

Communication

Self-Assembled Monolayers Coated Porous SnO₂ Film Gas Sensor with Reduced Humidity Influence

Cheonji Lee ^{1,2,†}, Sunjong Oh ^{1,†}, Seung-Chul Park ¹, Ho-Nyun Lee ³, Hyun-Jong Kim ³, Jinkee Lee ² and Hyuneui Lim ^{1,*}

Figure S1. X-ray diffraction (XRD) patterns of porous SnO₂ films before and after annealing process.

Figure S2. Schematic diagram of a custom-built experimental apparatus for controlling humidity.

Figure S3. Real time data of bare (a) and PFOTS coated porous SnO₂ film gas sensors (b) are obtained at relative humidity 0, 20, 40, and 70 %.

Figure S4. Gas sensor sensitivity with removing effect of humidity. (a) Bare and (b) PFOTS shows sensitivity according to amount of CO; the reaction gas (R_a) with the humid air signal (R_{a+RH}). The trend line is drawn with R² at RH 0%.

Figure S5. Photos of the gas sensor platform. (a) Front image of patterned Pt electrodes and (b) back image of heater. (c) Schematic image of the porous SnO₂ gas sensor structure.