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Abstract: Current research on the reconstruction of hyperspectral images from RGB images using
deep learning mainly focuses on learning complex mappings through deeper and wider convolu-
tional neural networks (CNNs). However, the reconstruction accuracy of the hyperspectral image is
not high and among other issues the model for generating these images takes up too much storage
space. In this study, we propose the double ghost convolution attention mechanism network (DG-
CAMN) framework for the reconstruction of a single RGB image to improve the accuracy of spectral
reconstruction and reduce the storage occupied by the model. The proposed DGCAMN consists of a
double ghost residual attention block (DGRAB) module and optimal nonlocal block (ONB). DGRAB
module uses GhostNet and PRELU activation functions to reduce the calculation parameters of the
data and reduce the storage size of the generative model. At the same time, the proposed double
output feature Convolutional Block Attention Module (DOFCBAM) is used to capture the texture
details on the feature map to maximize the content of the reconstructed hyperspectral image. In the
proposed ONB, the Argmax activation function is used to obtain the region with the most abundant
feature information and maximize the most useful feature parameters. This helps to improve the
accuracy of spectral reconstruction. These contributions enable the DGCAMN framework to achieve
the highest spectral accuracy with minimal storage consumption. The proposed method has been
applied to the NTIRE 2020 dataset. Experimental results show that the proposed DGCAMN method
outperforms the spectral accuracy reconstructed by advanced deep learning methods and greatly
reduces storage consumption.

Keywords: double ghost attention mechanism network; double output feature CBAM; optimal
nonlocal block

1. Introduction

Hyperspectral imaging is based on numerous narrow-band image data technologies.
It combines imaging innovation with spectral technology to enable the detection of the
two-dimensional geometric space and spectral information of the target. Hyperspectral
imaging uses this type of approach to generate high-resolution continuous narrow-band
image data [1]. Hyperspectral images combine the image and spectral information of sam-
ples. Image information can reflect external quality characteristics such as the size, shape,
and defects of the sample. At a certain wavelength, the image will reflect a certain defect
more significantly because different components have different spectral absorptions. The
spectral information can fully reflect the differences in the physical structure and chemical
composition of the sample, and it has therefore been widely used in face recognition [1],
image classification [2], image recognition [3], image restoration [4], and many other appli-
cations. However, hyperspectral imaging equipment is expensive, complex, and difficult
to move, which limits the further development of hyperspectral imaging research. These
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problems can be readily solved using RGB to HSI image reconstruction. Hyperspectral
imaging technology is therefore a very active area of current research [5].

Spectral reconstruction can be divided into traditional, machine, and deep learn-
ing methods. The traditional method is based on statistics such as the pseudo inverse
method [6], smoothing inverse method [7], and Wiener method [8]. The accuracy of recon-
struction is low and easily affected by noise when the formula transformation is used to
reconstruct the spectral matrix.

Therefore, the pseudo inverse method is combined with the adaptive sample selection
after due consideration of the method of sample selection [9]. A new transformation is
conducted on the verification sample by the adaptive selection of training depending
on the spectral similarity of the sample to calculate the reflectance matrix. The natural
neighborhood interpolation method [10] is used to reconstruct spectra from different
samples, which expands the range of sample selection. However, the local interpolation
method [11] estimates the reflectance curve of n-dimensional space from the corresponding
tristimulus value, namely, the CIEXYZ or CIELAB sample value, which is also the earliest
low-channel to multi-channel spectral study. The weighted coefficient matrix of the locally
optimal training sample [12] can also be used to improve the reconstruction accuracy. The
performance of spectral reflectance reconstructed from the digital camera is better if the
training sample and the test sample are as similar as possible [13]. The method of discrete
sine transform (DST) [14] is used to make the spectrum approach the original spectral
reflectance and gradually maximizes the approximate value of the spectral original. In this
way, it is difficult for the algorithm to set the internal control parameters within a certain
range although the accuracy of spectral reflectance can be guaranteed. These traditional
methods have simple calculation and are easy to use, but the spectral rebuilding precision
is low.

In machine learning, tensor learning is widely used in hyperspectral classification
and dimensionality reduction [15-18]. It has been applied to the latest hyperspectral
imaging techniques [19]. Tensor learning uses prior information to calculate the image
reconstruction in hyperspectral imaging. There are many other methods of machine learn-
ing from low-dimensional to high-dimensional mapping. The primary function [20-22]
of network training for sample image simulation using sample selection can be used for
camera-specific reflection and spectrum mapping between the RGB values and the scene.
RGB white balance is used to standardize scene lighting for reflectance-recovery scenarios.
However, the use of this method for reconstruction is limited by the sensitivity of the
camera sensors. In addition, there are still poor spectral reconstruction results in the case
of spectral peaks even in the limited scene. To not be restricted by the camera sensor sensi-
tivity requires the following assumption. A weighted average of the reflectance is selected
for all the samples in the training group to remove the restrictions on the camera sensor
activity with all the samples and the color of the pixel being smaller than a threshold set
for the reconstruction of the spectrum [23]. Recovering high-quality hyperspectral images
from RGB based on sparse coding is a fast and low-cost direct method [24-26]. Sparse
hyperspectral dictionaries are constructed by collecting hyperspectral prior information,
which can provide mapping between RGB images and hyperspectral images. However,
the accuracy of the reconstruction is affected by the noise of the camera lens, the brightness
of the photo, the camera sensor, and the impact of external factors such as the sensor.
The sparse reconstruction algorithm is based on the color adaptive dictionary [27]. Three
channels of RGB are trained to obtain a three-channel non-negative dictionary using the
similarity of spatial content of the single spectral band and RGB images, respectively. The
color adaptive dictionary is chosen to improve the sparsity of the dictionary representation
by using the color camera in the response amplitudes of the spectral bands. However, some
parameter optimization problems affect the spectral reconstruction. Regularization is a
basic technique that is robust for solving ill-posed optimization problems and is essential
for the reconstruction of hyperspectral images [28]. When the regularization function
is combined with the optimization-based network and the complete parameters of the
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network learnt through end-to-end training, it is possible to overcome the significant cal-
culation problems in the traditional iterative optimization method. However, the details
of the image will be lost after spectral reconstruction. Therefore, Akhtar [29] proposed
using a space-spectral correlation for hyperspectral training of patch clusters to model the
natural spectrum under the Gaussian process. This approach was combined with the RGB
image to restore the spectral details from the quantized RGB image of the known spectrum.
Although the loss of reconstruction accuracy is relatively reduced, the algorithm network
is complicated and this leads to a large amount of calculation.

Deep learning methods are used in hyper spectral image classification and analysis
Ref. [30-32]. Currently, deep learning has been applied to the reconstruction of RGB
hyperspectral images. There are many methods for spectral reconstruction based on deep
learning, which mainly use supervised and unsupervised methods. One such method that
is unsupervised is generative adversarial networks (GAN) [33,34]. This method requires
that the model can effectively capture the structure of data types and consider the spatial
context information in RGB images to obtain the spectral reconstruction process. However,
in the attempt to construct the spectral data with prior information, the single-pixel-based
method cannot effectively utilize the local context when applied to the spectral data.
Therefore the reconstructed spectral accuracy is low, the speed is slow, and the running
cost is high. Other supervised methods [35] exist such as the convolution neural network
(CNN) [36]. In this method, the two-dimensional CNN model mainly focuses on extracting
spectral data by only considering spatial correlation. The three-dimensional CNN model
uses the relationship between channels to refine the extraction of spectral data. However,
the 3D-CNN spectrum reconstruction takes much more time. In addition, there are other
supervised networks, such as the scale attention Pyramid (SAPUNet) [37], which uses
U-net with an extended convolution [38] to extract features. The accuracy of hyperspectral
reconstruction is improved, but the accuracy of spectral reconstruction is only higher in
outdoor RGB images, while it is lower in indoor RGB images. The other method is to add a
special convolution layer reconstruction network (the 2D convolution batchnorm-relu) on
U-NET [39], which can effectively reconstruct hyperspectral images from RGB images.

In the supervised mode, spectral reconstruction can also be conducted by combining
the CNN and 7 x 7 CONVv layers [40]. This combination forms a residual structure in
the whole network framework. CNN is the core network. The 7 x 7 CONv layer can be
regarded as the residual network through which the information of the whole framework
is connected. In addition, there are also many different CNNs. The deep residual network
HSCNN [41] replaces the remaining blocks with dense blocks, thus forming a new network
HSCNN-D. The model greatly deepens the network structure and obtains a more accurate
reconstruction. In a multiscale deep CNN proposed by YAN [42] through the symmetric
cascade down sampling and up sampling of the intermediate feature map, the local and
nonlocal image information can be jointly encoded for spectral representation, and the
accuracy of spectral reconstruction can be improved. The network that deepens the
convolutional layer is the hierarchical regression network (HRN) [43]. Therefore, residual
dense blocks are used to remove image artifacts and global blocks at each level to expand
the visual perception of the image. However, these approaches use several kinds of
convolution calculations for complex networks and are therefore time consuming. In
recent years, popular deep learning frameworks that use attention mechanisms have also
been applied to the reconstruction of single RGB images from hyperspectral images. For
example, the residual pixel attention network (RPAN) [44], a pixel attention block PA
module, is applied to every pixel of all feature maps and adaptively rescales each pixel
weight for all input feature maps. Each channel has its own characteristics between channels
due to learning interdependence. It is also possible to learn that different positions of a
channel have different degrees of characteristics. An adaptive weighted attention network
(AWAN) [45] uses a single convolution extracting shallow layer from RGB input features.
Next, superimposed multiple double-surplus note blocks, called dual residual attention
blocks (DRABs) form a network of deep in-depth feature extractions, through integration
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of the channel correlation between the characteristic responses of the distribution channel
once again. However, the accuracy of the reconstructed hyperspectral images needs to
be further improved and the complex calculations for the trained model also occupy a
large amount of storage. This is a common problem that is also found in the current RGB
reconstructions of HSI images.

We made the following contributions to solve these common problems of low accuracy
and excessive consumption of storage:

(1) The framework of the Double Ghost Convolution Attention Mechanism Network
(DGCAMN) is proposed. It includes the Double Ghost Residual Attention Block
(DGRAB) module, the Double Output Feature CBAM (DOFCBAM), and the optimal
non-local area block (ONB). Its purpose is not only single image reconstruction of
the hyperspectral image. It must also have the highest precision minimum storage
requirements for the operation parameters.

(2) The DGCAMN proposes a Double Ghost Residual Attention Module (DGRAM) that
uses GhostNet and PRELU activation functions. It therefore has a lightweight network
to reduce the total number of parameters, computational complexity, and storage
usage.

(3) The DGCAMN proposes a Double Output Feature CBAM (DOFCBAM), which gen-
erates four cross-linked feature vectors in the shared layer of the channel attention
mechanism. This maximizes the capture of texture information on the feature graph,
which makes the reconstructed hyperspectral image content more abundant.

(4) The DGCAMN proposes the optimal non-local area block. The region with the
most abundant feature information in the feature graph could be obtained using
the Argmax activation function through reverse evaluation. This not only extracts
the structure clues for a long distance, but also maximizes the most useful feature
parameters to better improve the accuracy of spectral reconstruction.

(5) In the NTIRE 2020 dataset, the hyperspectral images for single RGB were recon-
structed with the most advanced reconstruction accuracy. The storage occupied was
the lowest for this approach.

2. Our Methods

The double ghost convolution attention mechanism network (DGCAMN) framework
workflow is as follows: The RGB image extracts the feature information of the shallow
image through a 3 x 3 size convolution kernel. The deeper feature information is extracted
using m (m = 8) double ghost residual attention blocks based on the Double Ghost and
Double Output Feature CBAM (DOFCBAM) in series superposition. The use of double
Ghost can reduce the parameter and computer storage footprint and DOFCBAM is used to
reconstruct the accuracy of hyperspectral images. After a 3 x 3 convolution network, the
output eigenvalues are added to the original eigenvalues, and the deeper feature informa-
tion can be output and the shallow information of the original image can be obtained at the
same time. The PRELU activation function speeds up the rate of network learning. A 3 x
3 convolution output is performed to ensure the input and output characteristics are the
same size. The optimal nonlocal module is entered to enhance the feature connection of the
upper and lower layers and to finally reconstruct the high-precision hyperspectral images.

2.1. Double Ghost Residual Attention Block (DGRAB)

The proposed double ghost residual attention block mechanism is the backbone part
of the whole network. It is used in the framework of this article to deepen the role of the
network in obtaining deeper spectral characteristic information. The working principle of
the DGRAB module shown in Figure 1 is as follows: DGRAB module consists of two ghost
residual modules. The first ghost residual block Rm-1 is to deepen the network and extract
the feature information of the image at a deeper level.
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Figure 1. Double Ghost Convolution Attention Mechanism Network framework.

The purpose of the second ghost residual block Rm is to link the upper characteristic
information and to strengthen the link between the global net. The working process of
the first residual block in Figure 2 is as follows: First, the features of Fm-1 for the shallow
feature information of the image are obtained by 3 x 3 convolution processing. Next,
the PRELU activation function through a ghost is conducted with another ghost of the
features with the original F,,,_; additive. This is effective to capture the characteristics of
the original information. After a pair of g host and PRELU activation functions, we get
F,,_1, which is the formation of the first double ghost residual network R,,_1. The second
residual block work process is as follows: F,,_; is obtained through the PRELU activation
function and ghost to ensure that the output and the original F,, feature input are keep
consistent. Next, the result obtained by a convolutional attention mechanism block, the
double output feature CBAM, is added to the original feature value. The feature value of
Fy, is the output of the PRELU activation function. From the second ghost residual module
Rm, the process F;; can be expressed as follows:

Fn=F, 1+aF,(me1, ..., N) (1)

where & alpha is the PRELU activation function and F;;, is the m-th feature image.

Fr-1

Ghost  PRELU Ghost PRELU Ghost

PRELU Ghost PRELU

- =1

Figure 2. Double Ghost Residual Attention Module.

2.1.1. Ghost Network

The ghost network is introduced into DGRAMN in this article. The total number
of parameters and computational complexity required in the ghost network is reduced
compared with an ordinary CNN without changing the size of the output feature map [46].
The use of GhostNet solves the problem of large computation and large storage in spectral
reconstruction. The ghost network is shown in Figure 3.
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In the proposed framework, the ghost network work process is divided into two
stages. In the first stage, we propose to averagely divide the original features into two
parts. The first part is selected for convolution operation, as seen in Figure 3. First, the
feature size is obtained through the convolution operation where the convolution size is
1 x 1. Subsequently, the batch normalization operation is conducted to reduce its value
to (0, 1). Next, the PRELU activation function is used to obtain half of the feature graph
F1. The function of the operation at this stage is to accelerate the convergence of feature
learning and avoid the phenomenon of overfitting. The process can be expressed as the
following formula:

Figure 3. Ghost Network.

F1:f><§+b (2)

where X is the convolution operation and b is the bias.

The second stage is to use the cheap operation. We use the depth-wise convolution
layer to extract feature information from the second part of the feature map. We set the
convolution kernel size of this layer to 1 x 1 to simplify the calculation and do not use bias
in the ordinary convolution operation (Equation (3)). A linear operation [46] is used to
generate multiple feature images. The generated feature graph is then normalized, which
not only retains the original learning features but also accelerates the running time of the
hardware training data. In addition, this algorithm reduces the absolute difference between
the data, which alleviates the problem of overfitting, and replaces the regular mode of
dropout. Finally, the output feature graph of the activation function is F2, which can be
expressed by the following formula:

F2:<I>(f’®§) 3)

where ® is one characteristic diagram multiplication, ® is the linear arithmetic operation,
F2 is the operation feature and f” is a filter.

In this study, we propose to use the PRELU function as the activation function. The
PRELU function only requires small amounts of calculation compared with other activation
functions such as tanh and sigmoid. Only a simple linear operation is needed to calculate
the error gradient through backpropagation. The calculation time is short and the running
speed is fast. In addition, the PRELU function is an example of an ‘unsaturated activation
function’, which uses this function to solve the problem of a ‘disappeared’ gradient. This
ensures the characteristics of the input value that are less than zero in this case have non-
zero value outputs. In the ghost network, the final feature map is the feature graph output
from the first stage and the feature graph output from the second stage, which are merged
by F3 as shown in the following formula:

F3=F1+F2

—fxbro(fel) @)
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where x is a convolution, ® is one characteristic diagram multiplication, ® is the linear
arithmetic operation, F1 is the common convolution feature, F2 is the operation feature and
F3 is the output feature.

2.1.2. Double Output Feature Convolutional Block Attention Module

A convolutional block attention module (CBAM) is a type of attention mechanism that
combines spatial and channel features [47]. It has the ability to focus on the details of the
feature target area, which eliminates the role of non-essential information. In the framework
of this study, we propose that the double output feature CBAM can effectively extract the
feature information of the image, which improves the accuracy of spectral reconstruction.
The working principle is shown in Figure 4 and described here. The working process can be
expressed by Equations (5) and (6) as follows for a given intermediate feature F € RC*H*W:

F'= Mc(F),F € [HxW xC] (5)

F’ = M,(F') (6)

where the input end is the feature graph F, M.(F) represents the output feature F’ the
channel dimension, and M;(F) represents the output feature F” in the spatial dimension.

MAX pooling

Input F

Avgpooling l >

Double Output Feature Channel attention mechanism block Spatial attention mechanism block
PRELU
hannel Attention oo Siguoid
Mc(F) ”»
F MAX pooling \ F
O _
o Spatial Attention
3x3 Ms(F)
|
PRELU (a) ( b)

Figure 4. Convolution Attention Mechanism Module Diagram.

Double Output Feature Channel Attention Mechanism Block

The channel attention mechanism enters the original features F € RE*H*W into

the spaces of the global average and maximum pooling layers to give the two channel
results (Figure 4a). The purpose of this method is to compress the feature map and to
obtain a one-dimensional vector before the operation. Next, the PRELU activation function
accelerates the feature learning and reduces the computation time. The shared perception
layer share multilayer perceptron (MLP) contains a hidden layer for the size of the vector
(r is the reduction ratio). We propose that share MLP computes these two different one-
dimensional vectors to generate two output eigenvectors. Therefore, a one-dimensional
vector arises from the four-channel attention mechanism M, € R€*1*1. The first and third
double output eigenvectors of the output are F;,, € R7. The generation of a double
output feature vector can maximize the capture of texture information on the feature map,
which makes the reconstructed hyperspectral image more abundant compared with the
generation of a feature vector. The second and fourth double output eigenvectors are
F,%f . The generated double output figure feature vector function has the most background
information compared with the generation of a feature vector, and therefore reconstructs the
hyperspectral image background information more clearly. The four feature vector values
are added and then normalized by the sigmoid activation function. The new features after
scaling can be obtained using M. (F) € RF*Wx1_ This helps to generate the subsequent



Sensors 2021, 21, 666

8 of 19

input characteristics of the spatial attention mechanism module and its working process is
represented as follows:

F' = o(MLP(2e Avgpool (F)) + MLP(2eMaxpool (F))) 7
= MC(F) ( )

where ¢ is the sigmoid function and e represents the learning rate of PRELU activation
function. MLP is shared by the input of the average pooling and maximum pooling.
The avgpool and the maxpool refer to adaptive average pooling and adaptive maximum
pooling, respectively.

Spatial Attention Mechanism Module

The spatial attention mechanism needs to generate the two-dimensional spatial at-
tention diagram. The network at the spatial level can recognize the feature information
of the higher response in the feature graph. (Figure 4b). The first input is the size of the
feature M. (F) € RT*W*1 that goes through the channel attention module. This passes into
a one-dimensional channel average pooling layer and maximum pool layer to yield two

channel features of the two-dimensional vector F,, € € RP>HXW and F,ﬁmx , respectively.

This is done according to the channel dimension characteristics by parallel connection
two-dimensional vector, which is then passed through a size 3 x 3 convolution kernel
f. In our framework, the 3 x 3 convolution is used to reduce the number of parameters
without increasing the amount of computation. A sigmoid activation function is used
to ensure that the output range of the eigenvalue is between (0, 1), and it is used as the
weight coefficient Ms. Finally, the weight coefficient is multiplied by the output features
of the original channel attention mechanism F’. New features are resized according to
M;(F) € RHXWXC_This ensures that the finally obtained feature map F is consistent with

the original input in the spatial dimension, and its formula is expressed as follows:

F" = M,(F)
= o(f33 x (Avgpool(F) Maxpool (F))) 8)
= U(f3><3(( avg’ Fhax)))

where ¢ is the sigmoid operation and f3*3 represents the 3 x 3 convolution kernel. Here
Avgpool (F') and Maxpool (F') specifically refer to the output of the adaptive average
pooling (F3,,) and the adaptive maximum pooling (Fy,,) in the spatial attention mechanism
block.

2.2. Optimal Nonlocal Block

The nonlocal block (NB) [48,49] has been applied to target detection, segmentation,
and other fields. RGB is used to reconstruct the hyperspectral images in the study reported
here. The purpose of the non-local block is to enhance the relationship between features. It
can directly calculate the relationship between any two positions and it can capture well the
spectral feature information. However, the application of NB to the RGB image spectrum
reconstruction of HSI generates many parameters, which makes it difficult to obtain the
abundant characteristic information accurately. Therefore, we propose an optimal nonlocal
block (ONB). If the ONB is compared with ordinary nonlocal plots, it not only extracts clues
to long structure but also maximizes access to the most useful characteristic parameters.
This helps to improve the accuracy of spectral reconstruction.

The ONB module working process can be divided into two stages. The first stage is
as follows: The original feature maps F,; (C x H x W) is divided into two branches for
1 x 1 convolution kernels. Branch & gets C/2 x HW and Branch p receives C/2 x HW
(Figure 5). Next, branch ® transposes the convolution feature and performs the Argmax
function (Figure 5) to obtain the most abundant feature information H1 x W1 x C/2.
The eigenvalue obtained by the branch is multiplied by the branch 3 to obtain HIW1
x HW. This gives HIW1 x WH and the weight feature figure P. The second stage is as
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follows: The original feature map is again subjected toa 1 x 1 convolution to obtain the
feature information of branch g: C/2 x HW. C/2 x HW is then transposed. The first phase
output feature map P is normalized in batch by softmax and points are multiplied by the
transposed feature HW x C/2 to obtain a new eigenvalue Q: H x W x C/2. Q is then
added to the original feature graph by a 1 x 1 convolution. The optimal nonlocal blocks
can accept any feature size for input. The output therefore retains the same size and the
input features. The working process of ONB is as follows:

nj = Tl Lf (P Flargmax(Fy,)3(F,)

= i 2 Fup FOL i Eu))3 (B

)

where 7 is the output characteristics of the figure of one position, and j represents the
index of all possible corresponding positions, that is, n gets a nonlocal response value
by weighting. F represents the input feature graph and y,, ; represents the output feature
graph. The size of the output feature graph is the same as that of the input feature graph.
The f function is used to calculate the similarity of # and j by calculating the correlation
of the nth position and all other positions. g(F, ;) is used to calculate the representation
of the feature map at position | for the purpose of information transformation. C(F) is a
normalization function to ensure that the overall information remains unchanged before
and after the transformation. ) represents a recursive convolution layer with multiple
vj

¢~ is an Argmax activation function that takes a direct connection

Yjeti
from each layer to all subsequent layers.

dense connections. ) ;

Transpose H1W1 X HW

softmax

[HXWXC/2]

C/2X HX W

Figure 5. Optimal Nonlocal Block.

3. Experimental Results and Analysis
3.1. Experimental Setup and Evaluation Index

The development environment of this experiment consists of Windows 10, PyTorch
version 1.5.1, and two NVIDIA 2080Ti GPUs. The dataset used is the data provided
by NTIRE 2020 at https:/ /competitions.codalab.org/competitions /22225. NTIRE 2020
contains the following: 450 training data for 31 channels (400 to 700 nm, one channel per
10 nm) of 512 x 482 and 450 corresponding RGB images; 10 RGB images for a 512 x 482
validation dataset and a hyperspectral image for 31 channels (400 to 700 nm, one channel
per 10 nm) of the same size; 10 RGB images for 512 x 482 test datasets.

The number of double ghost attention modules, m, is 8 and the output channel is
200 in the framework model we designed. The batch size was set as 20, the optimization
parameters 1 and B2 were 0.9 and 0.99, respectively, ¢ was 10~8, the DOFCBAM reduction
was 16, the ONB reduction was 8, the learning rate was initialized as 0.0001, and the
attenuation strategy of the polynomial function as a power function was equal to 1.5. In the
process of comparing the proposed method with the YAN [43], HRN [43] and AWAN [45]
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algorithms, all the experiments were carried out on the same hardware, programming
environment and dataset.

There are two main parameters of this network, m and batch size which will affect
the reconstruction HSI from RGB image. m is the double ghost residual attention block
(DGRAB). When m = 8, the RMSE value is the smallest. When m # 8, the RMSE value is
not the best (see the Figure 6. RMSE variation curve with m).

[——RwusE|
0.032 |-
0.030 |-
0.028 -
0.026 |-
0.024 -

0.022 -

RMSE

0.020 |-

0.018 -

0.016 |-

L iy
&1 g 5 10 15 20 22

The number of m

Figure 6. RMSE variation curve with m.

Similarly, when batch size = 20, the RMSE value is the smallest in the Figure 7. RMSE
variation curve with batch size. The RMSE value is the HSI value of the reconstructed 31
channels, compared with the real HSI value of the 31 channels.

—— RMSE

0.032-
0.030}
0.028}
0.026}

0.024}

RMSE

0.022-

0.0201-

0.018F-

0.016F

0 2‘ 4‘ 6‘ BI 10I 12I 14‘ 16I 18‘ 20‘ 22I
Batch size

Figure 7. RMSE variation curve with batch size.

The standard spectral reconstruction indicators used in this study are root mean square
error (RMSE) [45], and mean relative absolute error (MRAE) (Equation (11). In Equation
(10), the RMSE is the square root of the deviation between the predicted value and the true
value and the ratio of the number of observations N. I I(fs) ; refers to the deviation between

the reconstructed py, channel value I I(g ; and the true spectral value of the py, channel [ é?,

and is sensitive to outliers in the data.
In Equation (11), the mean relative absolute error (MRAE) is used to calculate the pixel
level parallax between the real image and the reconstructed image, where N represents the

whole pixel of the spectral image, and the reconstructed hyperspectral image value I I(fs) I

()

and the real ground truth I/ The visual pixel level difference between the two spectral
values precisely expressed the build quality of the network. The smaller the values of the
two indicators, the better:

1N 2
RMSE = | & - (Iijd — %) (10)

p=1
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1 N
MRAE = - Y (|17, = 1| /157 (11)

p=1

3.2. Experimental Analysis
3.2.1. Overall Reconstruction Result Comparison and Evaluation

The reconstruction result of our algorithm is closer to the real spectral image (Figure 8).
The experimental results compared with other advanced algorithms, namely, YAN, AWAN,
and HRN, are shown in Table 1. Our RMSE value reaches 0.0162 and the MARE value is
0.0439. Both indexes are the smallest among the evaluation indexes for the listed algorithms.
The smaller values of the two indexes correlate with a better performance compared with the
other algorithms listed. The RMSE value of our algorithm is reduced by 0.3544 compared with
the YAN [42] algorithm. The MRAE decreases by 0.7519. The RMSE value of our algorithm is
reduced by 14.28% compared with AWAN [45]; MRAE decreases by 8.15%; the RMSE of our
algorithm is reduced by 41.94% compared with the HRN [43] algorithm; MRAE is reduced
by 29.60%. This further indicates that the model of the proposed algorithm has the highest
accuracy for hyperspectral reconstruction and reaches the most advanced level. Because
the ghost network used in our framework is robust, it not only removes a large number of
redundant feature images, but also maintains the compactness of multiple ghost networks
connecting with adjacent features, thus ensuring the accuracy of spectral reconstruction.
In addition, we use the DOFCBAM network to link up and down long-distance feature
information, and improve the accuracy of information. The channel attention mechanism
module is used to obtain important information on the feature map, and spatial attention is
used to obtain the most abundant feature information on the feature map, thus improving
the efficiency of spectral reconstruction. In addition, the optimal nonlocal module further
enhances the connection between different convolution layers, regardless of the distance.
Nonlocal blocks can capture useful feature information and improve the accuracy of spectral
reconstruction. However, in the process of our algorithm comparison, HRN, AWAN and
YAN do not use a lightweight network, and in the network structure, our algorithm solves
the problem that the AWAN training model is too large. Compared with HRN and YAN, our
algorithm has higher reconstruction accuracy.

Our work

HRN [43] AWAN [45]

YAN [42]

Ground truth

Figure 8. NTIRE 2020 HS verification set for 451 RGB images as determined by YAN, HRN, AWAN, and our method. The
reconstructed and real image visualized in the 16th channel map is shown.

3.2.2. Comparison of Storage Consumption and Lightweight

Our method, YAN, AWAN, and HRN [43] were compared for another NTIRE 2020
hyperspectral validation set for RGB image reconstruction using the same hardware equip-
ment and a batch size set to 20. The visual effect is shown in Figure 9 and the results of the
comparison of performances are shown in Table 2.
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Table 1. A quantitative comparison of different algorithms and our method for the NTIRE 2020
hyperspectral verification set. The best results are highlighted in bold.

Method RMSE MRAE
YAN [42] 0.3706 0.8009
AWAN [45] 0.0189 0.0478
HRN [43] 0.0279 0.0696
Our work 0.0162 0.0439
YAN [42] HRN [43] AWAN [45] Our work Ground truth

Figure 9. A spectral reversion of the HSI reversion error image in band 31. The analysis uses a validation set for NTIRE 2020.

Table 2. Comparison of different algorithms and our work for analysis of the NTIRE 2020 dataset.

Method Model Size Model Size Ratio Parameter
YAN [42] 104,304 KB 3.17 102 G
AWAN [45] 204,690 KB 6.22 17,461,521 KB
HRN [43] 123,879 KB 3.77 164.01 G + 31.705 M
Our work 32,898 KB 1 2,783,247 KB

The outcome of our proposed algorithm reconstruction of the image is closer to the real
hyperspectral images (Figure 9). The reason for this better performance is that we employ
the ghost network framework, which uses convolution kernels (size 1 x 1). In Table 2’s
comparison of our method with the YAN [42], AWAN [45] and HRN [43] algorithms, the
model size of the model trained by this method is the smallest, which is 32,898 kb. The
proposed DGCAMN framework model greatly reduces the amount of computer hardware
storage during RGB to hyperspectral reconstruction and is a lightweight framework model
under conditions that produce the same spectral reconstruction accuracy. The YAN, AWAN
and HRN, methods occupy 3.17, 6.22 and 3.77 times as much hardware storage as our
method, respectively. This situation occurs because the ghost network is used in the
proposed DGCAMN framework to replace the traditional convolution in the process of
obtaining the features of the image. The simple linear cheap operation is also used to
generate more feature information. In the case of the same human visual perception, the
size of the ghost network convolution kernel is 1 x 1 in our work compared with other
convolution kernels of 3 x 3 and 5 x 5 [46]. This is conducive to the extraction of the local
features of the images, but fewer parameters are calculated. The minimum calculation
parameters for our algorithm is 2,783,247 KB, which is 1/5, 4/25, and1/38 of the number
for the YAN [42], AWAN [45], and the HRN [43] algorithms, respectively (Table 2).

In Table 3, our RMSE value reaches 0.0226 and the MARE value is 0.0750. Both indexes
are the smallest among the evaluation indexes for the listed algorithms. The smaller values
of the two indexes correlate with a better performance compared with the other algorithms
listed. The RMSE value of our algorithm is reduced by 0.042 compared with the YAN [42]
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algorithm. The MRAE decreases by 0.07. The RMSE value of our algorithm is reduced
by 5.39% compared with AWAN [45]; the MRAE decreases by 24.26%; the RMSE of our
algorithm is reduced by 37.61% compared with the HRN [43] algorithm; and the MRAE is
reduced by 29.20%. This further indicates that the model of the proposed algorithm has
the highest accuracy for hyperspectral reconstruction and reaches the most advanced level.

Table 3. Quantitative comparison of different algorithms and our method for the NTIRE 2020
hyperspectral verification set. The best results are highlighted in bold.

Method RMSE MRAE
YAN [42] 0.0646 0.1345
HRN [43] 0.0239 0.0969

AWAN [45] 0.0311 0.0932
Our work 0.0226 0.0750

3.2.3. Comparison of Convolution Attention Mechanism Modules

The purpose of this experiment is to verify that our double output feature CBAM
is superior to other attention modules. The experiments are performed for the same
batch size, the same dataset, and the same hardware device. The reconstructed results
based on our framework using None, channel attention mechanism [50], spatial attention
mechanism [51], the CBAM + ResNet module [47], and Our DOFCBAM at 420, 470, 560,
630, and 700 nm are shown in Figure 10. A comparison of performance is shown in Table 4.

Table 4. Comparison of different frame structures and our work on the NTIRE 2020 HS verification set.

Method RMSE MRAE

None 0.0168 0.0889
Channel [50] 0.0279 0.1334
Spatial [51] 0.0169 0.0865
CBAM + ResNet [47] 0.0191 0.0834
CBAM [47] 0.01337 0.0763
Our DOFCBAM 0.01323 0.07165

Our DOFCBAM reconstruction of the image effect gives the best fit for the real hyper-
spectral image compared with the other tested methods (Figure 10). Red artifacts, which
are marked by a red box in Figure 10, were evident in the ResNet CBAM [47] analysis
for these visualization renderings (Figure 10; CBAM + ResNet [47]). This type of artifact
(attention mechanism) was visible from 400 nm to 700 nm and each band of images dis-
played such problems. The reason for these defects that are highlighted in the small red
box is that the center of gravity of the network structure of CBAM + ResNet shifted from
the attention mechanism to ResNet during the process of putting CBAM into the ResNet
block. In this process, the channel attention mechanism compresses the input feature map
into one-dimensional features and loses some feature information. The one-dimensional
features are subsequently processed into the mechanism of spatial attention which gen-
erates two-dimensional features. Next, the batch normalized operation is performed and
combined with the original ResNet network characteristics. However, at this point, the
two feature sizes are not the same and cause the CBAM + ResNet spectrum reconstruction
with the pseudo-like artifacts shown in Figure 10. Our DOFCBAM has the highest spectral
precision (Table 4). The RMSE value is 0.01323 and the MRAE value is 0.07165.

The RMSE value is reduced by 21.25% compared to the outcome when the CBAM
algorithm is not used. The MRAE value is reduced by 13.95% compared with the outcome
when only the channel attention mechanism channel is used [50]. The RMSE value is
reduced by 18.56% and the MRAE value is reduced by 46.28%.
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Method
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Channel
[50]

Spatial
(51]

CBAM+
ResNet
[47]

CBAM
(1 channel +1
spatial) [47]

DOF
CBAM

Ground
truth

Figure 10. NTIRE 2020 HS validation for NONE, channel, spatial, CBAM, CBAM + ResNet, and DOFCBAM.

The RMSE values are reduced by 21.71% and the MRAE values are reduced by 17.17%
compared with the spatial attentional mechanism channels alone [51]. The RMSE value
is decreased by 30.73% and the MRAE value is decreased by 13.99% compared with the
CBAM + ResNet algorithm. The RMSE value is reduced by 1.05% and the MRAE value is
reduced by 6.71% when a single channel and a mechanism of spatial attention are used
compared with our DOFCBAM.

3.2.4. Comparison of Reconstructed Spectral and Analysis

The proposed deep-learning model for any of the different RGB images from 400 nm
to 700 nm in the high spectrum reconstruction produces images that are very clear and close
to the real spectral image (Figure 11a,b). This shows that our algorithm works well. The
reflectance curve of our algorithm is blue and the true spectral reflectance curve is green
(Figure 12a,b). The reflectance curve of the HRN algorithm [43] is red, the reflectance curve
of the YAN algorithm [42] is purple, and the reflectance curve of the AWAN algorithm [45]
is black.
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Method 420 nm 470 nm 560 nm 630 nm 700 nm

YAN
[42]
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[43]
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[45]

Our work

Ground
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Method 420 nm 470 nm 560 nm 630 nm 700 nm
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[45]
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(b)

Figure 11. NTIRE 2020 HS validation: (a) Visualization for YAN, HRN, AWAN, and our work on the NTIRE 2020 HS
validation set. (b) Visualization diagrams of YAN, HRN, AWAN, and our work on the NTIRE 2020 HS validation set.
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Figure 12. The spectral response curves of multiple spatial points selected from the reconstructed NTIRE 2020 HS verification
set. As for Figure 11a: (a) Comparison of results as spectral reflectance curves for the validation set of the different algorithms
and our work with the NTIRE 2020 HS verification set; As for Figure 11b: (b) Comparison of results as spectral reflectance
curves for the validation set of the different algorithms and our work with the NTIRE 2020 HS verification set.

Our algorithm has the highest spectral coincidence rate with the true spectral re-
flectance curve compared with the other three algorithms from 440 nm to 475 nm and from
525 nm to 700 nm (spectral reflectance curve of Figure 12a). The degree of coincidence
between the spectral reflectance curve and the real spectral reflectance curve of our algo-
rithm is also the highest compared with the other three algorithms shown in Figure 12b
The accuracy of our algorithm for the reconstruction of the image is therefore the highest
compared with other algorithms.

The DGRAB series when m is eight can be used to extract in-depth feature information.
Our Double Output Feature CBAM can maximize the capture of texture details on the
feature maps, which makes the reconstructed hyperspectral images richer and clearer.
In addition, our Argmax function (Section 3.2.4) can accurately obtain the useful feature
size. The non-local block can effectively connect the information of the convolution layer
with the adjacent and different positions outside the adjacent area, thus maintaining more
feature information.

Our algorithm framework to rebuild the spectrum characteristics achieves an ad-
vanced level of performance and achieves a best fit for the spectrum information curve.

4. Conclusions

In this study, we propose the DGCAMN framework for hyperspectral image recon-
struction as a way to generate higher-quality images. The DGCAMN framework works
by reducing the number of parameter calculations and deploys a large number of storage
-training modules to solve the RGB image reconstruction of the hyperspectral image. In
future studies, we will try to reduce the noise associated with the reconstruction of the RGB
to further improve the DGCAMN framework. At the same time, we will be implementing
this approach for mosaic or line hyperspectral cameras, where the deep learning algorithm
would fill in the spectral gaps at specific spatial points.
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