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Abstract: Freezing of gait (FOG) is one of the most troublesome symptoms of Parkinson’s disease,
affecting more than 50% of patients in advanced stages of the disease. Wearable technology has been
widely used for its automatic detection, and some papers have been recently published in the direction
of its prediction. Such predictions may be used for the administration of cues, in order to prevent the
occurrence of gait freezing. The aim of the present study was to propose a wearable system able to
catch the typical degradation of the walking pattern preceding FOG episodes, to achieve reliable FOG
prediction using machine learning algorithms and verify whether dopaminergic therapy affects the
ability of our system to detect and predict FOG. Methods: A cohort of 11 Parkinson’s disease patients
receiving (on) and not receiving (off) dopaminergic therapy was equipped with two inertial sensors
placed on each shin, and asked to perform a timed up and go test. We performed a step-to-step
segmentation of the angular velocity signals and subsequent feature extraction from both time and
frequency domains. We employed a wrapper approach for feature selection and optimized different
machine learning classifiers in order to catch FOG and pre-FOG episodes. Results: The implemented
FOG detection algorithm achieved excellent performance in a leave-one-subject-out validation, in
patients both on and off therapy. As for pre-FOG detection, the implemented classification algorithm
achieved 84.1% (85.5%) sensitivity, 85.9% (86.3%) specificity and 85.5% (86.1%) accuracy in leave-one-
subject-out validation, in patients on (off) therapy. When the classification model was trained with
data from patients on (off) and tested on patients off (on), we found 84.0% (56.6%) sensitivity, 88.3%
(92.5%) specificity and 87.4% (86.3%) accuracy. Conclusions: Machine learning models are capable
of predicting FOG before its actual occurrence with adequate accuracy. The dopaminergic therapy
affects pre-FOG gait patterns, thereby influencing the algorithm’s effectiveness.

Keywords: wearable sensors; machine learning; freezing of gait (FOG); FOG prediction; levodopa;
Parkinson’s disease; degradation of gait pattern

1. Introduction

Freezing of gait is a form of paroxysmal akinesia (i.e., loss of movement) affecting gait
in more than 50% of patients with Parkinson’s disease (PD) [1]. Freezing of gait (FOG) is
defined as a “brief, episodic absence or marked reduction of forward progression of the feet
despite having the intention to walk” [2]. FOG is rather heterogeneous in terms of clinical
phenomenology (i.e., shuffling steps, trembling legs or complete akinesia) [3]; duration
of a single episode (with half of episodes lasting less than 5 s and 90% less than 20 s) [4];
and triggering factors, including environmental circumstances (e.g., turning, gait initiation,
narrow spaces) [3,5,6], cognitive challenges (e.g., dual tasking) [7] and emotional stress
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(e.g., anxiety) [8]. FOG represents one of the most challenging and disabling symptoms in
PD [2,9,10] since it increases the risk of falls [7,11] and is an early predictor of shortened
survival [12]. Previous experimental studies with gait analysis have demonstrated that
besides FOG episodes, patients with FOG are characterized by abnormal spatial–temporal
gait parameters, such as slower and shorter stride lengths, greater spatial and temporal
stride-to-stride variability and higher asymmetry between the two legs’ mobility than
patients without FOG [13,14]. Specific spatial–temporal gait parameters (e.g., step to step
amplitude and variability) degrade progressively up to the occurrence of FOG, raising the
opportunity to recognize typical pre-FOG periods [15], intended as specific movement
patterns occurring during effective gait just before FOG episodes. The recognition of
pre-FOG periods would allow the adoption of corrective strategies to prevent or overcome
FOG, such as the administration of external sensory queuing [16].

The automatic detection of FOG episodes has been widely explored in the last 15 years,
making use of wearable sensors [17]. Wearable sensors are cheap, lightweight and unob-
trusive, thereby representing a feasible solution for objectively evaluating FOG both in
the laboratory and in the home [18]. The employed sensors include commercial [19] or
prototype inertial measurement units [20], smartphones [21,22] and single accelerometers
and/or gyroscopes [18,23], in combination with surface electromyography [24]. Different
locations have been explored for sensor positioning, including waist, shin, thigh, foot and
chest [25]. Most experimental protocols are carried out in laboratory settings [26], and
include a set of activities such as walking, turning, timed up and go (TUG) test [27] and
simulated activities of daily living (ADL) [19,28].

Inertial wearable sensors also enable monitoring of spatial–temporal gait degradation
in patients with FOG, possibly useful for the recognition of pre-FOG periods. Indeed, their
usage, in combination with machine learning (ML) analysis, has recently smoothed the path
for FOG prediction [29–34]. By examining several time and frequency-domain gait features,
these studies have achieved the real-time detection of pre-FOG periods [29,31,32,35]. How-
ever, the reported performance of the ML analysis in the prediction of FOG is suboptimal
in terms of accuracy, possibly reflecting the clinical heterogeneity of the cohorts under
investigation. For instance, the accuracy in the prediction of FOG in PD would benefit from
evaluating the effect of levodopa (L-dopa), which is known to improve spatial–temporal
gait parameters (e.g., step length and velocity) [13]. Accordingly, the condition of the
patient with respect to the dopaminergic therapy would affect the algorithm’s effectiveness,
and thus the accuracy of FOG prediction. None of the previous studies using inertial
wearable sensors and ML analysis to predict FOG has assessed and compared patients
receiving (on) and not receiving (off) dopaminergic therapy.

In this study, we used inertial wearable sensors and ML analysis to predict FOG by de-
tecting pre-FOG periods in patients with PD. Moreover, we compared the ML prediction’s
effectiveness in patients on and off therapy, which had not been done in previous studies,
in order to assess whether dopaminergic therapy alters the gait patterns in the very few
seconds preceding the onset of a FOG episode. Shedding light on the role of the on/off
patient condition would help to optimize ML approaches and improve the prediction of
FOG by using ecological algorithms regardless the patient’s clinical state. Differently from
the previous works, mostly employing all components from 3-axial accelerometers, we
employed a single angular velocity signal from sensors placed on shins, in order to make
the algorithm as interpretable as possible. Furthermore, we implemented a step-to-step
segmentation process and extracted features from each step. Finally, we made no assump-
tions regarding the time frame in which the degradation manifests, thereby performing the
analysis while employing different durations of the pre-FOG window.

The rest of this paper is organized as follows. In Section 2.1 the patients’ enrollment
procedure is described, along with demographic and clinically relevant data. In Section 2.2,
the experimental set-up and data acquisition procedures are explained. Section 2.3 re-
ports the data pre-processing details and a discussion on the extracted features, whereas in
Sections 2.4 and 2.5 the algorithms for FOG and pre-FOG detection are described. Section 2.6
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provides descriptions of the performance evaluation metrics used in this study. The ob-
tained results are reported and discussed in Sections 3 and 4 respectively, whereas in
Section 5 conclusions are drawn.

2. Materials and Methods
2.1. Subjects

We enrolled eleven patients with PD and FOG from the Movement Disorder outpa-
tient clinic of the Department of Human Neurosciences, Sapienza University of Rome,
Italy. We included patients according to the following clinical criteria: diagnosis of idio-
pathic PD based on current consensus criteria [36]; lack of dementia (Mini-Mental State
Examination—MMSE > 24); presence of FOG directly verified by physical examination of
two neurologists, experts in movement disorders; ability to walk independently; lack of
comorbidities possibly affecting gait (e.g., neuropathies, rheumatic and orthopaedic disor-
ders). To assess patients’ motor, cognitive and emotional functions, the clinical examination
included the following standardized scales and scores: the Hoehn and Yahr scale (H&Y),
the Movement Disorder Society—unified Parkinson’s disease rating scale (MDS-UPDRS)
part III (modified), FOG questionnaire (FOG-Q), MMSE, frontal assessment battery (FAB),
Hamilton depression rating scale (HAM-D) and Beck anxiety inventory (BAI). During
the experimental sessions, we studied patients both receiving (1 h after L-dopa intake)
and not receiving (after L-dopa withdrawal for at least 12 h) dopaminergic therapy (i.e.,
on and off state of therapy, respectively). Finally, we calculated the L-dopa equivalent
daily doses (LEDDs) for each patient [37]. Tables 1 and 2 summarize the demographic and
clinical features of patients with PD and FOG enrolled in this study. In agreement with the
Declaration of Helsinki, the experimental procedures were approved by the institutional
review board of Sapienza University of Rome, Italy. Additionally, all the patients gave
written informed consent to experimental procedures.

Table 1. Demographic and clinical features of patients enrolled in the present study (mean ± standard deviation). FOG:
Freezing of Gait; H&Y: Hoehn and Yahr.

# Patients (Male) Age (Years) Disease Duration (Years) FOG Duration (Years) H&Y

11 (7) 73 ± 7 10.5 ± 7 6.7 ± 1.6 2.7 ± 1

Table 2. Standardized scales and scores of patients enrolled in the present study (mean ± standard deviation). BAI: Beck
anxiety inventory; FAB: frontal assessment battery; FOG-Q: freezing of gait questionnaire; HAM-D: Hamilton depression
rating scale; LEDD: L-dopa equivalent daily dose; MDS-UPDRS-III: Movement Disorder Society—unified Parkinson’s
disease rating scale, part III; MMSE: mini mental state examination; OFF: not receiving dopaminergic therapy; ON: receiving
dopaminergic therapy.

MDS-UPDRS-III ON (OFF) FOG-Q MMSE FAB HAM-D BAI LEDD

37.9 ± 15.1 (44.5 ± 16.9) 18.6 ± 2.9 28.3 ± 2.1 14.4 ± 2.8 17 ± 7.8 16.5 ± 13 741 ± 272

2.2. Experimental Procedures and Data Acquisition

The motor task consisted of 7 m TUG test requiring patients to get up from a chair,
walk in a straight line for 7 m, turning, walking back and sitting down. To increase the
occurrence of FOG episodes, the TUG test was performed in a free living-like environment
implying factors that commonly elicit FOG in a domestic setting. More in detail, the TUG
test implied the passage from a spacious room to a narrow and furnished corridor (about
1.5 m wide) with the interposition of an open door [14]. During TUG tests, PD patients
were video-recorded through a camera and monitored by two Inertial Measurement Units
(IMUs) placed and fixed on the shins (Figure 1a) through elastic bands, which allowed a
good and permanent adhesion during the tests. Video-recordings were used for the of-
fline clinical assessment by two independent neurologists, experts in movement disorders,
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serving as gold standard evaluation for FOG detection. More in detail, two independent
neurologists separately identified the start and end of FOG episodes and, in case of discrep-
ancy, performed a common assessment to resolve the ambiguity. The IMUs positioning
on the patient is implemented so that when the patient is standing the y-axis represents
the inverse gravity vector and x-axis lies in the frontal plane. Hence, the angular velocity
around the x-axis enables a good representation of the human motion during linear gait.
The STMicroelectronics system-on-board prototypes neMEMSi [38] were equipped with: a
9 axis IMU (LSM9DS0), integrating a ±16 g 3D accelerometer, a ±12 Gauss 3D magnetome-
ter and a ±2000 dps 3D gyroscope; a Bluetooth V3.0 module (BT33); a lithium-ion battery;
an ultralow-power 32-bit microcontroller (STM32L1) (Figure 1b). Additionally, neMEMSi
included a temperature sensor, a hygrometer sensor and a pressure sensor that were not
used for this study. We performed preliminary conventional calibration of the inertial
sensors. It consisted in a software correction of the displacement of the IMUs framework
respect to the earth framework, before their positioning on the patient.

Real-time IMU data were acquired with a sampling frequency of 60 Hz, acceleration
full scale of ±2 g, angular velocity full scale of ±245 dps. No additional analog/digital
filter was added respect to the ones specified in the datasheets. The resulting data were
sent in real-time to a personal computer through the neMEMSi Bluetooth module and
progressively saved in CSV format.

(a) Sketch of wearable device positioning and inertial
reference frame.

(b) Exploded view of the neMEMSi device.

Figure 1. Sensor positioning and composition.

Each CSV file was related to a single test. Data in CSV files were processed offline,
as described in the next section. For the synchronization of the two devices, data collection
starts when the patient is sitting down. When the patient stands up, an evident peak in the
collected data from the three axis gyroscopes takes place, as can be observed in Figure 2 for
the x-axis of the gyroscope. In that plot the normalized angular velocity around the x axis
is drawn versus time. At time t = 2.6 s the patient stood up, and a peak from each device
is present. In the following few seconds (until t = 6 s) data are not meaningful because
the patient was arranging her/his position. After t = 6.5 s the patient started walking.
By superimposing the standing-up peaks related to the two legs, the relative delay from
each other can be calculated. The mentioned method allows a perfect synchronization
between signals from the two shins, which conserve their phase shift along the whole
test duration.
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Figure 2. Normalized angular velocity around the x axis versus time for the two shins during the
transition from sitting to standing up.

2.3. Preprocessing

In this study we employed a single component of the angular velocity signal, which
describes the principal angular movement of the leg. Specifically, the angular velocity
signal around the x-axis is addressed (see Figure 1a), in the following reported as ωx. As a
first operation, we normalized the raw input data ωx, employing the mean-normalization
formula reported in Equation (1). It consists of removing the data mean value and dividing
it by the data range; hence, the obtained normalized data are zero-mean and unit range.
Standardization allows us to process a homogeneous range of motion data for the entire
population, and to perform data segmentation in a subject-independent way.

ω′x =
ωx −mean(ωx)

max(ωx)−min(ωx)
(1)

In order to get information about the traits and qualities of each step accomplished by
the patient, we performed a step-to-step data segmentation. To this aim, we considered
signal peaks as anchor points for segmentation; indeed, points in which the angular velocity
reaches the maximum are known to represent mid-swing phase in gait analysis [39,40].
This procedure was recognized to ease the step detection and limit detection errors. In more
detail, we kept signals from right and left leg separated, and we took into account signal
peaks with an amplitude≥20% of the maximum value, at least 350 ms apart. The amplitude
threshold was heuristically selected in order to catch both normal and anomalous steps
such as those preceding FOG. The temporal threshold was set to avoid duplicated peak
detection during normal gait. In Figure 3a, an example of the outcome of our peak detection
algorithm is reported.

Once having identified signal peaks, we performed two data segmentation tasks in
order to arrange data frames for subsequent feature extraction. Type I segmentation catches
data between two subsequent peaks (i.e., the current and the previous one), whereas
Type II segmentation encompasses the positive portion of data inside the current peak
(Figure 3b). Type I segments yield frequency information, while range of motion and
movement intensity can be computed using the Type II segmentation.



Sensors 2021, 21, 614 6 of 19

(a) Signal peaks identified by the peak detection
algorithm (red triangles).

(b) Type I and Type II segments.

Figure 3. Peak detection and signal segmentation.

As our goal was to catch walking pattern degradation preceding FOG events, the
features to be extracted from inertial data needed to have the ability to represent subtle
details of each step. The selected features in both time and frequency domains are reported
in Table 3. Some of them, e.g., standard deviation, range and root mean square, are
self-explanatory. In the following we provide descriptions of those features requiring
some comments.

Table 3. List of extracted features, along with the segmentation type employed.

Domain Feature Segmentation

Ti
m

e

Standard Deviation Type I
Range Type I

Root Mean Square Type I
Angular Jerk Type II

Normalized Jerk Type II
Stride Similarity Type I

Step Time Type II
Stride Time Type I
Peak height Type II
Peak width Type II

Fr
eq

ue
nc

y

Power Spectral Entropy Type I
Principal Harmonic Frequency Type I
Principal Harmonic Amplitude Type I

Principal Harmonic Width Type I
Weighted Power Spectral Frequency Type I

Low Power Frequency Type I

Angular jerk. It represents the rate of variation of the angular acceleration, defined as
1
2 ·

∫
ω̈2

x · dt, where ω̈x is the second derivative of the angular velocity around the x-axis.
Normalized jerk. It represents the Angular Jerk normalized by the time in which it

is computed.
Stride similarity. It is computed using the Dynamic Time Warping (DTW) algorithm.

It provides a scalar output that is inversely proportional to the similarity between the two
input signals. Thus the output represents the similarity between the actual stride and the
previous one.
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Step time. It is computed as the temporal distance between each peak and the previous
contralateral peak.

Stride time. It is computed as the temporal distance between two subsequent peaks in
the signal measured on either the right or the left leg.

Peak height and width. They are computed respectively as the height (with respect to
zero) and half-power width of the positive portion of the signal peak. The former represents
the maximum angular velocity reached in each step while the latter is proportional to the
swing time.

Power spectral entropy. It is the spectral Shannon entropy, computed as −P · log(P + ε),
where P is the normalized squared amplitude of the signal Fast Fourier Transform (FFT)
and ε an arbitrarily small value (0.001) ensuring real output values. It represents a measure
of the quantity of information carried by the signal spectrum.

Principal harmonic amplitude and frequency. They are computed from the signal FFT, as
the peak value and its corresponding abscissa (frequency).

Principal harmonic width. It is obtained as the half-power width of the principal
harmonic component.

Weighted power spectral peak. It is the product of amplitude and frequency of the
principal harmonic.

Low power frequency. It represents the ratio between the power in the bandwidth 0–2 Hz
and the total signal power.

2.4. FOG Detection

We set up a binary supervised classification problem for FOG detection, namely, gait
vs FOG. This allowed us to get an insight into the capability of the extracted feature set to
discriminate between normal and abnormal gait patterns. In view of the subsequent pre-
FOG detection task, the implemented algorithm must be robust and easily interpretable.
In this context, decision tree (DT) represents a simple and fast algorithm, providing a
straightforward interpretability of its outcome. Nevertheless, said algorithm is known
to implement a very sharp margin separating the two classes, thereby increasing the risk
of overfitting. On the other hand, support vector machine (SVM) seeks the hyperplane
providing the largest margin for separating the two classes and it has been widely employed
in similar problems [41,42]. In this work, we combined both models by exploiting DT for
feature selection and SVM for classification.

As for DT, features close to the tree root achieve the best classification of the training
set. Hence, this algorithm can be used to rank features in decreasing order of relevance.
The implemented DT has the following parameters:

• Split criterion: Gini-Simpson diversity index [43].
• Minimum leaf size: 1.
• Maximum number of splits: 15.

In order to identify the best model configuration in terms of selected features and
model parameters, we performed a tuning procedure based on mis-classification error
minimization in a 10-fold cross validation. The number of features to be selected varied
from one to all features, while the regularization parameter of the SVM model ranged
between 1 and 20.

We performed a 70/30 training-test procedure in order to avoid overfitting. First, we
splitted the feature set into a training (70% of data) and a test set (30% of data). Then, we
performed the model optimization using the training set and tested the optimized model
on the test set. In Algorithm 1 we report the entire procedure for training, validation and
testing of the model.

Moreover, in order to ensure subject independence and to achieve results representa-
tive of more realistic working conditions, we performed a Leave-One-Subject-Out (LOSO)
validation. It consists of training the model with data from all patients except one, which is
used for testing. For each performed validation/test, we evaluated the classification perfor-
mance employing the metrics reported in Section 2.6. We performed training, validation



Sensors 2021, 21, 614 8 of 19

and test on data related to patients on and off therapy separately. Then we compared the
results obtained in the two conditions. Finally, we trained the final model configuration
with data related to patients on (off) therapy and tested on off (on) data. Thus we compared
the performance obtained in the two testing conditions.

Algorithm 1 Algorithm for model optimization, validation and test performance evaluation

1: procedure PERFORMANCE(Data)
2:
3: for k← 1 to 20 do . Perform 20 times train-test procedure
4:
5: [trainingSet, testSet]← split(data, 0.3) . Split data into 70% trainingSet and 30% testSet
6:
7: f eatureSet← DT(trainingSet) . Sort features according to Decision Tree algorithm
8:
9: for f ← 1 to length( f eatureSet) do . Numer of selected features from 1 to the full set

10:
11: for c← 1 to 20 do . Regularization cost from 1 to 20
12:
13: error( f , c)← loss(10-fold cv(trainingSet, f , c)) . Perform 10-fold cross validation
14:
15: end for
16:
17: end for
18:
19: f , c← min(error) . Select the best f and c combination
20:
21: Per f ormance(k)← test(model, f , c, testSet) . Compute performance on testSet
22:
23: end for
24:
25: return Per f ormance . Return performance for each split
26:
27: end procedure

2.5. Pre-FOG Detection

As for pre-FOG detection, i.e., capturing typical degradation of gait pattern preceding
FOG episodes, we implemented a binary classification problem to differentiate between
gait and pre-FOG. In Figure 4 we describe the steps employed to select the final model
configuration, which is used for pre-FOG identification.

First of all, as the pre-FOG window length cannot be determined a-priori, we took into
consideration different window lengths in the range 2–5 s. For each value we labeled the
corresponding gait data as belonging to the pre-FOG class. As the identification of the
most suitable classification algorithm for this task is not straightforward, we tested the
model implemented for FOG detection and different models, namely, k-nearest neighbor
(kNN), linear discriminant analysis (LDA) and logistic regression (LR). In order to jointly
identify the most suitable window length and classification model, we performed 10-fold
cross validation for each model-window length pair and computed accuracy. For each
classification algorithm, we optimized the corresponding hyperparameters employing
a Bayesian optimization algorithm. In Table 4 we report the hyperparameters and the
corresponding range used for model optimization in the 10-fold cross validation procedure.
Once having identified the model providing the best performance, we implemented two
approaches for improving the algorithm sensitivity. The first one consists of tuning the
false negative cost of the algorithm in the range 0–10, in order to reduce the number of
pre-FOG samples that are not recognized by the algorithm. The second approach employs
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a combination of detection models; data samples are classified as pre-FOG if at least one
model yields a pre-FOG decision.

Figure 4. Workflow of the procedure used for the identification of the final model configuration.

Table 4. Parameters employed for model optimization, along with the corresponding range.

Model Parameter Range

SVM
kernel function linear, quadratic, gaussian

kernel scale 0.001–100
box-constraint 0.01–100

kNN
number of neighbors 1–50

distance metric euclidean, manhattan
distance weight equal, inverse, squared inverse

LDA Gamma 0.01–1
Delta 0.01–100

LR Lambda 0.01–100

In both cases, we computed sensitivity, accuracy and F-score and selected the con-
figuration providing the best performance. Then, we performed LOSO validation, and
computed several classification evaluation metrics, reported in Section 2.6.

Finally, in order to provide interpretability of the implemented algorithm, we assessed
feature relevance in discriminating gait steps from those related to pre-FOG. To that end,
we addressed those features that had been most frequently selected, i.e., in at least 80%
of cases in the LOSO validation, and we computed the Spearman correlation coefficient
and the associated p-value between those features and the class label, with “0” meaning
“gait” and 1 “pre-FOG.” This represents a method for quantifying the extent of statistical
dependence between pairs of observations and allows us to understand which feature
shows an increase or a reduction in its values for data approaching a FOG event. Specifically,
positive (negative) values of the correlation coefficient indicate increasing (decreasing)
values of features as approaching FOG. Finally, we computed the latency between the
pre-FOG detection and the actual FOG occurrence. We performed the abovementioned
analysis on data related to patients on and off therapy separately, and we compared the
achieved results. Then, we trained the final model configuration with patients on (off)
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therapy and tested on patients off (on). Finally we compared the performance obtained in
the two testing conditions.

2.6. Performance Evaluation

In order to provide an exhaustive performance evaluation of both FOG and pre-
FOG detection algorithms, and to compare results from patients on and off therapy, we
computed different performance metrics, reported in the following. First, let us define
true positives (TP) and true negatives (TN) as the numbers of correctly identified positive
and negative samples, respectively. False positives (FP) represent the number of negative
samples wrongly classified as positive, while false negatives (FN) refer to the number of
positive samples wrongly classified as negative.

Sensitivity and specificity (Equation (2)) represent the algorithms’ capability of detect-
ing true positive and negative samples, respectively.

Sensitivity =
TP

TP + FN
Speci f icity =

TN
TN + FP

(2)

Positive predictive value (PPV) and negative predictive value (NPV) (Equation (3))
represent the precision in detecting positive and negative samples, respectively.

PPV =
TP

TP + FP
NPV =

TN
TN + FN

(3)

Accuracy is an overall performance measure, reporting the percentage of correctly
classified samples, and F-score is the harmonic mean of sensitivity and PPV (Equation (4)).

Accuracy =
TP + TN

TP + TN + FP + FN
F− score = 2 · Sensitivity · PPV

Sensitivity + PPV
(4)

Yuden index summarizes the performance of the test, taking into consideration both
sensitivity and specificity (Equation (5)).

Yuden Index = Sensitivity + Speci f icity− 1 (5)

In Section 3 we expressed all the reported performance metrics as percentages. Finally,
the receiver operating characteristic (ROC) curve shows the relationship between the true
positive rate (i.e., sensitivity) and the false positive rate (computed as 100—specificity) as
the classification threshold varies, allowing to visualize the performance of the classification
model. The area under the curve (AUC) is an overall measure of correct classification,
aggregating measures of performance across all possible classification thresholds.

3. Results

The offline clinical assessment of video-recordings by two independent neurologists,
experts in movement disorders, identified 41 FOG episodes in PD patients on therapy and
54 FOG episodes in those off therapy. All episodes were used for the FOG detection task.
On the other hand, 6 and 10 episodes were excluded for pre-FOG analysis, for patients on
and off therapy respectively, as they occurred during gait initiation task, i.e., during the
transition between standing up and start walking.

3.1. FOG Detection

Table 5 summarizes the algorithm performance, in terms of sensitivity, specificity,
accuracy, PPV, NPV, F-score and Yuden index, in detecting FOG episodes in PD patients
both on and off therapy.
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Table 5. Algorithm performance in FOG detection in Parkinson disease patients receiving (ON) and not receiving (OFF)
dopaminergic therapy. cv: cross-validation; NPV: negative predictive value; PPV: positive predictive value.

Evaluation Metric Condition 10-Fold cv 70-30 Training-Test Leave-One-Subject-Out

Sensitivity (%) ON 95.9 93.9 93.7
OFF 97.1 94.9 93.9

Specificity (%) ON 95.4 94.2 91.8
OFF 93.5 90.6 85.0

Accuracy (%) ON 95.5 94.1 92.6
OFF 96.3 93.1 92.0

PPV (%) ON 95.3 93.9 91.7
OFF 94.2 93.5 86.8

NPV (%) ON 96.2 94.1 93.8
OFF 95.7 92.7 91.4

F-score (%) ON 95.6 93.9 92.7
OFF 95.6 94.2 90.2

Yuden Index (%) ON 91.3 88.1 85.5
OFF 90.6 85.5 78.9

All the performance metrics exhibited a slight decrease moving from 10-fold validation
to 70-30 training-test and LOSO validation, due to a progressively larger portion of data
used as test set. The LOSO validation is very close to actual working conditions. It achieved
high sensitivity, accuracy and F-score (Table 5), always larger than 90%. Additionally,
training/test procedure demonstrated the absence of model over-fitting, as evident from
the high performance obtained. When comparing patients on and off therapy, the algorithm
achieved similar values of sensitivity, accuracy and F-score in the detection of FOG with
LOSO, thereby not showing significant performance differences with respect to L-dopa
intake. However, the algorithm showed lower specificity in patients off than those on
therapy due to an increased number of false positives after L-dopa withdrawal.

Table 6 reports the algorithm performance in FOG detection after training with data
recorded from patients on therapy and tested on patients off therapy, and vice versa.

Table 6. The algorithm’s performance in FOG detection after training with Parkinson’s disease patients receiving dopamin-
ergic therapy (ON) and testing on PD patients not receiving dopaminergic therapy (OFF), and vice versa. NPV: negative
predictive value; PPV: positive predictive value.

Training Set Test Set Sensitivity Specificity Accuracy PPV NPV F-Score Yuden Index

ON OFF 88.0 % 90.3 % 89.0 % 91.9 % 85.8 % 89.9 % 78.3 %

OFF ON 96.2 % 89.0 % 92.6 % 89.4 % 96.1 % 92.7 % 85.2 %

It can be appreciated that, in general, and especially for sensitivity and Yuden index,
the algorithm yielded higher performance in detecting FOG when trained with data from
patients off therapy.

3.2. Pre-FOG Detection

Table 7 summarizes the accuracy of different ML classifiers in identifying pre-FOG
periods in patients on and off therapy, also considering various pre-FOG window lengths
(from 2 to 5 s).
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Table 7. Accuracy (%) of different classifiers in pre-FOG recognition by considering various pre-FOG
window lengths. kNN: k-nearest neighbor; LDA: linear discriminant analysis; LR: linear regression;
SVM: support vector machine.

Window Length (s) SVM kNN LDA LR

ON OFF ON OFF ON OFF ON OFF

2 91.3 92.1 84.7 89.8 91.7 94.7 89.0 90.6

3 86.1 88.7 80.2 84.7 85.6 86.4 84.4 85.2

4 77.8 84.6 69.4 80.4 78.6 82.6 75.2 81.8

5 64.9 74.6 58.9 79.3 65.8 75.4 44.9 71.1

All the models exhibited a progressive reduction of accuracy in pre-FOG recognition
with the increase of the window length. Indeed, a mean accuracy impairment of about
14% and 10% for patients on and off therapy respectively, was observed when doubling
the pre-FOG window length. Overall, the accuracy in detecting pre-FOG in patients off
therapy was higher than in patients on therapy. SVM and LDA classifiers provided the
best performance in terms of accuracy, with sensitivities of 68.4% and 66.2% respectively.

Figures 5 and 6 report the sensitivity, accuracy and F-score of the SVM and LDA
classifiers when detecting pre-FOG periods in patients on and off therapy respectively and
considering different FN cost values.

(a) SVM (b) LDA

Figure 5. False negative tuning in PD patients receiving dopaminergic therapy (on) for support vector machine (SVM) and
linear discriminant analysis (LDA) classifiers.

As the FN cost increases, the sensitivity improves but, in turn, the accuracy and F-score
get worse due to the occurrence of false positives. This impacts on all the performance
evaluation metrics other than sensitivity. Figures 5a and 6a show that, considering SVM
classifier and setting an FN cost equal to 5 leads to a sensitivity of 87.5% and 89.2% in
patients on and off therapy respectively, while maintaining high values of accuracy and
F-score. Conversely, the increase in sensitivity by using the LDA classifier is less satisfactory
than for SVM, as shown by Figures 5b and 6b.



Sensors 2021, 21, 614 13 of 19

(a) SVM (b) LDA

Figure 6. False negative tuning in PD patients not receiving dopaminergic therapy (OFF) for support vector machine (SVM)
and linear discriminant analysis (LDA) classifiers.

Table 8 reports the sensitivity, accuracy and F-score in pre-FOG detection by using
the SVM and LDA classifiers separately, with and without FN cost optimization, and the
combination of SVM and LDA classifiers in PD patients on and off therapy.

Table 8. Performances of support vector machine (SVM) and linear discriminant analysis (LDA) classifiers, separately and
in combination, with and without optimized false negative cost, in pre-FOG detection in PD patients receiving (ON) and
not receiving (OFF) dopaminergic therapy.

Performance Condition SVM LDA SVM + LDA SVM (Optimized Cost) LDA (Optimized Cost)

Sensitivity (%) ON 68.4 66.2 72.1 87.5 78.2
OFF 75.0 75.1 79.2 89.2 82.2

Accuracy (%) ON 91.8 91.7 91.7 90.2 90.1
OFF 92.1 94.7 92.9 89.4 91.0

F-score (%) ON 71.2 67.8 66.7 72.3 66.0
OFF 71.9 77.8 75.7 68.1 69.8

The combination of SVM and LDA classifiers led to increased sensitivity in pre-FOG
detection both in patients on and off therapy compared to separate performance of SVM
and LDA classifiers. The FN costs equal to 7 and 6 for the LDA classifier (Figures 5b and 6b)
exhibited satisfactory performance in patients on and off therapy, respectively. The SVM
classifier with an FN cost equal to five achieved the highest performance in pre-FOG
detection, mainly in terms of sensitivity, with comparable values of accuracy, for patients
both on and off therapy (Figures 5a and 6a).

Table 9 summarizes the sensitivity, specificity, accuracy, PPV, NPV, F-score and Yuden
index of the pre-FOG classification algorithm in a LOSO validation in PD patients on and
off therapy.

Table 9. Performance of the pre-FOG classification algorithm in the leave-one-subject-out validation in patients receiving
(ON) and not receiving (OFF) dopaminergic therapy.

Therapy Sensitivity Specificity Accuracy PPV NPV F-Score Yuden Index

ON 84.1 % 85.9 % 85.5 % 65.1 % 93.5 % 73.4 % 70 %

OFF 85.5 % 86.3 % 86.1 % 66.2 % 93.0 % 74.6 % 71.1 %
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When comparing patients on and off therapy, the classification algorithm demon-
strated a different performance in the recognition of pre-FOG periods, with the highest
values of sensitivity, specificity, accuracy, F-score and Yuden index after L-dopa with-
drawal (i.e., in patients off rather than those on therapy). Moreover, the implemented
models detected pre-FOG periods with different latencies in patients off and on therapy.
More in detail, when considering patients on therapy, pre-FOG periods were recognized
4 ± 1.1 steps before FOG occurrence. Conversely, pre-FOG periods were recognized 6 ±
1.3 steps before FOG occurrence in patients off therapy. This is probably due to the fact
that the pace degradation pattern in off therapy patients is better represented than in on,
where it is (partially) corrected by the L-dopa.

Figure 7a,b report the ROC curve of the SVM classifier, in patients on and off therapy,
respectively. ROC curves show a similar pattern in both conditions and the AUC value
is identical. For specificity values over 80%, slightly higher values of sensitivity can be
observed for patients off therapy, compared to those on therapy.

(a) ON therapy (b) OFF therapy

Figure 7. Receiver operating characteristic curves of the final classification model, for patients receiving (ON) and not
receiving (OFF) dopaminergic therapy.

Table 10 reports the algorithm performance in pre-FOG detection after training with
data recorded from patients on therapy and then tested on data from those off therapy, and
vice versa.

Table 10. The algorithm’s performance in pre-FOG detection after training with Parkinson’s disease patients receiving
dopaminergic therapy (ON) and testing on PD patients not receiving dopaminergic therapy (OFF), and vice versa.

Training Set Test Set Sensitivity Specificity Accuracy PPV NPV F-Score Yuden Index

ON OFF 84.0 % 88.3 % 87.4 % 66.7 % 95.2 % 74.4 % 72.3 %

OFF ON 56.6 % 92.5 % 86.3 % 77.9 % 88.2 % 65.6 % 49.1 %

As evident, the different tests on patients on and off therapy led to opposite results
both in terms of sensitivity and specificity in the detection of pre-FOG periods. More in
detail, the algorithm training with data from patients on therapy and testing on data from
patients off therapy showed significantly higher sensitivity and lower specificity than the
algorithm training with data from patients off therapy and testing on data from patients on
therapy. Indeed, in this latter case, sensitivity was severely impaired and achieved values
less than 60%.

Finally, Figure 8 shows the Spearman correlation coefficient, computed for the most
frequently selected features in patients on and off therapy during pre-FOG periods. All
corresponding p-values were found to be <0.001.
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Figure 8. Spearman correlation coefficient between selected features and class label (i.e., 0 and 1 for
gait and pre-FOG respectively). A negative correlation denotes decreasing values of features during
pre-FOG. ON: receiving dopaminergic therapy; OFF: not receiving dopaminergic therapy.

4. Discussion

In this section, we discuss results regarding FOG detection and FOG prediction
emphasizing the influence of dopaminergic therapy on the pace pattern degradation and
the algorithm performance. To provide an exhaustive performance evaluation of ML
algorithms, we computed several metrics for different validation and test methods, and we
considered the impact of various pre-FOG window lengths on FOG prediction.

Concerning FOG detection, our algorithm yielded high performance in the recognition
of FOG episodes, comparable with those previously described [44,45]. Additionally, in
line with previous research [14], our algorithm detected FOG episodes in PD patients
on and off therapy with a similar sensitivity, thereby suggesting that L-dopa does not
significantly change FOG-related features, but only impacts on the frequency and dura-
tion of FOG episodes. Despite comparable sensitivity, our algorithm recognized FOG
episodes with lower specificity in patients off than those on therapy. This could reflect
an increased number of false positives owing to the difficulty in differentiating abnormal
spatial–temporal gait parameters, which are prominent in patients off therapy, from FOG
episodes. Finally, training the algorithm in patients off therapy led to better performance
in the detection of FOG episodes in patients on therapy than vice-versa. This likely reflects
the increased frequency and duration of FOG episodes in patients off than those on therapy,
thus providing a larger amount of data for training [14].

Regarding the pre-FOG detection, our classifier achieved performance in line with
recent works, confirming the possibility to predict FOG in PD patients by using ML
algorithms [32,33]. We also found that the length of the pre-FOG window (i.e., 2, 3, 4, 5 s)
crucially affected the accuracy of pre-FOG recognition: the longer the pre-FOG window,
the less the prediction accuracy. In line with our hypothesis and previous observations [15],
this finding suggests that the walking pattern degradation that commonly precedes FOG,
becomes increasingly evident as the FOG episode approaches. Accordingly, short pre-
FOG window lengths (i.e., 2–3 s) should be used to improve the overall accuracy of FOG
prediction in PD. In detail, during pre-FOG periods in PD patients, the leg movement
slows down (i.e., decrease in range, standard deviation and max velocity), steps become
faster and shorter (i.e., decrease in step, stride time and swing time), the frequency content
of strides becomes more variable (i.e., decrease in power spectral entropy value) and the
stride frequency content exhibits a shift towards high frequencies (i.e., decrease in low
power frequency).

When assessing the effects of L-dopa on ML performance, we found that the accuracy
in pre-FOG detection was higher in patients off than those on therapy, fully in line with
our initial hypothesis that the L-dopa impacts on FOG prediction, since pace degradation
pattern in on therapy is partially corrected by the L-dopa itself. Further supporting the
influence of L-dopa on FOG prediction, our algorithm recognized pre-FOG periods earlier
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in patients off therapy than in those on therapy (6 ± 1.3 and 4 ± 1.1 steps before FOG
occurrence, respectively). Additionally, training the algorithm with data from patients on
and off therapy significantly changed the ability to detect pre-FOG. These findings agree
with the observation that L-dopa improves spatial–temporal gait parameters outside FOG
episodes [13,14]. Accordingly, L-dopa changes the typical degradation pattern preceding
FOG episodes by attenuating pre-FOG periods in patients on therapy. Overall, our findings
support the need to train ecological ML algorithms for FOG prediction in PD by specifically
considering patients’ state of therapy.

When considering the present findings, a few limitations should be taken into ac-
count. First, although the patients were selected on the basis of rigorous clinical criteria,
confering homogeneity to the cohort, this latter consisted in a limited number of subjects.
Accordingly, to further increase the statistical significance of our results, future studies
should enrol a larger sample of patients. Second, we did not examine the possible impact
of specific FOG phenotypes (i.e., trembling, akinetic, shuffling) on FOG prediction by ML
algorithms [24]. Future studies should therefore clarify whether the typical degradation
pattern of gait preceding FOG episodes is related to specific FOG phenotypes. Finally, data
eventually collected with an increased number of 3D inertial sensor units could allow one
to improve the pre-FOG window length while maintaining high accuracy values, enabling
the adoption of protective or preventive strategies for FOG in PD patients. However,
this approach would require the introduction of new synchronization solutions, as those
recently proposed in [46], where a time coordination method based on a master/slave ar-
chitecture was presented. This kind of solution would also prevent temporal shift between
different units in long-time monitoring.

5. Conclusions and Future Work

In this work, we used wearable devices integrating inertial sensors and machine
learning to detect and predict the occurrence of FOG episodes in Parkinson’s disease.
A cohort of 11 selected PD patients was equipped with inertial sensors placed on the shins,
and asked to perform a TUG test. We compared the ML performance in the detection of pre-
FOG periods in patients on and off dopaminergic therapy. We used a single angular velocity
signal from sensors and implemented a step-to-step segmentation process, extracting
features from each step. No assumptions regarding the time frame in which the degradation
manifests was made; thus we performed the analysis by employing different durations of
the pre-FOG window (finally fixed at 2 s). We employed a wrapper approach for feature
selection and optimized different ML classifiers in order to catch both FOG and pre-FOG
episodes. The implemented FOG detection algorithm achieved excellent accuracy in LOSO
validation, in patients both on and off therapy. As for FOG prediction, the implemented
classification algorithm achieved 84.1% (85.5%) sensitivity, 85.9% (86.3%) specificity and
85.5% (86.1%) accuracy in LOSO validation, in patients on (off) therapy. When training
the classification model with data from on (off) patients and testing on patients off (on),
we found 84.0% (56.6%) sensitivity, 88.3% (92.5%) specificity and 87.4% (86.3%) accuracy.
It is remarkable that, for the first time, we demonstrated that when predicting FOG in PD
through ML algorithms, it is relevant to consider patients’ state of therapy with L-dopa.
Indeed, by improving the spatial–temporal parameters of gait outside FOG episodes, L-
dopa likely attenuates pre-FOG periods in patients on therapy, thereby affecting the ability
to predict FOG through ML algorithms, and in particular, strongly degrading the sensitivity.
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