practical implementation
in installation control algorithms due to its nonmonotonicity. In addition, the choice of
such a model was based on limited statistical analyses. Herein, the authors intend to make
an in-depth analysis of this issue and try a different approach to modelling.

2. Materials and Methods
2.1. Moisture Model of the Installation

Analyses of operation of the dry grinding installation with electromagnetic mill
(Figure 1) led to a model describing the changes of water content (gaseous and liquid) in in-
dividual elements of the system [20]. Due to complex structure of such a model, the installa-
tion was divided into two parts for which separate moisture–humidity models were created:

• Model of the electromagnetic mill subsystem includes moisture/humidity changes in the
mill itself with the integrated preliminary classifier and an additional moistening system.

• Model of the classification subsystem includes the precise classifier and the separating
cyclone.

The latter model, shown in Figure 2, is the basis of the experimental setup used in
this research.
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Figure 2. Moisture model (block diagram) of the classification subsystem.

2.2. Installation

The experimental setup is shown in Figure 3. It consisted mainly of the classification
subsystem of the grinding installation from Figure 1, i.e., precise classifier, cyclone and
blower with the appropriate transport pipes and measurement sensors (not shown for
figure clarity).

Moistened granular material (detailed in Section 2.3) was supplied from a screw feeder
directly to the air stream entering the classifier. This material emulated the particles leaving
the mill (working chamber + preliminary classifier). The throughput of the screw feeder
was controlled by changing its rotational speed using a variable frequency drive (VFD).
Both fine and coarse product of separation were collected in tanks for measurements.
(Coarse particles were not recycled to the mill, as it was in the normal operation of the
grinding circuit.)
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Figure 3. Experimental setup involving classification subsystem of the grinding circuit.

2.3. Granular Material

The material used during experiments was carbonate copper ore, one of the target
substances of the described grinding and classification circuit. Particles of the input material
were sized 0–1.25 mm; their particle size distribution is detailed in Figure 4.
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Figure 4. Histogram of particle size distribution for input material. Color bar heights indicate mean
values for all experiments and error bars extend to ±1 × standard deviation.

The majority of fine particles and lesser content of coarse ones corresponded well to
the fact that in the complete grinding circuit, the input material for the classifier was the
output of the mill. Small standard deviations indicated that particle size distribution of the
input material was homogeneous for all experiments (particle sizes were not affected by
mixing of the material nor by transport through the experimental installation).

The above size distribution was obtained using manual sieve analysis. Currently
researched machine vision techniques for assessment of particle size distribution [21,22]
may radically shorten the duration of this measurement.

Generally, visual particle detection and classification can be performed based on
geometric parameters such as area and diameter. Color and texture can also be useful,
especially when considering the active surface of metal ore. This is the case in a method
based on proper lighting and aperture control to extract metal surfaces on ore particles,
developed in [21,22]. Firstly, paper [21] investigated machine-vision-based method of par-
ticle detection and classification in electromagnetic mill system for a wide range of particle
sizes, shapes and positions in the prepared sample. The proposed method was developed
for an on-line procedure with angle lighting and a simple image processing algorithm.
Numerous particle shape features were investigated with the final selection of Heywood,
compactness and aspect ratio factors. Then, in [22] the authors improved the method of
material quality checking based on a cascade of two-dimensional Fast Fourier Transform
(2DFFT) and Gray Level Co-occurrence Matrix (GLCM), combined Seeded Region Growing
(SRG) with boundaries information from edge detection, and proposed a modified Niblack
homogeneity algorithm. Moreover, the development of the proposed method will be
concentrated on detecting the active surface of copper ore, and on determining the relation-
ship between material moisture and granularity. In particular, the problem of considering
material moisture requires extensive research, because material moisture, especially in
the case of small particle sizes, may cause the formation of particle aggregates as a result
of their mutual sticking. This directly affects the quality of particle classification, which
depends on the number and shape of grains. The problem of the formation of aggregates is
specific not only to the grinding process, but also to the sedimentation process [23,24].

2.4. Experiment Plan

Using a mixing paddle mounted on a drill, the material was intensely mixed with an
appropriate amount of distilled water to achieve desired moisture. Tested moisture levels
ranged from about 0.5% to about 5% (relative moisture) in different experiments. Higher
values were also tested, but then the material was too wet to properly move inside the
installation—it was sticking to the inner surfaces of pipes and other elements. Thus, the
mentioned moisture range is the full range that may be used in the classification circuit.
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The moistened material was supplied as the classifier input in an approximately
constant air stream: ca. 2600–3000 L/min. That gives air velocities of ca. 3.4–3.9 m/s
through the classifier (main pipe of 127 mm diameter) and ca. 7.6–8.8 m/s through the most
of the pipeline (86 mm diameter). Air humidity (ca. 20–28%) and temperature (ca. 18–23 ◦C)
at air intake were also approximately constant. Input material was supplied in two test
series: with the screw feeder running at 50% and 100% of its nominal throughput. This
corresponded to VFD frequencies of 25 and 50 Hz. The mass of supplied material was
about 1.5 kg for the half-throughput experiments and about 3 kg for the full-throughput
experiments. That resulted in about 3–4 minutes of material flow through the installation
during each test run. Thus, material mass flows were ca. 15–25 kg/h at half throughput
and ca. 30–45 kg/h at full throughput.

Both output streams from the classification process—i.e., lower product (coarse par-
ticles) and upper product (fine particles)—were collected in separate tanks for further
examination. The content of each tank was carefully mixed to ensure proper homogeneity
of the material. Then, samples were collected to measure moisture content and particle
size distribution. Afterwards, all the material was mixed together and re-moistened for use
in the next experiment.

Each moisture measurement (for the input material, lower and upper product) was
performed on three material samples. They weighed about 8 g each and were taken from
different regions of the collection tank. The measurements were carried out by means of
thermogravimetric method (precise weighing of wet and dried material), using moisture
analyzer RADWAG MA 110.R. For the details of the measurement process, see [19]. For
the full set of collected moisture data, see supplementary materials, Tables S4–S9.

Particle size distribution of lower and upper classification product was assessed using
manual sieve analysis with sieve holes of size 0.75 mm, 0.49 mm, 0.25 mm, 0.12 mm.
Material samples used at this stage weighted ca. 80–100 g. They were thoroughly dried in
a laboratory oven before sieving. The remains on the sieves were weighed with METTLER
TOLEDO ICS425k-6SM/DR/f compact scale. Measured values are listed in supplementary
materials, Tables S2 (lower classification product) and S3 (upper classification product).
Moreover, element-wise sums of the data in these two tables lead to particle size distribution
of the input material, which is presented in Figure 4.

3. Results
3.1. Influence of Input Material Moisture on Separation Process

Weights of granularity classes for upper and lower product, measured in each experi-
ment, may be used to calculate the so-called partition curve of the classifier. It indicates how
much of each class was directed to the lower product (or to the upper product, depending
on the adopted definition) ([25], pp. 89–91). For experiment number e and for each i-th
granularity class, the corresponding point on the partition curve (the degree of separation)
PCi,e is defined by [1,26]:

PCi,e =
mlow,i,e

mlow,i,e + mup,i,e
· 100% =

mlow,i,e

min,i,e
· 100% , (1)

where mstr,i,e is the mass of i-th granularity class in material stream str during e-th experi-
ment, where str = {low, up, in} = {lower product, upper product, input material}. These
are the masses presented in supplementary materials, Tables S2 and S3. In the plots of
partition curves, the abscissae for degrees of separation are usually the middles of particle
size intervals for each class [1]. Please note that each point of the curve is calculated
independently of others, i.e., the curve is not a cumulative distribution of any quantity,
though very often it is monotonically increasing. In addition, due to such definition (1),
degrees of separation may be compared among different experiments (even if particle size
distribution of input material was varying).

To observe how changing moisture affects the partition curves, water content was
added to the plots as the third dimension (Figure 5). The moisture abscissa for each curve
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is the average value of the three relative moistures measured for the input material in
the particular experiment. In the following, the axes of these plots will be called: particle
size–X axis; moisture content in the input material–Y axis; degree of separation (value of
partition curve)–Z axis.
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Figure 5. Partition curves for separator fed with material of varying moisture content. The material
was supplied at: (a) 50%, (b) 100% of nominal throughput of the screw feeder.

Each partition curve (seen as the XZ cross-section of the 3D plot) had the usual shape
obtained for impingement-inertial classifier, i.e., it could be approximated by Weibull
distribution [26] or scaled arctangent function [1]. This suggests that operating condi-
tions of the separator were correct during the experiments and that sieve analysis was
properly performed.

On the other hand, the YZ cross-sections of the above 3D plots (Figure 5) show the
relation between the input material moisture and the degree of separation for a selected
granularity class, i.e., the relation between water content in successive experiments and
PCi,e for fixed class number i and varying experiment number e. These relations are better
visible in Figure 6.

The coarser particle classes seemed to have rather constant degree of separation;
however, the finer particles tended to appear in lower product more often when there
was more water in the material. The strength of the relationship between input moisture
and degree of separation was evaluated with Pearson’s product–moment correlation
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coefficient rP [27] and Spearman’s rank correlation coefficient rS [28] (see Appendix A).
The former coefficient measures linear correlation between variables and the latter—any
monotonic correlation. The calculated coefficients were also tested for statistical significance
with Student’s t-test (see Appendix A). Level of significance α was selected as 0.05 and
there were (number_of_data_points− 2) = 11− 2 = 9 degrees of freedom. Thus, t-test
critical value t1−α = t95% = 2.26. The calculated coefficients and results of t-test for the
measured data are displayed in Table 1.
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Figure 6. Degrees of separation from each experiment grouped by granularity class, in relation to
input material moisture. The material was supplied to the separator at: (a) 50%, (b) 100% of the
nominal throughput of the screw feeder.

Table 1. Assessment of correlation between moisture level and degree of separation for each gran-
ularity class, separately for experiments with different material throughput of the screw feeder.
rP–Pearson’s correlation coefficient (A1), rS–Spearman’s rank correlation coefficient (A2), trP or
trS –transformed correlation coefficient (A3), “sig.?”–is the result statistically significant at 95%
confidence level?

Particle Size
50% of Nominal Throughput

rP trP
rP

sig.? rS trS rS sig.?

0.75–1.25 mm 0.527 1.86 no 0.485 1.66 no
0.49–0.75 mm 0.246 0.761 no 0.251 0.778 no
0.25–0.49 mm 0.471 1.60 no 0.613 2.33 YES
0.12–0.25 mm 0.835 4.55 YES 0.795 3.93 YES

0–0.12 mm 0.812 4.18 YES 0.673 2.73 YES

Particle Size
100% of Nominal Throughput

rP trP
rP

sig.? rS trS rS sig.?

0.75–1.25 mm −0.0170 −0.0510 no −0.0183 −0.0549 no
0.49–0.75 mm −0.522 −1.83 no −0.506 −1.76 no
0.25–0.49 mm −0.335 −1.07 no −0.165 −0.502 no
0.12–0.25 mm 0.111 0.335 no 0.0276 0.0828 no

0–0.12 mm 0.864 5.15 YES 0.802 4.03 YES

The monotonic correlation for particles of size 0.25–0.49 mm at 50% throughput
was statistically significant, but not very strong. For other cases of small particles, if
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the correlations were significant, they were also quite strong (coefficient values mostly
around 0.8).

3.2. Influence of Separator and Cyclone on Moisture of Product Streams

Measured moistures of input and output material in each experiment are listed in
supplementary materials, Tables S4–S9 and visualized in Figure 7.

The measured moistures of output materials—lower than moisture at the input—
indicated that the particles were dried by the transport air during their travel through the
transport pipes, the classifier and (in the case of upper product) the cyclone. To monitor and
control the moisture of the material in the entire process, it was desirable to find a model
for the relationship between moistures of input and output material. To make this model
easily applicable in control algorithms running on PLCs, it should be simple and it may be
approximate, rather than being very accurate but much complicated. Thus, a straight line
model is a reasonable choice for a first attempt. The uncertainties (standard deviations) of
measured moistures varied between data points and these uncertainties were present both
in predictor variable (input material moisture) and in response variable (lower or upper
product moisture). So, an ordinary least squares (LS) algorithm would not yield optimal
estimates of model parameters; a weighted modification of the LS algorithm is needed
to account for these errors [29] [Appendix 10D]. Among others, Cantrell [30] studied and
compared several propositions from the literature and he found that the iterative method
developed in [31] was accurate and convenient for use, and that it estimated also standard
errors of parameters (not only parameter values). Hence, the method [31] was applied to
the moisture data.

Details of the algorithm may be found in the original paper [31]. The implementation
for this particular research was the following:

1. predictor variable was the average input material moisture from each experiment,
2. response variable was each single measurement of product moisture from

each experiment,
3. the initial weights for values of predictor and response variables were set to recip-

rocals of sample variances (where each sample variance was calculated from three
measurements made in each experiment),

4. the initial value of the slope of the line was estimated with ordinary least squares method.

Such initial values (points 3 and 4 above) were suggested in [31]. For each i-th data
point, the initial weights wx,i and wy,i for predictor and response variables were combined
by the algorithm into a single weight Wi. Then, these weights and the slope of the line were
iteratively recomputed until the estimated slope converged (i.e., until the slopes estimated
in subsequent iterations differed by less than the selected tolerance). For moisture data,
this tolerance was selected as 10−10, which resulted in convergence after 5–7 iterations,
depending on the data set (upper or lower product, 50% or 100% of feeder throughput).

The estimated model coefficients with descriptive statistical measures are given in
Table 2. The weighted mean squared error (WMSE) shown in the table, used to compare
the goodness of fit of different models to measured data, is defined as:

WMSE =
∑N

i=1 Wi · (yi − ŷi)
2

∑N
i=1 Wi

, (2)

where: N—number of data points, yi—real (measured) output variable (moisture of lower
or upper product at 50% or 100% of nominal screw feeder throughput) at i-th data point,
ŷi—model output at i-th data point, Wi—final weight assigned to i-th data point.

Goodness of fit was also indicated in the table using coefficient of determination R2 and
adjusted coefficient of determination R2

adj (see Appendix B for details).
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Figure 7. Measured moisture of both classification products related to moisture of input material, separately for different
throughputs of the screw feeder: (a) lower product, 50% of nominal throughput; (b) lower product, 100% of nominal
throughput; (c) upper product, 50% of nominal throughput; (d) upper product, 100% of nominal throughput. Points indicate
three measurement attempts for each quantity in each experiment, error bars extend to ±1 × sample standard deviation of
the three measurements, cross-sections of horizontal and vertical error bars mark the averages of the three measurements.

The fitted lines are plotted in Figure 8 together with their 95% prediction intervals.
Prediction intervals are an estimation of range of values in which a single measurement
falls with the given probability. They were calculated according to [32], as explained in
Appendix C.

Table 2. Coefficients and statistical parameters of fitted straight lines between moisture of clas-
sification products and moisture of input material. low—lower product, up—upper product,
50% and 100%—percentage of nominal throughput of the screw feeder, SD–standard deviation,
WMSE—weighted mean squared error (2), R2—coefficient of determination (A5), R2

adj—adjusted
coefficient of determination (A6).

Data Set

low, 50% low, 100% up, 50% up, 100%

slope a 0.3553 0.4994 0.2005 0.2689
SD of a 0.0040 0.0034 0.0032 0.0062

intercept b 0.3935 0.2263 0.7285 0.706
SD of b 0.0086 0.0085 0.0076 0.017
WMSE 0.0037 0.0012 0.0017 0.023

R2 0.9810 0.9985 0.9965 0.9512
R2

adj 0.9804 0.9985 0.9964 0.9496
a Number of model parameters used in Equation (A6): k = 1, since saturation was not actually used. b Number
of model parameters used in Equation (A6): k = 2, since saturation was indeed used.
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Figure 8. Straight line models fitted to measured moisture of classification products in relation to moisture of input
material, separately for different products and different throughput of the screw feeder: (a) lower product, 50% of nominal
throughput; (b) lower product, 100% of nominal throughput; (c) upper product, 50% of nominal throughput; (d) upper
product, 100% of nominal throughput.

In addition, Figure 9 presents residual plots for these straight line models. In the plots,
the residuals ew,i are standardized with the above-mentioned weights Wi [33]:

ew,i =
√

Wi · (yi − ŷi) . (3)

Residual plots still exhibited some patterns, so straight lines seemed to be too simple
to model the relationships between predictor and response variables. However, for lower
product, the prediction intervals were not very wide. Thus, these models were a reasonable
approximation of the true dependencies, good enough for the intended use in upper-layer
control algorithms. For upper product, the prediction intervals were much wider (in
relation to the range of measured outputs). This indicated that a better model needed to
be found.
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Figure 9. Residual plots for straight line models from Figure 8: (a) lower product, 50% of nominal
throughput; (b) lower product, 100% of nominal throughput; (c) upper product, 50% of nominal
throughput; (d) upper product, 100% of nominal throughput.

The scatter plots of moisture data for upper product (Figure 7c,d) suggested fitting
a (still simple) model of a saturated straight line, where the saturation of output occurred
for higher values of predictor variable. The following algorithm was used to find such
a model:

1. Select a value of input variable xb which should become the boundary between the
sloping and horizontal lines.

2. Fit a line ŷi = a1xi + b1 to all data points at xi ≤ xb using the already introduced
algorithm [31].

3. Given the slope and intercept of this best-fit line, calculate model output at xb: ŷb =
a1xb + b1. This value becomes the coefficient of the horizontal line: ŷi = 0 · xi + b2 = ŷb
which models the output signal for all inputs xi > xb.

4. Calculate the weights for data points at xi > xb in the same way as the algorithm [31]
would do. Using them, together with the weights previously calculated for points at
xi ≤ xb, calculate WMSE (2) for the whole dataset.

5. Search for optimal xb that minimizes WMSE for the given dataset: change xb and
repeat steps 2–4 until the optimum is reached.

For moisture data, the initial value of xb (step 1 above) was set to 3, based on scatter
plots in Figure 7; and optimization (step 5 above) was done with Nelder–Mead direct
search method, as implemented in MATLAB function fminsearch.

The estimated model coefficients and goodness-of-fit indices are given in Table 3.
Fitted models and weighted residuals are plotted in Figures 10 and 11, respectively. Model
estimation results (Table 3) show that saturation was not used in the case of lower product
datasets and the best fitted model is then a straight line only. This is the same as in Table 2
and Figures 8 and 9. Hence, the plots for lower product were not drawn again.
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Table 3. Coefficients and statistical parameters of fitted saturated straight lines between moisture of classification products
and moisture of input material. low—lower product, up—upper product, 50% and 100%—percentage of nominal throughput
of the screw feeder, SD—standard deviation, x–model input, y—model output, WMSE—weighted mean squared error (2),
R2—coefficient of determination (A5), R2

adj—adjusted coefficient of determination (A6).

Data Set

low, 50% low, 100% up, 50% up, 100%

slope a 0.3553 0.4994 0.2408 0.437
SD of a 0.0040 0.0034 0.0072 0.011

intercept b 0.3935 0.2263 0.675 0.430
SD of b 0.0086 0.0085 0.012 0.022

saturation for x ≥ ... > 5, so does not occur > 5, so does not occur 3.71 2.91
saturation at y = ... not applicable not applicable 1.57 1.70

WMSE 0.0037 0.0012 0.00056 0.0025
R2 0.9810 0.9985 0.9994 0.9944

R2
adj 0.9804 a 0.9985 a 0.9993 b 0.9940 b

a Number of model parameters used in Equation (A6): k = 1, since saturation was not actually used. b Number of model parameters
used in Equation (A6): k = 2, since saturation was indeed used.
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Figure 10. Straight lines with saturation fitted to measured moisture of upper classification product
in relation to moisture of input material, separately for: (a) 50%, (b) 100% of nominal throughput of
the screw feeder. Data for lower product are not plotted as they are identical to Figure 8a,b.
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Figure 11. Residual plots for straight lines with saturation from Figure 10: (a) upper product, 50% of
nominal throughput; (b) upper product, 100% of nominal throughput. Data for lower product are
not plotted as they are identical to Figure 9a,b.
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Models with saturation were substantially better fitted to moisture of upper product
than straight line models. WMSE was significantly reduced: from 1.7× 10−3 to 5.6× 10−4

(67% decrease) and from 2.3× 10−2 to 2.5× 10−3 (89% decrease), respectively for data
corresponding to half and full nominal throughput of the screw feeder. Simple and
adjusted R2 for these data sets were also improved, especially for the upper product fed at
full throughput. (Compare Tables 2 and 3.) In addition, with the new model the prediction
intervals were slightly narrower for data at 50% material throughput, and considerably
smaller for data at 100% throughput (compare Figure 8c,d with Figure 10a,b). Residuals
had smaller amplitudes and formed much more randomized patterns than previously,
which was also desirable (compare Figure 9c,d with Figure 11a,b). The model seemed
accurate enough for use in the upper control layers.

Outputs of the best models identified for each dataset are compared in Figure 12. For
reference, all measured values are drawn in a single plot in Figure 13.
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Figure 12. Comparison of models for lower and upper product of classification, for 50% and 100%
nominal feeder throughput: straight line models for lower product and saturated straight line models
for upper product.
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Figure 13. Comparison of measured moisture (average values) for lower and upper product of
classification, for 50% and 100% nominal feeder throughput.
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4. Discussion
4.1. Effect of Input Material Moisture on Separation Process

The data used for rP and rS calculation were measured with some uncertainty. Water
content was measured using moisture analyzer with high-precision balance, so the uncer-
tainty there is mostly associated with sampling of the measured material. Measurement
uncertainties may be defined by standard uncertainty type A, i.e., sample standard devi-
ations computed from the three measurements taken in each experiment. Uncertainties
in calculated degrees of separation are much more difficult to assess because they have
many sources:

• The scales accuracy (±1 g) contributes to two mass measurements mlow,i,e and mup,i,e
used in calculation of each separation degree (see (1)).

• The precision of sieve analysis is limited, especially for manual sieving. Each particle
fraction retained at a sieve contains a slight amount of undersized particles, which
should have fallen through the sieve. It is expected that bigger amount of material
on the sieve causes more unwanted particles to remain, as with more material it is
harder to reach the sieve screen for a single given particle. Thus, each sieve with
coarser predecessor (i.e., each but the most coarse) is lacking a slight amount of input
material; and each sieve with finer successor (i.e., each but the last bowl) is keeping
a slight amount of excessive undersized particles. The lacking and excessive masses
most probably do not cancel out completely. This phenomenon may be diminished
by careful (prolonged and dynamic) sieving, but it can never be avoided.

• Moreover, sieve analysis was only done for samples of material. They were chosen
carefully and are believed to be representative, but nevertheless they only sampled
the whole amount of material.

Analyzing these sources of uncertainty, it is difficult to derive their cumulative de-
scription quantitatively and to use these values for formal assessment of uncertainty of
correlation coefficients. Moreover, uncertainty evaluation is more complex for correlated
quantities, as explained in [34]. However, the associations are quite strong (coefficient
values are relatively high compared to significance thresholds). In addition, cumulative
errors are random (not systematic, not proportional to the measured values). Taking these
into account, it may be assumed with high probability that the correlations indeed exist.

This moisture–separation degree relationship may be due to extra weight added to
the particles by the water (the operating principle of inertial-impingement classifier is
actually to sort the particles by speed, which is related more to their weight, not strictly to
their size). However, then all granularity classes (not only fine ones) should be affected.
Perhaps water droplets adhere differently to smaller and bigger particles and thus affect
only finer classes. Another possible explanation is that some of small moistened particles
stick together (aggregate) into groups, which behave like bigger, heavier particles when
subjected to classification.

The correlation revealed in these data is important for several reasons. If fine particles
content in lower product grows, it means that cut size of the classifier decreases. (Cut
size is a characteristic feature of a classifier and indicates particle size for which degree
of separation (1) is 50% [1,26].) Particle size distribution of the final product (upper
classification product) is modified (more fine particles), which may or may not be desired
by the end user. In addition, the stream of recycle material increases, raising the load of the
grinding chamber and lowering the overall throughput of the grinding circuit—all control
subsystems have to react to this.

Please note that moisture content of granular material needs control for many pur-
poses which have big impact on the whole grinding process (see Introduction). Thus, the
conclusion from the above findings is not to manipulate moisture of material entering the
classifier in order to change parameters of classification process. Instead, these observa-
tions allow for different control subsystems to prepare for the abovementioned changes in
classifier behaviour (feed-forward control). Additionally, the identified relationships may
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suggest which moisture settings to choose if general requirements are somehow flexible
(i.e., if desired moisture is a range of values and not a single value).

4.2. Effect of Separation Process on Moisture of Products

Moisture measurements indicate that bulk material gets dried by the transporting
air when it undergoes separation process in particle classifier and cyclone. The resultant
moisture content depends on the moisture of input material. For the coarse particles (lower
product of classification), this relationship may be modelled by a straight line; for the fine
particles (upper product of classification), a much more accurate model is a straight line
with saturation at specific maximum value.

Most probably, the physical phenomena underlying the process are too complex to
be modelled so simply—this is also suggested by residuals, which are not fully randomly
distributed (Figures 9a,b and 11). However, these models are accurate enough for use in
upper and optimization layers of the control system, which determine proper operating
conditions of the grinding installation. Simplicity of the models presented in this paper
makes them effective and convenient to use for this purpose.

The positions of the calculated lines in relation to each other (Figure 12) reflect several
phenomena which occur in the installation.

• Both lower and upper product are generally more moistened if more material is
travelling through the pipes and tanks (i.e., if feeder throughput is higher). Of course
this is because with more moistened particles, there remains more water which cannot
be absorbed by the air.

• An exception is the range of very small input moistures (less than about 1.25%)–
there, higher throughput results in lower output moisture. This may be related
to surface moisture lost due to impact with other particles (the more particles, the
more collisions).

• Moisture of upper product is saturated at about 1.6% relative moisture, but this
phenomenon does not occur for lower product. One reason may be that the upper
product goes through the cyclone and some additional pipes. This way, these particles
have much longer contact with transport air. Their moisture has enough time to settle
down, when exchange of water between material and air is finished. In contrast,
coarse particles travel a very short path between the installation input and recycle
material output. They do not have enough time to reach a similar steady state of water
exchange. Another reason may be relatively small amount of water that fine particles
manage to hold, compared to bigger particles. In practice, the observed saturation
means that a moisturizer is necessary near the output of upper product if desired
moisture is higher than ca. 1.6%. Please note that the specific value of this moisture
saturation may differ for other experimental conditions, such as different material
type, particle size, material and air mass flow, air humidity, temperature, etc.

5. Conclusions

This research evaluated the influence of input material moisture on particle separation
process and the influence of separation process on moisture of lower and upper classifica-
tion products. The proposed research has a strong practical meaning because it directly
affects the control of the grinding process.

The authors developed an experimental setup based on the classification subsystem of
a dry grinding installation. The setup included precise classifier (of inertial-impingement
type) and separating cyclone. In addition, the usable range of material moistures has been
determined in preliminary experiments, which was 0.5–5% relative moisture for the tested
raw material (carbonate copper ore of 0–1.25 mm particles).

As a result of the research, several relevant dependencies have been distinguished
that should be taken into account when controlling the grinding process. Firstly, statistical
analysis showed that higher moisture levels increase fine particles content in lower product
of classification for the analyzed type of classifier. In other words, high input material
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moisture reduces the cut size of the classifier. Attention was drawn to the impact that this
has on the characteristics of the final product and on the course of the grinding process.

Secondly, this research enhanced the existing moisture model of the classification
subsystem. The model describes drying of material which was observed during particle
separation process. Straight line models were proposed for the relationships between mois-
tures of input and lower classification product, and saturated straight line models—for the
relations between moistures of input and upper classification product. The mathematical
models proposed and verified herein are both simple and accurate enough to be used in
control algorithms for the grinding installation.

Supplementary Materials: Measurement data from the experiment are available online at https:
//www.mdpi.com/1424-8220/21/2/667/s1.
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Appendix A. Correlation Coefficients rP and rS

Pearson’s product-moment correlation coefficient rP [27] measures linear correlation
between variables. Spearman’s rank correlation coefficient rS [28] indicates any monotonic
correlation, since it calculates Pearson’s coefficient between ranks of values instead of the
values themselves [35]. Both coefficients can take values from −1 to 1, where 1 signifies
perfect positive correlation, −1 is perfect negative correlation, and 0 indicates no (linear or
monotonic, respectively for rP and rS) correlation. Fractional values mean there is weaker
(not perfect) positive or negative correlation; the higher the absolute value of the coefficient,
the stronger the association between variables.

If two quantities x and y form a sample of (xi, yi) points, i = 1, 2, ..., N, then Pearson’s
product-moment correlation coefficient is defined as:

rP(x, y) = ∑N
i=1(xi − x̄)(yi − ȳ)√

∑N
i=1(xi − x̄)2 ·∑N

i=1(yi − ȳ)2
=

sxy√sxx · syy
, (A1)

where x̄ is the arithmetic mean of x values, sxx is the sample variance of x values, analogous
definitions apply to ȳ and syy, and sxy is the sample covariance of x and y.

For Spearman’s rank correlation coefficient, the following applies:

rS(x, y) = rP(rx, ry) , (A2)

where rx are ranks assigned such that the samples xi are sorted in ascending order, then
the minimum value of xi gets rank rx,i = 1, and the following xi get the next ranks up to

https://www.mdpi.com/1424-8220/21/2/667/s1
https://www.mdpi.com/1424-8220/21/2/667/s1
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rx,i = N corresponding to the maximum value of xi. Similarly, ranks ry for all samples of y
are assigned.

The resultant correlation coefficients may be tested for statistical significance with
Student’s t-test. A transformed coefficient:

tr = r
√

N − 2
1− r2 , (A3)

where rP or rS is substituted for r, needs then to be compared with critical value t1−α

taken from Student’s t-distribution with N − 2 degrees of freedom and a selected level
of significance α. If |tr| > t1−α, then the coefficient r is statistically significant at (1− α)
confidence level [36].

Appendix B. Coefficients of Determination R2 and R2
adj

Goodness of fit of model output to measured data may be assessed with coefficient of
determination R2. For ordinary least squares—so, unweighted estimation—it is defined
as [33]:

R2
unw = 1− ∑N

i=1 (yi − ŷi)
2

∑N
i=1 (yi − y)2 ; (A4)

where: N–number of data points, yi–real (measured) output variable at i-th data point,
ŷi–model output at i-th data point, y–mean value of measured output.

When data points are weighted, as in the estimation method used in this research, this
definition may be changed to [33]:

R2
w = 1− ∑N

i=1 (yw,i − ŷw,i)
2

∑N
i=1 (yw,i − yw)

2 = 1− ∑N
i=1 Wi · (yi − ŷi)

2

∑N
i=1
(√

Wi · yi − yw
)2 , (A5)

where: Wi is the final weight assigned to i-th data point, yw,i =
√

Wi · yi and ŷw,i =
√

Wi · ŷi
are weighted outputs of the plant and of its model, and yw = 1

N ∑N
i=1 yw,i is the mean value

of the transformed (weighted) measured output.
It is debatable whether formula (A4) or (A5) should be used (see e.g., [33]). The latter

was adopted in the current research, as the authors believe that the unequal quality of
measured data should be reflected in the computed indices.

The adjusted coefficient of determination R2
adj [37] was also calculated. It accounts for

the number of independent variables in the model and thus allows to compare different
model structures:

R2
adj = 1−

(
1− R2

)
· N − 1

N − 1− k
, (A6)

where k denotes number of parameters in the model, excluding the free coefficient (so,
for the straight line model, k = 1). As R2, formula (A4) or (A5) may be substituted. For
consistence, again the latter was used in this research.

Appendix C. Prediction Intervals for Straight Line Model When Measurement Data
Have Errors on Both Axes

For the used modified least squares algorithm [31], the prediction intervals were
calculated according to [32], with small adjustments (mainly in the notation, as in [32] the
weights are used in reciprocal form and in [31], the weights are used directly).

The notation is: N–number of data points; xi, yi, ŷi–measured input, measured output
and model output, respectively, at i-th data point (where input variable is the input material
moisture and output variable is the classification product moisture); s2

(·)–estimated variance
of the given signal; Wi–weight of i-th data point, as assigned by the identification algo-
rithm [31]. In this research, variances of single measured values (s2

xi
and s2

yi
) were estimated
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as sample variances from repetitive measurements, as three moisture measurements were
made for each material sample.

The procedure for estimating prediction intervals is as follows:

• Variance s2
ei

of the modelling error ei at i-th data point may be estimated as:

s2
ei
= s2 · 1

Wi
, (A7)

where s2 is a common factor between variances of the error at different data points
and its unbiased estimate is a kind of weighted mean squared error [32]:

s2 =
∑N

i=1 Wi · (yi − ŷi)
2

N − 2
. (A8)

Note: Formula (A7) is changed compared to the literature method [32]: the cited
paper uses s2 alone and in (A7), multiplication by 1

Wi
is added. This is because s2

estimates the variance of weighted least squares residuals, i.e., of residuals scaled by
weights (3); and to get back the individual variances of unscaled residuals, s2 has to
be divided back by the weights. This way, measurement points with bigger variance
(i.e., with smaller weight) also have the corresponding errors with bigger variance.

• Variances of individual model outputs s2
ŷi

may be estimated as [32]:

s2
ŷi
=

(
1 + XT

i

(
XTWX

)−1
Xi + s2

xi
a2
)
· s2

ei
, (A9)

where superscript T denotes matrix transpose; matrix X =

1 x1
...

...
1 xN

; column vec-

tor Xi = [1, xi]
T; a is the estimated slope of the best-fit straight line.

The term s2
xi

, which in general case may vary irregularly between the data points, may
cause the resultant prediction intervals to be not smooth [32]. This also occurs for
moisture data analysed in this paper.

• For the selected probability (here, 1− α = 0.95 = 95%), constant tα,N−2 should be
taken from Student’s t-distribution for significance level α and N − 2 degrees of
freedom. Then, the prediction interval PIi around ŷi is [32]:

PIi = ŷi ± tα,N−2 · sŷi . (A10)
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