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Abstract: Nowadays, unmanned aerial vehicles (UAVs) are extensively used for multiple purposes,
such as infrastructure inspections or surveillance. This paper presents a real-time path planning
algorithm in indoor environments designed to perform contact inspection tasks using UAVs. The
only input used by this algorithm is the point cloud of the building where the UAV is going to
navigate. The algorithm is divided into two main parts. The first one is the pre-processing algorithm
that processes the point cloud, segmenting it into rooms and discretizing each room. The second part
is the path planning algorithm that has to be executed in real time. In this way, all the computational
load is in the first step, which is pre-processed, making the path calculation algorithm faster. The
method has been tested in different buildings, measuring the execution time for different paths
calculations. As can be seen in the results section, the developed algorithm is able to calculate a new
path in 8–9 milliseconds. The developed algorithm fulfils the execution time restrictions, and it has
proven to be reliable for route calculation.

Keywords: autonomous navigation; contact inspection; NDT; UAV; payload; industrial inspection

1. Introduction

Unmanned aerial vehicles (UAVs) are gaining more and more significance due to their
adoption in a wide variety of engineering fields, such as surveying, monitoring, or preci-
sion agriculture [1]. UAVs have proven to be a key instrument for large-scale infrastructure
maintenance, especially for bridge inspection where they have been applied to detect cor-
rosion and cracks [2] or to monitor the condition state of structure joints [3], among others.
In most cases, these inspections are carried out with remote sensing payloads, including
RGB cameras [4], LiDAR (Light Detection And Ranging) sensors [5], or thermographic
cameras [6].

According to the literature, UAVs along with camera sensors, smartphones, and
mobile systems arise as a modern next-generation technology for SHM (structural health
monitoring) as opposed to traditional methods based on contact sensors that involve time-
and labor-intensive installation and maintenance [7]. In order to solve these drawbacks and
to combine the strengths of both technologies, UAV-based contact inspection systems have
been proposed [8,9]. A challenging issue for UAVs to implement contact inspection comes
with the lack of robustness in GNSS (Global Navigation Satellite System) based location,
such as GPS, in the vicinity of a large structure [10]. Therefore, smart payloads providing
UAVs with location (position and orientation) and collision mitigation are proposed as a
mechanism to convert general-purpose drones into contact inspection systems [11].

In addition to that, location in GPS-denied environments supports indoor positioning
and navigation, an emerging field with a wide variety of applications for private and
public areas and from casual personal use to critical emergency response [12]. Although
some systems are based on the availability of an infrastructure based on IoT sensors [12] or
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camera-based tracking systems [13], a more general solution requires systems to calculate
the indoor map based on their payload sensors, such as LiDAR [14], deep learning-aided
monocular cameras [15], optical and mass flow sensors [16], or multi-sensor fusion [17].

Obtaining the map is the basis for decision making about the optimal mission path to
be followed by the UAV between source and destination, the so-called path planning pro-
cedure [18]. In 1959, Dijkstra [19] presented a graph searching algorithm that incorporates
heuristic information to the mathematical model. This work defines the A* path planning
algorithm, which is the basis of many of the path-planning algorithms developed nowa-
days. The aim of path planning consists of obtaining the mission graph and the methods,
which are classified into five categories [20]: Sampling-based, node-based, mathematical
model, bio-inspired, and multi-fusion-based algorithms. Among them, sampling-based
algorithms use a priory 3D information of the environment, dividing the space into a
structured set of cells, which supports the sequential computation of the path between
adjacent cells and the obstacle avoidance [18]. The autonomous navigation of UAVs in
the context of GNSS-denied zones is based on local information. Such local information
may be obtained from an RGB-D Kinect camera to generate an analytical path compu-
tation based on guaranteeing a safe navigation with a radial buffering function around
obstacle candidates [21]. Valenti et al. [22] presents a computer vision system based on
the exploitation of visual information about 3D surroundings of the UAV that is the basis
to find a precise localization and the shortest path to reach the goal using a simultaneous
localization and mapping (SLAM) fashion. Computer vision is a well-established technique
that supports the use of cooperative UAVs and UGVs (unmanned ground vehicles) to
obtain complementary points of view of the scene for path discovery [23]. Other algorithms
use the BIM (building information modeling) models [24] to create the graph and then
calculate the paths.

Several 2D path planning algorithms have been developed for UGV systems that use
different approaches, such as resistive-grids based path-planning algorithms, Q-learning
algorithms, rapidly exploring random tree algorithms, Dijkstra, and A* path planning
algorithms [25,26]. Huang et al. [27] introduced a path planning algorithm for multi-robots
in a structured hospital environment with two different 2D path planning algorithms,
one for the corridors where a graph search algorithm is used, and another for the rooms
where an artificial potential field method is used. Maoudj et al. [28] proposed an EQL
(efficient Q-learning) path planning algorithm that is able to overcome the QL limitations
to ensure an optimal collision-free path. Hernández et al. [29] created a Resistive Grid that
transforms the navigable space into an electric circuit where each component of the grid
behaves as a resistance and its value depends on its position in the grid regarding the target
position. Ambroziak et al. [30] presented a multicriterial minimization method to calculate
optimal paths. Underground mine exploration is an important application of path planning
algorithms. In recent years, several contributions to this topic have been introduced. Dang
et al. [31] introduced a two-level navigation system, the first one for local exploration
(near to the vehicle) and the second one for the global planner. Li et al. [32] presented
a probabilistic navigation algorithm for exploration of indoor environment, focused on
this case of underground mine exploration. It implements a navigation system based on
graph navigation.

This work presents a path planning algorithm developed to enable a UAV to navigate
in an indoor environment to perform contact inspection tasks. The objective of this work
is to develop an algorithm for path planning to be executed in real time, meaning that
the system is able to calculate new paths in a few milliseconds. The only input for the
algorithm is a point cloud obtained with Zeb-Revo LiDAR [33]. In order to calculate the
path between two points as fast as possible, the method has been divided into two main
parts, one of them with almost all the computational load that is pre-processed, obtaining
new data that are used to calculate new paths quickly by the second part. In addition,
the algorithm segments the entire point cloud into rooms, analyzing each one separately.
In this way, when a new path is calculated, just the info from the rooms that the system
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has to go through is used, making the method more efficient. Preliminary results have
been published in a congress [34]. During the development of this previous path planning
algorithm, authors noticed that the algorithm was too slow to be implemented in a real
study case, as it does not fulfil the execution time restrictions to be considered as a real-time
path planner. This previous work focused on the navigation map generation, without
segmenting the point cloud into rooms and without the division of the algorithm in a
pre-processing step and a real-time path calculation. This new work is an improvement
of the previous work, making it more efficient and presenting a real-time path planning
algorithm. The importance of executing the path planning algorithm in real time is that
the vehicle navigates in an indoor environment with mobile elements or even shared
spaces with humans. For the system optimization, the vehicle has to be able to calculate
new routes quickly in order to interact with a dynamic environment, such as industrial
buildings, aircraft hangars, hospitals, or similar. The presented path planning algorithm
is a modification of the A* algorithm, adapting it to work in a 3D environment, as it
was developed to be used with UAVs. The main novelties of this work are the room
segmentation, the navigation graph generated to navigate from one room to another, and
the adaptation of the A* algorithm to make it work in real time, dividing the method
into two parts, a pre-processing step with almost all the computational load and a path
planning step that is able to calculate new paths in real time. In addition, this path planning
has been developed to perform contact inspection tasks with a UAV, which is a novel
implementation of this vehicle.

The developed algorithm is 3D path planning, meaning that the algorithm has been
designed to calculate paths for a UAV to navigate in a 3D environment. It can also be
modified to be implemented to navigate in a 2D environment, using the 3D information
given by the point cloud. In this way, it can be adapted to be used by other kinds of ROVs
(remotely operated vehicles), like a UGV (unmanned ground vehicle) or other autonomous
surface vehicles.

This manuscript is organized as follows: Section 2 introduces the methodology and
explains the pre-processing and the path planning steps. Section 3 reports the results
obtained with the developed algorithm, measuring its processing time. Section 4 shows
the conclusions of the work and future works.

2. Methodology

As aforementioned, the methodology has been divided in two main parts (Figure 1).
First, a pre-processing step adapts the point cloud to calculate the indoor navigable space
map that supports the successive path-planning calculation. This task breakdown results
in a real-time calculation of new routes by moving the computational efforts to the pre-
processing step, which is executed only once.
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The pre-processing part was divided in three main steps: Room segmentation, point
cloud processing and discretization, and navigation map generation. In room segmentation,
the method used to locate the doors of the point cloud and segment it into rooms is
explained. The point cloud processing section explains the methods used to align the point
cloud, segment the floor and ceiling, and the discretization method applied. Once the point
cloud is segmented and discretized, the navigation map is generated. With this map, the
path-planning algorithm is able to calculate, in real time, new paths. These paths can be
smoothed, making them more efficient for the UAV navigation.

2.1. Point Cloud Pre-Processing

This first part of the method deals with the processing of the spatial information
contained in a point cloud to obtain a 3D navigation map, which is to be used for the path
planning. As shown in Figure 1, the pre-processing is divided into three main tasks: Room
segmentation, point cloud processing and discretization, and navigation map generation
for each room.

2.1.1. Room Segmentation

The method starts with room segmentation. This step consists of splitting an indoor
point cloud into segments corresponding to rooms. A room is defined as an indoor space
enclosed by structural elements and connected to other spaces by doors. The purpose
of room segmentation is to create a general navigation graph, considering rooms and
their connections, which will be used as the starting point for the graph generation for
UAV navigation.

The implemented room segmentation extends the previous work proposed by Díaz-
Vilariño et al. [35]. As in the previous approach, the input data consist of a point cloud
acquired with an indoor Mobile Mapping System (iMMS) and the trajectory followed
during the surveying, both related by their timestamps. Besides, room segmentation is
based on door detection. A door is assumed as a narrowing in the space connecting two
rooms. Unlike the previous approach, in this work, doors are detected from a double-
check process consisting of finding vertical and horizontal narrowings along the trajectory
(Figure 2).
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As it has been said in the Introduction section, the point clouds used in these works
have been acquired with an indoor Mobile Laser Scanner system. This kind of laser
scanner acquired points continuously, referencing them to a time stamp, and calculates
the trajectory of the acquisition using an inertial sensor and the spatial data acquired, also
referencing it to a time stamp. This trajectory is composed by several points, which can
be filtered by time stamp, as can be seen in Figure 2. The trajectory height depends on
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the person carrying the laser scanner, which is basically a backpack. Each one of these
trajectory positions is studied, generating a study area around them, defining it as a sphere
centered in the trajectory area with a radius of 1 m. The radius of the sphere is used to
filtrate the points of the point cloud that are going to be used to locate narrowings, and just
the points inside the sphere are used. A large radius will make the algorithm slow, and a
short radius may cause some narrowings to be missed outside the filter sphere.

For the horizontal spatial narrowings study, Figure 2b, a new study area is defined
using the previous filtrated data. This area is defined by the horizontal plane that contains
the trajectory point. This plane is shifted along the z axis in the positive and negative
distance; in this case, a shift of ±0.5 m is used. Then, the points inside the study area
are clustered using a DBSCAN algorithm. If two clusters are collinear with a trajectory
position, the distance between clusters is assigned to the trajectory position as a measure
of width. The maximum width of door wmax is set-up to avoid over-detection along
the corridors. If the width measured is lower than the maximum door width wmax, the
studied trajectory position is set as a possible door position that is studied again looking
for vertical narrowings.

For the vertical spatial narrowings study, Figure 2c, just the trajectory positions
selected as possible doors in the previous step are studied. In this vertical study, the system
looks for narrowings caused by the wall section located above the door. This analysis
estimates the ceiling height for each trajectory position studied. To make this analysis, just
the points above the horizontal plane at the height of the trajectory positions are used. This
height is calculated using the z-histogram, locating the maximum of the histogram. The
points inside the study area are clustered using a DBSCAN algorithm, as in the previous
case. If the possible door position has a cluster above the trajectory position with a height
lower than the ceiling height calculated, the trajectory position is marked as a door position.
More than one consecutive trajectory position can be selected as a door position, referring to
the same door. In order to avoid this problem, the trajectory positions are filtered, selecting
just one trajectory position as the door position. Due to how the acquisition of the point
cloud is carried out, the LS (laser scanner) can go through the same door twice, but the
filtering described previously only filters the doors found in consecutive positions of the
trajectory. Algorithm 1 resumes the door location process.

Algorithm 1 Door Location Algorithm

1. Require: Point Cloud: PC, Trajectory positions: T
2. nT = length(T);
3. for i = 1:nT
4. Points = SelectTimeStamp(PC, T(i));
5. studyPoints = SelectSphere(rSphere, Points);
6. //Horizontal spatial narrowings study
7. PointsHN = SelectVerticalShifted(verticalOffset, studyPoints);
8. cluster = DBSCAN(PointsHN);
9. if (LocateHorizontalNarrowings(cluster) == true) then
10. //Vertical spatial narrowings study
11. PointsVN = SelectAbovePlane(height(T(i), studyPoints);
12. ceilingHeight = Max.HistogramZ(PointsVN);
13. cluster = DBSCAN(PointsVN);
14. if (LocateVerticalNarrowings(cluster, ceilingHeight) == true) then
15. Doors = AddDoor(i);
16. endif
17. endif
18. endfor
19. Doors = ConsecutiveDoorsFiltration(Doors);

Once doors are identified on trajectory, the trajectory is partitioned into ‘segments’ by
removing the positions corresponding to doors (Figure 3b). As the connectivity between
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adjacent rooms is provided by doors, one segment can only correspond to a room and
two consecutive segments cannot belong to the same room. In addition, a room can be
acquired from several trajectory segments as it is shown in the largest room of Figure 3b.
Trajectory labeling is performed by projecting its positions on the room regions obtained
from a three-step process. First, points composing the floor are extracted from the point
cloud. In the second step, a circular buffer centered on door position is created for every
door. Floor points falling into buffers are removed to break connectivity between rooms
at the floor level. In the last step, remaining floor points are clustered using the DBSCAN
algorithm so that each cluster of floor points belongs to a room region. Then, trajectory
segments are labeled with a room attribute based on the semantics of the floor segment
they are projected onto (Figure 3c).
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Finally, the timestamps of the labeled trajectory are used to segment the point cloud
into rooms (Figure 3d). This approach is simpler than applying geometry-based segmenta-
tion, including those based on extracting structural elements such as walls and doors.

Due to this segmentation method, outdoor points collected from an indoor location
are mislabeled due to their timestamp and trajectory origin (Figure 4). A straightforward
filter has been developed to solve this mislabeling issue.
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The filter exploits the shadows on the ceilings caused by the surroundings of the wall
where the door is fit. First, the ceiling of the room is segmented using the Z-histogram
of the point cloud and a RANSAC (Random Sample Consensus) algorithm [36]. This
ceiling plane is projected onto the XY plane and transformed to a binary image using a 2D
uniform grid with a predefined cell size, 10 cm for this study. The grid is populated with a
point density gate, obtaining a “1” value when the number of points in the cell is above
nMinpoints and a “0” value otherwise (Figure 5). The resulting image is afterward filtered
with a morphological closing using a structuring element object consisting of a 4-pixel
square. The objective of this filter is to label small areas that do not contain points but
belong to the room. To ensure that all the room points are correctly labeled, a morphological
dilation is applied, using the same structuring elements. In this way, the points that are
close to the limits of the room are within the delimited area of the binary image. After this
process, two separated areas are defined in the image, so the next step is to choose which of
these two areas correspond to the room. This is done by selecting the element of the binary
image with the largest area.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 25 
 

 

   

(a) (b) (c) 

  

(d) (e) 

Figure 5. Ceiling delimitation for room segmentation. (a) Segmented point cloud of the ceiling. (b) Binary image of the 

ceiling point cloud. (c) Binary image after a morphological closing. (d) Binary image after a morphological dilatation. (e) 

Binary image of a room delimitation. 

After the delimitation of the room area (Figure 6), the 2D grid supports the classifi-

cation of the room points. 

 

(a) 

Figure 5. Ceiling delimitation for room segmentation. (a) Segmented point cloud of the ceiling.
(b) Binary image of the ceiling point cloud. (c) Binary image after a morphological closing. (d) Binary
image after a morphological dilatation. (e) Binary image of a room delimitation.

After the delimitation of the room area (Figure 6), the 2D grid supports the classifica-
tion of the room points.
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2.1.2. Point Cloud Pre-Processing

In this section, the processing algorithm to be applied to the point cloud is explained.
We consider as input the segmented point cloud where each point has been labeled with
the room it belongs to, thus enabling us to obtain a point cloud per room.

This step is based on the assumption that a building is typically composed of parallel
and perpendicular walls, as shown Figure 6. With the aim of structuring the point cloud
in voxels and to optimize such discretization, the walls of the building have been aligned
with the X and Y axes. As a result, voxels are parallel to the walls, minimizing the number
of voxels needed to discretize the entire point cloud. To achieve the alignment of the point
cloud, the normal vector of the largest wall of one room is used, aligning this vector with the
Y axis. This is done using the RANSAC algorithm to calculate the plane of the wall, using
the same method developed in previous work [37]. With the normal vector of this plane
w =

(
nwx, nwy, nwz

)
, the angle formed by the normal vector and the Y axis is calculated

using Equation (1). Once the angle is calculated, the homogeneous transformation matrix
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is defined (Equation (2)). This homogeneous transformation is applied to the point cloud
of all the rooms (Figure 7).

α = atan
(

nwx

nwy

)
(1)

Rot(z, α) =

 cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 (2)
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A similar process is applied to the inclination of the point cloud. In this case, the plane
of the ceiling is calculated, aligning its normal vector with the Z axis (Figure 8).
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Figure 8. Point cloud leveled. (a) Point cloud before the leveling. (b) Point cloud after leveling.

Once the point is segmented and aligned, each room point cloud is discretized in order
to calculate a navigation map per room. The discretization process is similar to the one
developed in a previous work [37]. The first step consists of segmenting the point cloud in
three parts: Ceiling, floor, and room (Figure 9). First, and based on the Z-histogram, we
calculate the height of the ceiling. Then, the planes for floor and ceiling are segmented
using the RANSAC algorithm. Finally, the room point cloud is defined as the points that
are located between these two planes, filtering all the points above the ceiling or below
the floor.

As aforementioned, the point cloud for each room is next structured through a vox-
elization, where data are divided in cubes of a determined size and labeled with the space
occupancy. In this work, four different labels are used for voxel classification:

• Empty: Voxels that do not contain points inside.
• Occupied: Voxels that contain points inside.
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• Security-offset: Empty voxels that are near an occupied one, and therefore, are not
navigable by the drone.

• Exterior: Empty voxels that are outside the room.
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Figure 9. Point cloud segmentation into ceiling, floor, and room. (a) Ceiling point cloud. (b) Floor point cloud. (c) Room
point cloud.

Defining an appropriate voxel size is fundamental, because it implies a trade-off
between the loss of detail in the 3D geometric information of the point cloud and the
computational cost. The voxelization is stored in a matrix named Mv(t), that is, a 3-
dimensional matrix where each cell represents a voxel. Once the voxelization matrix is
created, voxels are classified in “Occupied” and “Empty” voxels based on whether the
number of points is above a threshold or not, respectively. The next step deals with voxels
outside the room, which are labeled as “Exterior” based on the 2D binary image created
for point cloud segmentation and described in the previous section. This classification is
applied only to “Empty” voxels; “Occupied” voxels are not re-classified.

Finally, all the empty voxels near an occupied one are classified as a “Security-offset” to
avoid possible collisions during the navigation. Accordingly, a minimum-security distance
is defined depending on the UAV dimensions and must be large enough to ensure the
security of the system during navigation. The number of voxels defined as a security offset
around an occupied one is calculated using Equation (3). An exception to this “Security-
offset” is considered for doors: If a door area is labeled as “Security-offset,” their voxels
are re-classified to “Empty” to ensure navigation between rooms. This discretization is an
input for the algorithm that generates the navigation map (Figure 10).

N =

(
ceil
(

security distance
voxel size

)
× 2
)
+ 1 (3)



Sensors 2021, 21, 642 11 of 23
Sensors 2021, 21, x FOR PEER REVIEW 12 of 25 
 

 

 

Figure 10. Horizontal plane of voxels. Light blue: Empty voxels. Dark blue: Occupied voxels. 

Grey: Security-offset voxels. Yellow: Exterior voxels. 

𝑁 =  (𝑐𝑒𝑖𝑙 (
𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑣𝑜𝑥𝑒𝑙 𝑠𝑖𝑧𝑒
) ∗ 2) + 1 (3) 

2.1.3. Navigation Map Generation  

After point cloud voxel classification, a navigation map is created for each room sep-

arately, the doors being the connection component between rooms. Door locations are 

obtained as described in Section 2.1.1, and act as the target positions for the navigation 

map generation because the UAV has to pass through the door to navigate from one room 

to another. 

The navigation map consists of a matrix with the same dimensions as the voxeliza-

tion where each navigable voxel is given a value according to the following rules:  

 Target voxel is the empty voxel that contains the door position and labeled with a “1.”  

 Navigable voxels are empty voxels directly connected to the target voxel, meaning 

that there is at least one path from the voxel to the target. The label of these voxels 

depends on the number of surrounding voxels and the distance to the target.  

 Nonnavigable voxels are empty voxels that are not directly connected to the target 

voxel, meaning that there is no possible path between them and the target voxel. 

These voxels are given a label value of “−1.” 

The navigation map is generated just considering the target position. In this way, this 

navigation map (Figure 11) can be used to calculate the path between each navigable po-

sition of the room and the target. This path can also be navigated in both ways, selecting 

the target voxel as the initial or the final position. The label for the navigable voxels de-

pends on the adjacency relationship to their surrounding 26 voxels in the next manner 

(Figure 12):  

 Common face: Voxels surrounding the study voxels that have a common face. This 

means that the surrounding voxels and the study one have two coincident indices.  

 Common edge: Voxels surrounding the study voxel that have a common edge. This 

means that the surrounding voxels and the study one have one coincident index.  

 Common vertex: Voxels surrounding the study voxel that have a common vertex. 

This means that the surrounding voxels and the study voxel do not have any coinci-

dent indices.  
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2.1.3. Navigation Map Generation

After point cloud voxel classification, a navigation map is created for each room
separately, the doors being the connection component between rooms. Door locations are
obtained as described in Section 2.1.1, and act as the target positions for the navigation
map generation because the UAV has to pass through the door to navigate from one room
to another.

The navigation map consists of a matrix with the same dimensions as the voxelization
where each navigable voxel is given a value according to the following rules:

• Target voxel is the empty voxel that contains the door position and labeled with a “1”.
• Navigable voxels are empty voxels directly connected to the target voxel, meaning

that there is at least one path from the voxel to the target. The label of these voxels
depends on the number of surrounding voxels and the distance to the target.

• Nonnavigable voxels are empty voxels that are not directly connected to the target
voxel, meaning that there is no possible path between them and the target voxel. These
voxels are given a label value of “−1”.

The navigation map is generated just considering the target position. In this way,
this navigation map (Figure 11) can be used to calculate the path between each navigable
position of the room and the target. This path can also be navigated in both ways, selecting
the target voxel as the initial or the final position. The label for the navigable voxels
depends on the adjacency relationship to their surrounding 26 voxels in the next manner
(Figure 12):

• Common face: Voxels surrounding the study voxels that have a common face. This
means that the surrounding voxels and the study one have two coincident indices.

• Common edge: Voxels surrounding the study voxel that have a common edge. This
means that the surrounding voxels and the study one have one coincident index.

• Common vertex: Voxels surrounding the study voxel that have a common vertex. This
means that the surrounding voxels and the study voxel do not have any coincident indices.
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Figure 13 shows the workflow of the navigation map generation (Figure 11). First, an
initial value of “−1” (nonnavigable) is given to all the voxels. Then, a value of “1” is given
to the target position, the starting point for the navigation map generation. Surrounding
cells are later labeled with a weighted sum of their adjacency: Common face, adds “1,”
Common edge, adds 2, and Common vertex adds 3. If the result is lower than the previous
label, this new value is assigned to the voxel. Thus, each voxel of the navigation map has
the lowest possible weight. The maximum weight corresponding to the Common vertex
with a “3” value is used as stop criteria variable CycleLimit. This variable is used to detect
when the navigation map is completely calculated, i.e., labeling all the navigable voxels.
When the system has not found any next study voxel in 3 loops, this means that there are
no more navigable voxels to be studied, so the navigation map is already completed. A
variable v is used to set-up the voxels to be analyzed for each loop iteration, starting with
“1” that means that only the target voxel is a candidate and the 26-voxel vicinity is analyzed
and updated. For iteration v = 2, every voxel of the navigation map labeled with “2” is
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analyzed and their vicinity updated, incrementing the v index until the generation map
is completed.
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Figure 13. Navigation map generation workflow.

As aforesaid, one of the main objectives of this development is to speed up the
path planning algorithm to support near-real-time path calculation. Thus, the presented
approach consists of pre-processing as much of the computational costly procedures
as possible.

Rooms could contain more than one door, acting as connecting spaces between two
adjacent rooms. For these connecting rooms, we create two kind of maps: Navigation and
linking maps. A navigation map is calculated per door, each one being considered as the
target position for the correspondent map generation. In addition, a number of linking
paths connecting a pair of doors is calculated for every combination of door pairs. With this
method, to obtain a path from one room to another one that does not share any common
doors with the origin, we only need to query the linking path already calculated in this
pre-processing step. Accordingly, path planning consists of calculating the path from the
initial position to the target door in the initial room and the path from the target door in the
destination room to the final position, making use of the predefined linking paths between
the rooms.

To end the pre-processing methods, a navigation graph is derived based on the map
obtained in the previous step. The navigation graph is an undirected structure, where each
node is a room and each link is a door, containing all the information about the connection
between rooms. The graph supports the calculation of the rooms the vehicle has to pass
through to navigate to the goal location. The initial node for graph generation is the room
with the largest number of doors, populating the connections to the next rooms to obtain
the navigation map for the entire point cloud.

Figure 14 shows the navigation map generated for the examples used, where the first
example is composed by five rooms connected to one corridor. The corridor is the room
with the largest number of doors, and so is used as the initial node for the graph generation.
This is the simplest graph possible because all the rooms are connected only to a corridor
space and there do not exist any loops in the graph. The second example yields a more
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complex distribution including three different loops between rooms numbered 1-5-7, 5-6-7,
and 1-7-8.
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The navigation map is used to calculate the rooms that the vehicle may pass through
to go from one room to another. This is done with an iterative algorithm that explores all
the possible routes fulfilling the following requirements:

• The route cannot pass through the same room twice.
• If two or more routes pass through the same room, the one containing the lower

number of rooms is selected as the best route.
• If two routes are valid and do not share any part of the path, that containing the lowest

number of waypoints, i.e., the shortest path, is selected.

In the case of navigation maps with loops, as in the second example, the second rule
solves the problems of multiple possible routes. For example, if the vehicle must go from
room 1 to room 9, several routes that fulfil the first rule are possible: 1-8-9, 1-7-8-9, 1-5-7-8-9,
and 1-5-6-7-8-9. All the candidate routes share the last rooms of the paths, being the first
candidate selected as the best route. In other cases, more than one path that fulfil the first
and second rules are possible. If the vehicle must go from room 1 to room 6, two routes
fulfil the first and second rules: 1-5-6 and 1-7-6, the candidate route selected being 1-5-6
because it has a lower number of waypoints. This path calculation algorithm is explained
in depth in the next section.

2.2. Path Planning

The navigation map generated in the last step is used by the path planning algorithm
to calculate the route that the vehicle must follow to go from one point to another. The first



Sensors 2021, 21, 642 15 of 23

step to calculate the path between two points is to locate the corresponding rooms for the
initial and final positions. This is achieved using the room area calculated during point
cloud segmentation in Section 2.1.1. If the initial position and the final position are in the
same room, the navigation map of the room has to be updated, because the target position
of the previous navigation map was the door. If the initial and final positions are not in the
same room, the rules explained in the previous section are used to calculate the best route.

In both cases, the path planning algorithm starts at the initial position. This position
has to be at a navigable voxel; in other cases, this position is not valid. If it is at the floor
height, i.e., the vehicle is landed; the algorithm uses the firsts waypoints to take-off to a
predefined height, 1 m in our case. The algorithm verifies that the voxels crossed in the
take-off maneuver are navigable, otherwise marking the initial position as not valid. Then,
the position after take-off is selected as the new initial position to calculate the path using
an iterative algorithm from the initial voxel, studying the value of the 26 voxel vicinities
around it and selecting the voxel with the lowest value as the next waypoint. Such a
waypoint is treated as the initial point for the following loop, extending the watershed for
the path until complete, occurring when the target position with a “1” label is reached. The
waypoints of the path are centered in the voxel selected as the next study voxel and the
number of waypoints of the route is accumulated to select the shortest path when needed,
and according to the third rule for the route calculation algorithm explained in the previous
section. Algorithm 2 shows how the path planner algorithm calculates the route using the
navigation map created previously.

Algorithm 2 Path Planning Algorithm

1. Require: NavigationMap: NM, InitialPos: I.
2. [Ix, Iy, Iz] = I;
3. firstCycle = true;
4. Route.InitializeRoute;
5. while not(EndReached) do
6. //Look for the next position in the 26 voxels around the current position
7. for x = Ix − 1:Ix + 1
8. for y = Iy − 1:Iy + 1
9. for z = Iz − 1:Iz + 1
10. if (firstCycle) then
11. firstCycle = false;
12. minVal = NM (x, y, z);
13. NextPos = (x, y, z);
14. else then
15. if NM (x, y, z) < minVal then
16. NextPos = (x, y, z);
17. minVal = NM (x, y, z);
18. endif
19. endif
20. endfor
21. endfor
22. endfor
23. //Add the next position to the path and look if the target has been
24. reached
25. Route.AddPos(NextPos);
26. if (NM(NextPos) == 1) then
27. EndReached = true;
28. else then
29. [Ix, Iy, Iz] = NextPos;
30. firstCycle = true;
31. endif
32. endwhile
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This path planning algorithm has been designed to be implemented in UAVs for
contact inspection purposes (Figure 15). According to this, the final position also has an
orientation vector needed to perform the contact. Usually, this orientation is perpendicular
to the wall/object surface in the contact point selected. A similar procedure to the location
of the initial position after the take-off maneuver is implemented for the final position, but
in this case, the target orientation vector is perpendicular to the wall and the offset distance
was set to 1.5 m. As a result, the path is calculated for the UAV to navigate from the initial
position to the final POSE (position and orientation) to enable the contact inspection. At
this point, the contact-inspection system developed in previous works [11] takes control of
the vehicle to drive the approach to the stable contact.
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Once the path is calculated, a smoothing algorithm segments the path in the linear
components of the route. The joint between each pair of consecutive lines of the route is
replaced by a circumference tangent to both lines, with a defined radio rc. As the route
is defined by waypoints, the tangent arc is simplified by using a number of waypoints
pre-defined by the user. This smoothing is applied only when both lines are longer than
the radio rc. Further, if a line is longer than a minimum length lMin, it is simplified by three
points at the beginning, at the middle, and at the end of the line, thus drastically reducing
the total number of waypoints in the path. In the example shown in Figure 16, the number
of waypoints of the path is reduced from 65 to 19 waypoints. This smoothing is done with
a ratio rc = 0.6 m, 4 waypoints to define the arc and a minimum length lMin to simplified
lines of 0.6 m.

The point cloud used to calculate the navigation map was taken in a pre-processing
step, meaning that new obstacles can be placed in the room. These obstacles, such as lockers
placed after the first point cloud acquisition, can cause an accident if the path calculated
goes through the object. Thus, when the UAV navigates using this route, the system is
going to collide with the obstacle (Figure 17). Due to this, an obstacle avoidance path
planner system has been developed. This system is able to calculate new routes to modify
the previous route to avoid the obstacle. Thus, when the vehicle detects an obstacle when
it is navigating through the calculated route, a new study area centered in the obstacle is
defined. To create this area, the first step is to define the position of the obstacle and create
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a security offset around it, in order to define the area where the UAV cannot navigate to
avoid collisions. The same security offset used to generate the navigation map is used.
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Once the obstacle area is defined, the route is divided into two parts, before and after
the obstacle (Figure 18a). Therefore, the objective now is to calculate the path that joins the
two segments avoiding the obstacle. To do this, a new navigation map must be calculated
considering the obstacle and the security offset around it. In order to make this operation
as fast as possible, instead of calculating the navigation map in the entire room, a study
area around the obstacle is defined. This area around the obstacle position is calculated
using the security offset defined previously. Thus, the study area is defined as 2 times the
security offset around the obstacle. The navigation map is calculated in this area using the
same algorithm used in the pre-processing step, defined as the target of the initial position
of the second segment, the segment after the obstacle. Then, the path planning algorithm is
used in this study area using as the initial position the final point of the segment before the
obstacle. In this way, a new route that avoids the obstacle has been calculated (Figure 18).
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3. Result and Discussion
3.1. Case Study

This study was carried out using a point cloud acquired at the Mining and Energy
School at the University of Vigo (Figure 19). As can be seen in all the Figures used previously
to explain the method, the point cloud is composed of six rooms: Five classrooms and a
corridor that connects all of them. The size of the study area was approximately 1020 m2

(85 m × 12 m). The point cloud, which contains 4.5 million points, has been acquired with
a ZEB-REVO Laser Scanner [33], that is, a LS with a maximum range of 30 m in optimal
conditions, a field of view of 270◦ × 360◦, and a scan range noise of ±30 mm.
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Figure 19. Case of study.

A voxel size of 20 cm has been used. The pre-processing step took 83.2186 s to execute
using an Intel core i7 and 16 GB of RAM. The path calculation took around 0.0131 s to
execute and calculate a new route. All the algorithms for the path planning method have
been developed in MatLAB 2020b, using the Point Cloud Library.

3.2. Results

Regarding the segmentation process, Figure 20 shows the results of the segmentation
of one of the rooms and the corridor point clouds. As can be seen, each point cloud is
correctly segmented, containing only points that belong to the room.
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The method has been tested calculating multiple paths (Table 1). In all the cases, the
algorithm has calculated a proper route that connects the initial position and the target one.
The path planning algorithm developed is able to calculate the path between two points in
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an average time of 0.0079 s. These results demonstrate that the developed method can be
used to calculate paths in real time.

Table 1. Result of different path calculations.

N. Path Initial Pos. (m) Final Pos. (m) Vec. Dir. Time (s) N. Waypoints.

1 [−27.9, 5.85, −0.8] [4.2, 2.3, 1] [−1, 0, 0] 0.008745 345

2 [−13.5, 5.85, −0.8] [19.4, 2.3, 1] [−1, 0, 0] 0.006259 340

3 [1.2, 5.85, −0.8] [−10.6, 2.3, 1] [−1, 0, 0] 0.00851 342

4 [17.2, 5.85, −0.8] [−25.5, 2.3, 1] [−1, 0, 0] 0.012885 263

5 [32, 5.85, −0.8] [−40.6, 2.3, 1] [−1, 0, 0] 0.006533 415

6 [−27.9, 5.85, −0.8] [18.4, 2.5, 1] [1, 0, 0] 0.008942 303

7 [−13.5, 5.85, −0.8] [33.5, 3, 1] [1, 0, 0] 0.005645 289

8 [17.2, 5.85, −0.8] [3.4, 3, 1] [1, 0, 0] 0.009818 151

9 [17.2, 5.85, −0.8] [−11.5, 3, 1] [1, 0, 0] 0.005481 239

10 [32, 5.85, −0.8] [−26.7, 3, 1] [1, 0, 0] 0.006902 377

Regarding the obstacle avoidance path planner, the developed algorithm calculates
a new path avoiding the obstacle in 0.05–0.06 s. For the case shown in Figure 18, the
algorithms calculate the new path in 0.057265 s.

If the path planning algorithm presented in this manuscript is compared with the
previous A* implementation [34], an average speed up to 213 times higher is achieved.
Table 2 shows the comparison of the execution times of both methods, the traditional A*
and the method presented in this manuscript, comparing them. In both methods, a reliable
path is calculated, as shown in Figure 21.

Table 2. Comparation between the execution time of the A* path panner and the presented path
planner.

N. Path Time A* (s) Time Modified A* (s) Speed Up ( Time A*
Time Modified A* )

1 1.550767 0.008745 177.33

2 1.576993 0.006259 251.96

3 1.416444 0.00851 166,44

4 1.538592 0.012885 119.41

5 1.591487 0.006533 243.61

6 1.411514 0.008942 250.05

7 1.522057 0.005645 269.63

8 1.339394 0.009818 136.42

9 1.509533 0.005481 275.41

10 1.647614 0.006902 238.72

In order to evaluate if the path planning algorithm is executed in real time, the time
restrictions have to be defined. In this case, the velocity movement of the UAV is used to
calculate this execution time restriction. Supposing that the UAV has a maximum speed
of 1 m/s, that is a high velocity for indoor navigation. The average time used to calculate
a path is 0.0079 s, meaning that the UAV could move 7.9 mm. In the case of the obstacle
avoidance path planner, this algorithm takes an average of 0.05 s to been executed, so in
this case with the maximum velocity of 1 m/s, the UAV could move 50 mm. Taking into
account all this, the algorithm developed can be considered a real-time path planner. If the
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same time restrictions are applied to the A* algorithm implementation, with an average
execution time of 1.51 s, the UAV could move 1.51 m at a velocity of 1 m/s. This means
that the previous A* implementation cannot be considered a real-time path planner.
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The execution time not only depends on the voxel size selected for the discretization or
the point cloud size. The number of doors, the point cloud alignment, the interconnection
between rooms, and other elements determine the execution time of the presented method.

The algorithm presented in this work is a 3D path planner, which means it has been
developed for 3D navigation of a UAV. It can be modified to been implemented in a 2D
environment, adapting it to be used by other kinds of ROVs (remotely operated vehicles),
like UGVs (unmanned ground vehicles) or autonomous surface vehicles.

4. Conclusions

This work presents a path planner algorithm developed for UAVs to navigate in
indoor environments, only using as input the point cloud of the environment where the
system is going to navigate. The main objective of this work is to calculate new paths in real
time, which has been achieved, obtaining a speed up 213, comparing the new algorithm
with the previous A* implementation. This algorithm is also orientated to perform contact
inspection tasks autonomously. The method is divided into two parts. The first step
has almost all the computational cost and the second part uses the data created by the
first step to calculate new paths in real time. The algorithm developed has reached the
following goals:

• The pre-processing step segments the entire point cloud into rooms, and each room is
discretized, calculating the navigation map for each one using the doors as the target
position.

• The algorithm calculates the navigation graph of the building where the system is
going to navigate.

• The path planning algorithm uses the navigation graph to calculate the rooms that the
UAV has to cross in order to go from an initial point in one room to a final point in
another one.

• The path planner algorithm also uses the navigation map generated in the pre-
processing step to calculate the path, making this calculation in real time.
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To sum up, the developed algorithm fulfils all the requirements defined initially, where
the most restrictive one is the execution time requirements. The developed path planning
algorithm is executed in real time.

In the future, this path planning algorithm is going to be implemented in the contact
inspection system developed previously, also using a GPU and parallel programming
strategies to optimize the algorithm. In this way, and autonomous contact inspection
system based on UAVs is going to be developed. Moreover, the developed algorithm is
going to be modified to make it a multivehicle path planning system, to perform contact
inspection with different UAVs in an indoor environment at the same time.
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