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Abstract: In this publication, we use a small convolutional neural network to detect cut interruptions
during laser cutting from single images of a high-speed camera. A camera takes images without
additional illumination at a resolution of 32 × 64 pixels from cutting steel sheets of varying thicknesses
with different laser parameter combinations and classifies them into cuts and cut interruptions. After
a short learning period of five epochs on a certain sheet thickness, the images are classified with a
low error rate of 0.05%. The use of color images reveals slight advantages with lower error rates over
greyscale images, since, during cut interruptions, the image color changes towards blue. A training
set on all sheet thicknesses in one network results in tests error rates below 0.1%. This low error rate
and the short calculation time of 120 µs on a standard CPU makes the system industrially applicable.

Keywords: laser cutting; remote sensing; convolutional neural network; cut interruption;
image processing

1. Introduction

Cutting metals by fiber or disk lasers is nowadays a standard production process
in the modern industry. While available laser powers rise continuously up to 30 kW or
higher [1], cutting 100-mm-thick sheets is possible [2]. The most-often used laser powers
are, however, 4 kW to 8 kW for cutting sheet thicknesses in the range from 0.3 mm to
10 mm with cut velocities between 10 mm/s to 1000 mm/s. Due to the general trend of
higher automation, with the result of unmanned machines and the seamless combination of
laser cutting machines with bending, separation or welding technologies, high and reliable
quality of cuts are necessary to avoid downtime or damaging subsequent machine steps in
such combined process chains.

The most usual quality defects influencing and hampering the subsequent machine
steps are cut interruptions, burr formations and the high surface roughness of the cut
edge, with interruptions being most objectionable. To obtain high-quality cuts, the process
parameters, such as laser power, feed rate, gas pressure, working distance of the nozzle and
focus position, respectively, must be selected appropriately. Imprecise process parameters
and typical disturbance values like thermal lenses, unclean optics, damaged gas nozzles,
gas pressure fluctuations and the variations of material properties may lead to poor-quality
and, thus, nonconforming products. To ensure a high quality, an online quality monitoring
system would be the best choice, which allows a quick response, reduces downtime or
cost-extensive rework and saves material.

The usual monitoring methods are cameras or photodiodes to measure the optical,
primary or secondary radiation from the cut kerf. In addition, some elaborate approaches
like using a fiber Fabry-Pérot cavity microphone have been demonstrated [3]. To use
such sensors as an industrial product, the sensor must be able to detect cut interruptions
independent from the cutting direction, which is not feasible by below-bed sensors, as
shown in [4,5]. For cut direction independent detection systems, in many publications, the
sensor systems are integrated into the cutting head. Results by using photodiode-based
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sensors [6] showed that the mean photodiode’s current increases with lower cut qualities,
while similar experiments [7] revealed increasing mean photodiode currents at lower cut
surface roughness. Additionally, by using photodiodes [8], the burr height during laser
cutting is calculated from the standard deviation of the photodiode current. From camera
images of flame cutting with a CO2 laser, it is already possible to calculate the roughness,
striation angle and the burr formation [3,9]. In detail, a NIR camera with a 40-Hz sampling
rate was used, and the quality was calculated by the size of the hot process zone and the
size of its circumscribed rectangle. The calculation time of 39 ms was quite high and not
real-time applicable, especially at high feed rates.

A newer approach is to use a complex convolutional neural network to detect the
burr formation during fiber laser cutting from images with 210 × 210 pixels [10], for
which a burr detection accuracy of 92% has been reported. Such convolutional neural
networks (CNN) are nowadays used very successfully for many image classification tasks,
like face recognition and object detection [11,12] in medicine for cancer detection [13] or
electroencephalogram (EEG) evaluations [14]; in geology for earthquake detection [15] and
in many technical tasks, such as concrete crack detection [16], road crack detection [17],
detecting wood veneer surface defects [18] or detecting wafer error determinations [19].
During laser welding, convolutional neural networks have been also successfully used to
detect welding defects [20].

For cut interruption approaches, a polynomial logistic regression approach [21] is
used to calculate the interruptions, based on laser machine parameters only. Photodiode-
based methods for cut interruption detection are signal threshold-based [22], done by the
comparison of different photodiodes [23] or based on cross-correlations [24]. However,
all those methods have the disadvantage of requiring thresholds that vary with the sheet
thickness or laser parameters or use a lot of subsequent samples that increase the reaction
time. In addition, an adaptation to other materials or sheet thicknesses requires a large
engineering effort. As a result, a learning system like cameras in combination with a CNN
provides distinctive advantages. The learning images can be taken from cuts, which are
necessary in order to determine the laser parameters for high-quality cutting anyway, so
there is only little additional experimental effort. A camera system is also used in many
laser machines to center the laser spot in the gas nozzle. Against this background, the
target of this publication is to develop a reliable and fast CNN-based laser cut interruption
detection that fulfills the industrial requirements. In particular, we designed a small neural
network that classifies images of cuts and cut interruptions with a low error rate below
0.1% and a short calculation time of 120 µs.

2. Materials and Methods
2.1. Laser System

The laser machine system is equipped with a 4-kW multimode fiber laser (IPG,
Burbach, Germany) with a beam quality factor M2 of 8.8, which determines the acces-
sible focal diameter. In combination with a cutting head (Precitec, Gaggenau, Germany)
with a 200-mm focus length, a focus spot diameter of 200 µm is achieved. Inside the cutting
head, in between the collimation and the focus lens, a dichroic beam splitter reflects the
visible thermal radiation from the process zone to the camera, as shown in Figure 1. Such
optical setups with cameras are often included in laser cutting heads for adjusting the laser
focus to exactly the middle of the gas nozzle. For the camera, no additional illumination is
used in order save costs and weight for the light source and an additional beam splitter in
order to increase the acceptability for industrial use.
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Figure 1. Optical setup of the cutting head.

To create videos of the cutting process, mild steel sheets with different thicknesses are
laser cut by using nitrogen between 16 and 18 bar as the gas for the process. A summary of
the used laser powers and feed rates (FR) is given in Table 1. For both the laser power and
feed rate, five steps with a constant distance are used for each sheet thickness, resulting in
a full factorial experimental design with 25 experiments (5 × 5). Typically, for laser cutting,
a certain ratio between the laser power and feed rate is necessary for a successful cut (ratio
for cut). This ratio increases with the sheet thickness. Below it, a cut interruption occurs,
which is detected by about half of the overall performed experiments.

Table 1. Parameter spaces for laser cutting. FR: feed rate.

Thickness Min. Power Max. Power Power
Step Min. FR Max. FR FR Step Ratio for Cut

1 mm 500 W 2500 W 500 W 100 mm/s 200 mm/s 25 mm/s 10 W/mm/s

3 mm 2000 W 4000 W 500 W 50 mm/s 90 mm/s 10 mm/s 40 W/mm/s

5 mm 2000 W 4000 W 500 W 20 mm/s 40 mm/s 5 mm/s 100 W/mm/s

10 mm 3000 W 4000 W 250 W 11 mm/s 19 mm/s 2 mm/s 210 W/mm/s

During laser cutting, the laser melts the metal in a range determined by the focal
area of the laser beam, and a gas jet blows the melt, once pierced, downwards out of the
cut kerf so that the sheet is separated, as shown in the bottom part of Figure 2. When
a cut interruption occurs, the bottom of the cut kerf is not hot enough to melt the metal
completely. Therefore, the melt cannot be ejected downwards, partially stays in the kerf
and welds the sheet together so that the sheets are not separated. The other part of the
melt leaves the cut kerf on the top side and is deposited next to the kerf, as illustrated in
the upper part of Figure 2. Therefore, cut interruptions can be easily identified by melt
deposition on the top side.
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Figure 2. Top view of a metal sheet with a cut interruption (top) and complete cut (bottom).

2.2. Camera and Image Acquisition

For image acquisition, we used a high-speed camera (Fastcam AX50, Photron, Tokyo,
Japan) with a maximum frame rate of 170,000 frames per second. The maximum resolution
is 1024 × 1024 pixels, with a square pixel size of 20 × 20 µm2 in combination with a
Bayer CFA Color Matrix. For process image acquisition, videos of the laser cut process
are grabbed, with a frame rate of 20 kilo frames per second with an exposure time of
2 µs and a resolution of 256 × 256 pixels. Even at this high frame rate, no oversampling
occurs, and consecutive images are not similar, because the relevant underlying melt
flow dynamics are very fast and vary at estimated frequencies between 100 kHz and
300 kHz [25]. This estimation is further confirmed by the typical melt flow velocity, which
is in the range of 10 m/s [26], resulting in our sampling rate between two images in a melt
displacement of 0.5 mm, which is significantly higher than our spatial resolution given by
the camera’s specifications.

Depending on the feed rate, each video consists of between 30,000 and 60,000 images.
These videos also contain the acceleration and deceleration parts of the cut, i.e., the accel-
eration and deceleration phases of the linear drives of the laser cutting systems. As cut
interruptions only occur during the phase of a high feed rate, the images of the acceleration
and deceleration paths are removed from the videos, resulting in 8000 to 40,000 images
per video. An example of such an image during a cut interruption is shown in Figure 3,
revealing a large ring at the brinks that depicts the inner side of the cutting head, while the
small ring in the middle reflects the nozzle. The top side of the cut kerf—and, therefore,
the laser focus—is indicated by a bright area inside the nozzle. The movement direction
in this image is downwards, so the tail behind the laser focus points upwards. To reduce
the calculation time of the neural network from the image, a 32 × 64-pixel-sized image is
extracted, which is indicated by the white rectangle in Figure 3. The size on the sheet of
this rectangle is 640 µm in width and 1280 µm in length. The image width is in the range
of the cut kerf of, typically, 500 to 600 µm. The direction of the cut kerf—and, therefore, the
required rotation angle of the extracted image—can be taken from the actual movement
direction of the machine drives. Due to the spectral behavior of the decoupling mirror,
green is the dominating color.
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Table 2 exemplarily shows two trimmed images of each sheet thickness during a cut
and a cut interruption. It is obvious to see that, during a cut interruption, the image is
brighter and the light area is larger as compared to the complete cuts. An evaluation of the
brightness reveals for both cuts and interruptions a brightness fluctuation within one order
of magnitude, even for two consecutive images. Furthermore, the brightness increases
with the used laser power and the sheet thickness, so cut interruptions in 1-mm sheets
look similar to cuts in 5-mm sheets, as depicted in Table 2. Attempts to classify images by
brightness or the bright area resulted in a high error rate and were not recommendable.
Methods using the calculations of a series of images result in lower error rates but increase
the reaction time significantly. Therefore, convolutional neural networks are used to classify
single images in order to achieve a low error rate and short reaction times.

Table 2. Cut images for different sheet thicknesses and cut states.

1 mm 3 mm 5 mm 10 mm

Cut
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The experimental design of our study is depicted in Figure 4, revealing the data flow. 
During laser cutting, the videos are recorded, and unnecessary data is removed, like 
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To detect even short cut interruption with a length of 1 mm at maximum feed rates of
1000 mm/s, a camera with at least 1000 fps is necessary, which is not unusual for industrial
cameras with a low resolution, as used here. Keeping in mind that cutting over a spike
of the grid-based open mesh flooring, typically used in laser cutting machines, is similar
to a cut interruption, a classification system requires a suppression of single-interruption
signals. Typical floorings in laser machines have a mesh size between 5 cm to 10 cm.
On this mesh, spikes are also placed in regular distances between 5 cm to 10 cm. With a
typical spike size of 2 mm and a 5-cm mesh size in unfavorable cases, when cutting over a
line of spikes, up to 4% (2 mm/5 cm) of the cut geometry may be located over the spikes. In
the plane of the flat bed laser cutting machine, 0.16% (4%2) of the area is spikes. As a result,
when cutting various arbitrary two-dimensional contours, up to 0.16% of the cuts may be
located over a spike and can therefore be misinterpreted as cut interruptions. Considering
this for a classification system, an error rate in the range of 0.1% or below is acceptable.

The experimental design of our study is depicted in Figure 4, revealing the data flow.
During laser cutting, the videos are recorded, and unnecessary data is removed, like frames
after the end of the cut. The metal sheets are analyzed to detect whether a cut interruption
occurred. This data is combined with the used laser parameters and the videos into a
database of labeled videos. Therefore, each video has a corresponding pickle file; containing
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the experimental parameters of sheet thickness, laser power, federate, gas pressure and
weather, the video depicts a cut or a cut interruption. From this database, different sets of
videos with certain parameters—for example, sheet thickness or laser power—are taken for
training and testing. The selection parameters are chosen in order to have videos of cuts
and cut interruptions in both the training and test video sets. A percentage of the images
taken from the training videos are evenly distributed and formed into an image vector and
a label vector only containing whether this image shows a cut or a cut interruption. These
image and label vectors are used for training, while, in the same way, another percentage
of the images is taken from the training videos for validation. For testing the network,
the image and label vectors are taken from the test videos to avoid similarity between the
training data.
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2.3. Hardware and Software

For learning and evaluating the neural network, a computer with an Intel Core 7-8700
with a 3.2-GHz clock rate in combination with a 16-GB DDR4 RAM was used. All calcula-
tions are performed with the CPU rather than the GPU to show that the machine learning
steps are also possible to run on standard computers, which are usually integrated with
laser cutting machines. The used software was TensorFlow version 2.0.0 in combination
with Keras version 2.2.4.

2.4. Convolutional Neural Network Design

The basic design of our CNN consisted of several alternating convolution and pooling
layers, followed by fully connected layers [11,27], a design that has successfully been
employed for other classification tasks of small images like the MNIST (Modified Na-
tional Institute of Standards and Technology database) Dataset of handwritten digits [28].
To specifically adjust the network to our case, additional layers were added to improve the
detection accuracy or removed to reduce the calculation time when they had no positive
influence on the accuracy. The results of this optimization is shown in Figure 5, which
is a small network similar to [20]. The model consists of three convolutional layers with
a 3 × 3 kernel size and ReLU (Rectified Linear Unit) activation and two max pooling
layers with a pool size of 2 × 2, also used by [20]. At the end of the network, a 20-node
dense layer with ReLU activation and a 2-node dense layer with sigmoid activation were
placed to produce class scores [27], which showed good performance in [29]. Details on
how the layers work can be found in [27] . Changes in the design of our neural network
result in a lower performance, like an additional fully connected layer at the end increases
the calculation time by 10% without reducing the error rate, and one less convolutional
layer increases the error rate by about 0.1 percentage points. Overall, our neural network
consisted of 16,998 trainable parameters, with most of them (15,380) in the first dense layer.
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The used model optimizer is Adam, which, according to [30] and together with the
SDG (Stochastic Gradient Descent), provides superior optimization results. Furthermore,
we used the loss function “sparse categorical cross entropy” to enable the categorical
outputs and the metrics “accuracy”. With this network, the typical calculation time for
training is between 220 µs and 260 µs per image and the epoch. For the evaluation, typically,
120 µs for each image is required. This is fast enough for laser cutting machines, which
have a typical laser switch of times of 200 µs and several hundreds of milliseconds for
drive deceleration. Even at high cutting velocities of 1000 mm/s, which is the maximum
of typical laser cuts, the calculation time allows to calculate more than 1000 images per
second, so small cut interruptions with a length in the range of 1 mm and below can also
be detected.

3. Results
3.1. Required Training Effort

To avoid any overfitting and a lack of fit, exemplarily, a set of videos from cutting three-
mm sheets at 3000-W laser power with 105,000 images overall was used for the training
and validation of the neural network. From these images, 26% showed cut interruptions,
while the others showed complete cuts. Out of these, 20% of the images of each video
were used for training and the others for validation. Please note that, in order to also use
the acceleration and deceleration paths of the laser cuts for training, the training images
were evenly distributed over the videos, and the ratio between the cut interruptions and
complete cuts remained unaltered. To test the network, images from other videos cutting
at 2500-W laser power were used, with 48% of them showing cut interruptions while the
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others showed complete cuts. The calculation time for training, validation and testing
together was about two minutes. The evaluation of the error rate as a function of the
training epoch showed that the error rate for both the training and validation reached
0.001% after two epochs and remained there up to 100 epochs. The error rate during the
tests on the 2500-W laser power images revealed 0.051% after two epochs and slightly
increased to 0.071 after 100 epochs. These error rates were very low, even for a short
training of two epochs. The error rate for the testing was significantly higher compared to
the validation but still low enough for the application. The reason the error rate increased
was the variation of the images by the lower laser power. In addition, the error rate for
the testing increased slightly with the further learning steps, indicating an overfit on the
training data at 2500 W, which reduced the accuracy at 3000 W. As a compromise between
a lack of fit and overfit, for further training, a number of five epochs was used.

3.2. Necessary Number of Training Images

An important question is, how many images are necessary for a sufficiently low
error rate? Therefore, the same videos as in the previous section were used with varying
percentages of the training images. The resulting error rate as a function of the training
image percentage is shown in Figure 6. Please note, in order to enable a logarithmic
presentation, all evaluations with an error rate of zero were assigned to as 0.001%. As
being typical for such training processes, all error rates decreased with the increasing
training percentage [31]. Saturation occurred at about 10% to 20%, which represented
10–20-thousand training images. As a consequence, for all further trainings, at least 20-
thousand images were used to ensure sufficient training data.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 13 
 

 

tions and complete cuts remained unaltered. To test the network, images from other vid-
eos cutting at 2500-W laser power were used, with 48% of them showing cut interruptions 
while the others showed complete cuts. The calculation time for training, validation and 
testing together was about two minutes. The evaluation of the error rate as a function of 
the training epoch showed that the error rate for both the training and validation reached 
0.001% after two epochs and remained there up to 100 epochs. The error rate during the 
tests on the 2500-W laser power images revealed 0.051% after two epochs and slightly 
increased to 0.071 after 100 epochs. These error rates were very low, even for a short train-
ing of two epochs. The error rate for the testing was significantly higher compared to the 
validation but still low enough for the application. The reason the error rate increased was 
the variation of the images by the lower laser power. In addition, the error rate for the 
testing increased slightly with the further learning steps, indicating an overfit on the train-
ing data at 2500 W, which reduced the accuracy at 3000 W. As a compromise between a 
lack of fit and overfit, for further training, a number of five epochs was used. 

3.2. Necessary Number of Training Images 
An important question is, how many images are necessary for a sufficiently low error 

rate? Therefore, the same videos as in the previous section were used with varying per-
centages of the training images. The resulting error rate as a function of the training image 
percentage is shown in Figure 6. Please note, in order to enable a logarithmic presentation, 
all evaluations with an error rate of zero were assigned to as 0.001%. As being typical for 
such training processes, all error rates decreased with the increasing training percentage 
[31]. Saturation occurred at about 10% to 20%, which represented 10–20-thousand training 
images. As a consequence, for all further trainings, at least 20-thousand images were used 
to ensure sufficient training data. 

 
Figure 6. Error rate as a function of the training image percentage. 

3.3. Comparison between Color Image and Greyscale 
The camera system detects the thermal radiation during laser cutting, whose spectral 

emission characteristics are defined by Planck’s law. During laser cutting, the temperature 
fluctuates due to a wavelike melt flow and usually increases during a cut interruption. In 
addition, plasma plumes can occur, which can initiate a cut interruption or, often, a 
plasma formation itself, as a result of cut interruptions. Plasma plumes during laser cut-
ting emit radiation, mainly in the ultraviolet-to-blue spectral region, with the latter, in fact, 
being detectable with the camera used in our setup. Thus, it can be assumed that a meas-
urable blue shift indicates a cut interruption, which, in turn, can be utilized to improve 

0.001

0.01

0.1

1

10

100

0.10% 1.00% 10.00% 100.00%

Er
ro

r r
at

e 
/ %

Percentage of training data

Training

Validation

Test 2500W

Figure 6. Error rate as a function of the training image percentage.

3.3. Comparison between Color Image and Greyscale

The camera system detects the thermal radiation during laser cutting, whose spectral
emission characteristics are defined by Planck’s law. During laser cutting, the temperature
fluctuates due to a wavelike melt flow and usually increases during a cut interruption.
In addition, plasma plumes can occur, which can initiate a cut interruption or, often, a
plasma formation itself, as a result of cut interruptions. Plasma plumes during laser
cutting emit radiation, mainly in the ultraviolet-to-blue spectral region, with the latter, in
fact, being detectable with the camera used in our setup. Thus, it can be assumed that a
measurable blue shift indicates a cut interruption, which, in turn, can be utilized to improve
the detection rate. Already, in Table 2, during cut interruptions, blue edges around the
bright central image area can be observed. The disadvantage of color images compared to
grayscale, however, is the higher calculation effort, memory demand and the accuracy is
not necessarily higher [32].



Sensors 2021, 21, 655 9 of 13

To determine a possible benefit of color images, the same training of cutting three-mm
steel sheets using a laser power of 3000 W with 20% of the training images was performed
on both color and grayscale images. The grayscale images were calculated from the color
images with the OpenCV function “color_bgr2grey”. The training, validation (both at
3000 W, as in the previous sections) and test results at 2500 W are shown in Figure 7.
Apparently, color images make only slight benefits to the error rate. In addition, in Figure 7
the model trained at a three-mm sheet thickness was tested with images from cutting
other sheet thicknesses. As expected, the error rates for the other sheet thicknesses were
significantly higher, which can be attributed to the apparently different images between
the sheet thicknesses, as shown in Table 2. A remarkable result was the lower error rate for
the color images at the transfer to thicker metal sheets. A possible reason for this effect is
that color images have additional characteristics that are not so effective during validation
because of the already low error rate. For the transfer to one-mm sheets, the results were,
for both image types, very poor because of the low signal level and the smaller bright area.
We attributed the missing advantage of the color images at the one-mm sheet thickness
to the less distinctive blue shift for cut interruptions. Hence, due to the better transfer
properties, for the continued investigations, color images were used, and a transfer of the
learning results to other sheet thicknesses was accompanied by high error rates.
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3.4. Dependence on Laser Power

During laser cutting, usually, a constant laser power is applied. However, while
cutting corners or low radii, the machine drives have to decelerate, which, in turn, requires
a lower laser power to maintain the applied track energy and, thus, to avoid an inferior
cutting quality. Therefore, it is necessary that the evaluation algorithm has a low error rate
at various laser powers. The resulting question is, is it necessary to train for all used laser
powers, or is training for one laser power enough for a certain sheet thickness? This is
important, because producing learning videos for cuts and interruptions for several laser
powers at each thickness is quite extensive. To answer this question, the neural network
was trained for the three-mm sheets at different laser powers, and the test results at the
various laser powers are shown in Figure 8. Please note that the tests at the trained laser
powers are marked with shading. It was obvious that the error rates at the trained laser
power and, often, at the adjacent laser powers were very low. With an increasing distance
from the training set, the error rate rose sharply, up to levels of more than 10%. This means
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that, at different laser powers, the thermal radiation from the cut kerf and, therefore, the
images changed significantly, so that the network was not able to classify the cuts and
interruptions correctly.
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To evaluate whether it is possible to correctly classify all the laser powers, the neural
network was trained with 5% of the images of every video with cutting three-mm sheets.
After training five epochs, a low training error rate of 0.05% and a validation error rate
of 0.04% were achieved, which were only slightly higher as compared to the training and
testing at the single laser power in Section 3.2. This means that one model for a certain
sheet thickness can cover all different used laser powers that it was trained with at once. To
test this model in a different way, a cut interruption was enforced by reducing the process
gas pressure in four steps to 8 bar, where a cut interruption occurs. The resulting error
rate of 0.02% revealed that the neural network was sufficiently generalized to also reliably
detect cut interruptions for other reasons.

3.5. Generalization on All Sheet Thicknesses

In the previous section, we showed the possibility of successfully classifying images
from different laser powers at a certain sheet thickness. In this section, we want to gener-
alize further in order to classify all sheet thicknesses at all laser powers within the same
network. Therefore, we trained the network on 2% of the images of every video from every
sheet thickness and laser power, only omitting single videos for testing. This percentage
was chosen to keep the number of learning images (82,000) in a similar range as compared
to the previous sections, with the benefit of low training times. In contrast to the previous
learning set, after five epochs, a 0.3% error rate still remained, which was much higher
as compared to the training set for a single sheet thickness. The reason for this was the
wide bandwidth of the images and the similarity of the cut interruptions of the low sheet
thicknesses and cuts at the high sheet thicknesses. After further training, the error rate
saturated at about 20 epochs, with a remaining error rate of 0.03%. A validation performed
on the not-trained images from the same videos resulted in an error rate of 0.06%, which
was a little higher compared to the validation for the network trained with one sheet
thickness. A classification of the images from the videos omitted in the training phase
revealed an error rate between zero and 0.09%. This error rates were very low, especially
keeping in mind the similarity of the cut interruptions in the thin sheets and cuts in the
thick sheets. Additionally, compared to burr detection during laser cutting with neural
networks, which archived an error rate of 8% [10], our error rate was about two orders of
magnitude lower. This highlights the good results of our cut interruption detection sets.
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4. Discussion

The designed convolutional neural network was able to classify images from cuts and
cut interruptions with a small error rate below 0.1% after short trainings of only two–five
epochs. Additional epochs result in an overfitting that slightly increases the error rate of
the tested images. A reason for the short training effort was the small size of the neural
network, only 17-thousand parameters, which corresponded to a high ratio of the number
of training images to the number of parameters in the neural network. To train the neural
network with a low error rate, at least ten-thousand training images are necessary, which
is in the same order of magnitude as the number of trainable parameters. The images
differ strongly with the used laser power and sheet thickness, so the transfer of the training
results to other sheet thicknesses or laser powers is limited but can be improved by the use
of color images. As a consequence, the neural network has to be trained on every used
sheet thickness and laser power, which requires a high experimental effort.

An analysis of the images revealed brighter images and larger bright areas during the
cut interruptions, but the same effect can also occur when increasing the laser power or for
cutting thicker sheets. This leads to similarities between cuts of thick sheets at high laser
powers and cut interruptions of thin sheets at low laser powers. Despite this similarity, the
neural network was able to classify cuts and cut interruptions with a low error rate below
0.1% over a dataset with varying sheet thicknesses and laser powers. Further studies shall
address the transfer and application of our sensor and CNN approach to other materials,
such as, e.g., aluminum or brass, and, also, take into account machine conditions like
polluted, unclean focusing optics.

A successful detection scheme for cut interruptions, as presented here, improves the
resource efficiency of laser-based production technologies by reducing the material loss
and objectionable rework by miscuts, avoids downtime or the damaging of subsequent
machine steps in such combined process chains and improves the energy efficiency during
the cutting process by setting proper parameters, respectively.

5. Conclusions

In this publication, we used a small convolutional neural network with a calculation
time of 120 µs to classify images from the processing zone during laser cutting into complete
cuts or cut interruptions. The images with a size of 32 × 64 pixels were taken from more
than 100 videos of laser cutting steel sheets with different thicknesses, laser powers and
feed rates. We found that five epochs of training were a good compromise between enough
training and a low overfit and resulted in a small error rate of 0.05% for training a single
sheet thickness at a certain laser power. The transfer of this result to other laser powers
was limited to small power differences, so training on several laser powers was necessary,
which resulted in error rates lower than 0.05%. A comparison between the color images
and greyscale images revealed slight advantages for the color images at the same sheet
thickness and larger advantages when transferring to other sheet thicknesses; thus, color
images are preferable. Despite the similarity of cuts in thick sheets and cut interruptions in
thin sheets, training on all sheet thicknesses and laser powers in one network also resulted
in a low error rate below 0.1%, which is industrially applicable.
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