
sensors

Article

FedPSO: Federated Learning Using Particle Swarm
Optimization to Reduce Communication Costs

Sunghwan Park 1 , Yeryoung Suh 1 and Jaewoo Lee 2,*

����������
�������

Citation: Park, S.; Suh, Y.; Lee, J.

FedPSO: Federated Learning Using

Particle Swarm Optimization to

Reduce Communication Costs.

Sensors 2021, 21, 600. https://

doi.org/10.3390/s21020600

Received: 21 December 2020

Accepted: 14 January 2021

Published: 16 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional clai-ms

in published maps and institutio-nal

affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The Department of Security Convergence Science, Chung-Ang University, Seoul 06974, Korea;
tjdghks994@gmail.com (S.P.); ye0s3a@gmail.com (Y.S.)

2 The Department of Industrial Security, Chung-Ang University, Seoul 06974, Korea
* Correspondence: jaewoolee@cau.ac.kr

Abstract: Federated learning is a learning method that collects only learned models on a server to
ensure data privacy. This method does not collect data on the server but instead proceeds with data
directly from distributed clients. Because federated learning clients often have limited communication
bandwidth, communication between servers and clients should be optimized to improve perfor-
mance. Federated learning clients often use Wi-Fi and have to communicate in unstable network
environments. However, as existing federated learning aggregation algorithms transmit and receive
a large amount of weights, accuracy is significantly reduced in unstable network environments. In
this study, we propose the algorithm using particle swarm optimization algorithm instead of FedAvg,
which updates the global model by collecting weights of learned models that were mainly used in
federated learning. The algorithm is named as federated particle swarm optimization (FedPSO), and
we increase its robustness in unstable network environments by transmitting score values rather
than large weights. Thus, we propose a FedPSO, a global model update algorithm with improved
network communication performance, by changing the form of the data that clients transmit to
servers. This study showed that applying FedPSO significantly reduced the amount of data used
in network communication and improved the accuracy of the global model by an average of 9.47%.
Moreover, it showed an improvement in loss of accuracy by approximately 4% in experiments on an
unstable network.

Keywords: particle swarm optimization; federated learning; aggregation; convolutional neural
network (CNN)

1. Introduction

Recently, the use of mobile devices such as smartphones and tablets has been in-
creasing. Various forms of data are being generated and accumulated on mobile devices,
including data generated by users and sensors such as cameras, microphones, and the
global positioning system. The accumulated data on mobile devices are beneficial for deep
learning, which demonstrates good performance when there is a significant amount of data.

Data from mobile devices can be used for machine learning (ML) in various ways [1].
Google’s Gboard, for example, uses ML to learn words that users frequently type and
recommends the next words to be typed [2]. However, there are four points to consider in
using mobile device data for ML.

• Mass data collection cost: network communication and storage costs for collecting
and managing large amounts of original data on the server are high.

• Unstable networks: mobile devices cannot use wired networks and are mostly con-
nected via Wi-Fi, making it difficult to establish a stable network environment.

• Low computation capability: the processors in mobile devices do not have sufficient
computing capabilities for ML.

• Security threat: collecting or storing private data increases the likelihood of data breaches.

Sensors 2021, 21, 600. https://doi.org/10.3390/s21020600 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0253-110X
https://orcid.org/0000-0001-5887-2184
https://doi.org/10.3390/s21020600
https://doi.org/10.3390/s21020600
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020600
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/600?type=check_update&version=2


Sensors 2021, 21, 600 2 of 13

Therefore, to implement a successful ML model, especially an artificial neural net-
work (ANN (ANN: Artificial Neural Network, a statistical learning algorithm inspired by
biological neural networks among ML methods. Examples are supervised learning and
unsupervised learning.)), using mobile device data, it is necessary to reduce the size of the
collected data, strengthen the security of the collected data, improve the robustness to an
unstable network environment, and reduce the number of training parameters (weight
(Weight: The weight used in this paper refers to a parameter that updates the input data in
the hidden layer of the ANN. In short, it is a value that determines the amount of influence
input data has on output data. The weight is updated through the ANN’s back-propagation
process as training progresses.) of neural network). Research on federated learning has
been steadily progressing to solve these problems and be able to use the vast amount of
data on mobile devices [3,4]. Federated learning is an ML model for training on distributed
data. This model ensures privacy by not sending data from personal devices to a central
server. In addition, federated learning reduces communication costs by transmitting only
the learned models without transmitting large amounts of source data to the server.

In conventional ANN models, calculation time accounts for much more than com-
munication time, so various algorithms are used to reduce the calculation time, such as
using graphics processing unit (GPU) accelerators and connecting many GPUs. However,
in federated learning, communication takes more time than calculation. Thus, network
communication time should be reduced to improve the efficiency of federated learning.
Because of unstable network environment problems, federated learning requires environ-
mental conditions such as Wi-Fi connections and connected chargers [4]. Therefore, to
reduce the communication cost of federated learning, it is necessary to improve network
transmission speed and solve problems with unstable network environments.

Most of the models using federated learning use the global model federated averaging
(FedAvg) [5]. The current study aims to increase the model update speed by applying
Particle Swarm Optimization (PSO), which is an algorithm that obtains an optimal solution
in a distributed environment [6,7]. PSO requires many repetitions because it obtains the
optimal solution through a stochastic approach, which is in line with learning through many
repetitions of ML. The PSO is well suited to dynamic and heterogeneous environments
such as federated learning. Thus, we propose a new ANN model by applying the PSO to
federated learning.

1. To the best of our knowledge, this paper is the first paper focused on reducing network
communication costs by applying PSO in the communication process of federated
learning. We propose a new model, federated PSO (FedPSO), that collects scores such
as accuracy and loss rather than weights for global model updates.

2. We evaluate FedPSO for network communication cost and accuracy. In experimental
results, the network communication cost of FedPSO was less than that of existing
models, and FedPSO had an average accuracy improvement of 9.47%.

3. We evaluated FedPSO in an unstable network environment. In experimental results, the
proposed FedPSO showed a 4% improvement in loss of accuracy over existing algorithms.

The rest of the paper is structured as follows. Section 2 reviews previous studies that
use federated learning and PSO. Section 3 describes the process of transmitting the model
learned from the client to the server through the proposed algorithm. The evaluation of
our proposed technique is presented in Section 4, before finally concluding the paper in
Section 5.

2. Background and Related Work
2.1. Federated Learning

Federated learning is a learning method proposed by Konecný et al. [3,4] for dis-
tributed datasets. It trains a model using datasets distributed across various devices while
preventing data leakage. Federated learning is advantageous in that it improves privacy
and reduces communication costs. Through federated learning, ANN models can learn
without breaches of data or personal information. In addition, transferring all the data



Sensors 2021, 21, 600 3 of 13

from numerous devices to a central server increases network traffic and storage costs.
Federated learning significantly reduces communication costs by exchanging only the
weights obtained from training the models.

Figure 1 outlines the federated learning process.

1. The server sends the learning model to each client.
2. The received models are trained on client data.
3. Each client sends its trained model to the server.
4. The server processes the collected models and aggregates them into a single

updated model.
5. The server sends updated models to each client, and steps 1 to 5 are repeated.

Figure 1. Federated Learning Protocol.

Many federated learning studies use algorithms such as federated stochastic gradient
descent (SGD: Stochastic Gradient Descent; iterative method for optimizing an objective
function.) (FedSGD) and federated averaging (FedAvg) to implement the fourth step in
Figure 1. The algorithm was proposed by McMahan [5] and is used in several federated
learning studies to update models collected on servers. Both algorithms obtain the pa-
rameters of the global model by obtaining the average values of the parameters collected
from each client. FedSGD does not update the weights on the client but instead obtains
the weights at the server. In this algorithm, the gradient is sent to the server to calculate
the average, and the global weights are updated to create a global model. FedAvg is an
algorithm that uses a combination of FedSGD and mini-batches to update models directly
on the client, and the server averages the weights to create a new global model.

Federated learning assumes a distributed mobile device environment. Mobile devices
have the disadvantage of having to learn in a wireless network environment, rather than a
stable wired network connection. If the network is unstable, the client involved in learning
may lose its connection or the client may not be able to send the complete dataset when
sending the trained model.

2.2. Particle Swarm Optimization

PSO, the most well-known metaheuristic global optimization algorithm, was devel-
oped by Kennedy and Eberhart in 1995 [6,7]. The algorithm optimizes a number of variables
at once with algorithms inspired by bird and fish swarms in nature. The PSO algorithm
has advantages in memory requirements and speed that result from its easy implemen-
tation, scalability, robustness, quick convergence, and simple mathematical operations.
The algorithm uses a probabilistic approach that requires a large number of iterations
for optimization.



Sensors 2021, 21, 600 4 of 13

PSO components can be divided into the swarm and particles. A swarm consists
of a set of particles. Each particle represents a possible solution to the problem. Each
particle has a position and speed V for the next step. To find the global optimal value,
particles communicate with each other step by step and share their own pbest (particle
best) variable. Each particle sets the gbest (global best) variable to the optimal value of
the shared pbest values: gbest = maxi(pbest). Each particle calculates the inertia (Vt−1, the
speed of previous step), pbest, and gbest values using Equation (1) below to obtain the
speed to move on to the next step.

Vt
i = α ·Vt−1

i + c1 · rand1 · (pbest−Vt−1
i ) + c2 · rand2 · (gbest−Vt−1

i ) (1)

In Equation (1), α is a constant representing the inertia weight, c1 is the acceleration
constant for the pbest, and c2 is the acceleration constant for gbest. The values of rand1 and
rand2 are any random value between 0 and 1.

2.3. Related Work

There are many studies on communication between clients to improve federated
learning performance. Federated learning has many problems arising from the unstable
network environment of mobile devices, such as frequent node crashes, frequently shifting
node groups, high central server overhead, and increased latency as the number of nodes
increases. In addition, multi-layer models have been used to improve learning accuracy,
but as the layers deepen, the number of weights for the nodes increases. Data size is a
limitation for federated learning because it increases the size of the network transmission
between the server and the client.

Recently, various studies have addressed this problem. To improve the network
performance of federated learning, research has been conducted on low rank and random
mask [4] and temporal weights [8]. However, these studies may reduce accuracy in unstable
network environments.

The traditional federated learning model also has security threats. Federated learning
models often send all the model weights to the server. Zhu et al. [9] showed that sending
all the weights is potentially dangerous because confidential data can be extracted from
reverse computation of the model weights transmitted over the network. Therefore, we
focused on minimizing the collection of weights on the server.

Meanwhile, studies on the use of PSO algorithms in distributed environments are
steadily progressing. Particles obtain the global optimal value at the same time. Studies
have examined dynamic multi-swarm PSO (DMS-PSO) for preventing falling into local min-
ima [10–12], PSO for neighbor selection in peer-to-peer (P2P) network environments [13],
and gossip-based PSO for maintaining flexible P2P networks [14]. In addition, many studies
enable PSO to be used in various distributed environments [15,16].

PSO has been applied to ML as well as research for performance improvement,
such as a PSO convolutional neural network (PSO-CNN), which uses a PSO to classify
images [17,18], linearly decreasing weight PSO (LDW-PSO) for convolutional neural net-
work (CNN) hyperparameter optimization [19], and PSO and CNNs for lung nodule
analysis [20]. Self-adapted particle swarm estimation of distribution algorithms (sa-PSEDA)
apply PSO for optimization-driven prediction (ODP), a new classification method for
automatic medical diagnosis and prognosis prediction [21]. Another paper used PSO en-
hanced with ANNs to solve complex problems in civil engineering [22]. A study used a
deep learning neural network with PSO for gully erosion susceptibility [23]. In addition,
a study applied PSO to improve the learning performance of federated learning clients
by finding optimized hyperparameters [24]. As such, PSO has been steadily applied to
various methods such as updating ML model weights or tuning hyperparameters.

Most of the previous papers focus on communication between clients and global
optimization to improve the performance of federated learning. However, there has never
been a study to maintain robustness to data transmission failures in the unstable network
environment of federated learning. In addition, there have been attempts to apply PSO



Sensors 2021, 21, 600 5 of 13

in various ways to federated learning, but PSO have never been used to improve the
performance of global models through network communication performance improvement.
We focus on improving the performance of federated learning by changing the form of
data used in communication between servers and clients in a global model update method
based on PSO.

3. FedPSO: Federated Particle Swarm Optimizing

A general approach to improving the accuracy of ANN models is to deepen the layers
of the model. This is called a deep neural network. As the layers become deeper, the
number of weight parameters that require training increases. In the universal federated
learning (as shown in Figure 2), when the model trained on the client is sent to the server,
the network communication cost increases considerably. Therefore, we propose the FedPSO
algorithm, which sends the best score (such as accuracy or loss) to the server by utilizing
PSO characteristics to transmit the trained model, regardless of size.

Before explaining the proposed FedPSO, we will analyze the algorithm used in the
previous work on federated learning (such as FedAvg [5]). The process of Algorithm 1 used
in federated learning is as follows. The client participating in the round is selected through
Line 4. The process of receiving the weight values learned from the client is accomplished
through Lines 5 and 6. When the weight collection is completed, the average of the weights
collected through Line 7 is calculated, and then the global weights are calculated. The client
receives the global weights from the server and learns the data through Lines 8–10.

Figure 2. The weighted aggregation process of Federated Learning (such as FedAvg) obtains the
average of the wt value received from the client of K from the server and sends the updated wt + 1
back to the client.



Sensors 2021, 21, 600 6 of 13

Algorithm 1 FederatedAveraging (FedAvg) algorithm (simplified from [5]); K = number of
clients; E = client total epochs; Select client by the C ratio.

1: function SERVEREXECUTES
2: initialize w0
3: for each round t = 1, 2, . . . do
4: St ← (random set of max(C · K, 1) clients)
5: for each client k ∈ St in parallel do
6: wk

t+1 ← ClientUpdate(k, wt)

7: wt+1 ← (averaging of the collected weights wk
t+1 of St clients)

8: function CLIENT UPDATE(k, w)
9: Perform learning process on client k with weight w until the client reaches E epoch

10: w← updated weight after learning
11: return w to server

Next, the proposed model, FedPSO, receives the model weights only for the client that
provided the best score so that the model weights do not need to be transmitted from all
clients. The process is shown in Figure 3. The best score uses the lowest loss value derived
after training on the client. This loss value is only 4 bytes. FedPSO identifies the best model
through pbest and gbest variables and updates using the value of V for each weighted
array element of the best model.

Figure 3. The weight update process of FedPSO; the server receives a client’s score and requests a learning model from the
client who submits the optimal value to set it as a global model.

As the ANN weight values were updated in Equation (1), we can represent the weight
update those for FedPSO as follows:

Vt
l =α ·Vt−1

l + c1 · rand1 · (pbest−Vt−1
l ) + c2 · rand2 · (gbest−Vt−1

l )

wt
i =wt−1

i + Vt
(2)



Sensors 2021, 21, 600 7 of 13

In Equation (2), V in ANN has a value for each layer of weight w. The current step
weight wt is obtained by adding V to the previous step weight wt−1. As in Equation (1), α
is a constant representing the inertia weight, c1 is the acceleration constant for pbest, and c2
is the acceleration constant for gbest. The values of rand1 and rand2 are any random value
between 0 and 1.

Based on the weight update equation (Equation (2)), we present the conceptual al-
gorithm of FedPSO in Algorithm 2. The algorithm is extended based on Algorithm 1
applying PSO. Unlike conventional algorithms, Function ServerExecutes receives only pbest
values, without receiving w from the client on Line 5. The task of finding the client with
the minimum pbest value among those collected is executed through Lines 6–8. Function
ClientUpdate proceeds the ANN applying the PSO. Lines 13–14 calculate Variable V used
in the previous step, the optimal value of wpbest stored by the user, and the wgbest value
received to the server. This process is carried out for each layer weight. Then, Variable V is
added to the w from the previous round to calculate the w to be used in the current round
through Line 15. After that, repeat the training through Lines 16–18 as many times as the
client epoch E. Function GetBestModel is a function that requests the model from the client
with the best score on the server (Lines 20–23).

Algorithm 2 FedPSO

1: function SERVEREXECUTES
2: initialize w0, pbest, gbest, gid
3: for each round t = 1, 2, . . . do
4: for each client k in parallel do
5: pbest← ClientUpdate(k, wgid

t )
6: if gbest > pbest then
7: gbest← pbest
8: gid← k

9: wt+1 ← GetBestModel(gid)

10: function CLIENTUPDATE(k, wgid
t )

11: initialize V, w, wpbest, α, c1, c2
12: β← (split ρk into batches of size B)
13: for each weight layer l = 1, 2, . . . do
14: Vl ← α ·Vl + c1 · rand · (wpbest −Vl) + c2 · rand · (wgbest

t −Vl)

15: w← w + V
16: for each client epoch i from 1 to E do
17: for batch b ∈ B do
18: w← w− η∇l(w; b)

19: return pbest to server

20: function GETBESTMODEL(gid)
21: request to Client(gid)
22: receive w from Client
23: return w to server

4. Experiments

To evaluate the effectiveness of FedPSO, we conducted experiments to determine the
accuracy and convergence speed and experiments in an unstable network environment. In
the first experiment, we wanted to determine whether the model had sufficient accuracy
and convergence speed, given its smaller amount of network communication than FedAvg.
We used the Canadian Institute for Advanced Research (CIFAR-10) and Modified National



Sensors 2021, 21, 600 8 of 13

Institute of Standards and Technology (MNIST) datasets for the accuracy benchmarks of
the two algorithms and reviewed the cost of data communication between clients and
servers. In the second experiment, we investigated the accuracy of FedPSO and FedAvg
under various network environments.

4.1. Experimental Setup

We conducted the experiments on a server (desktop computer) with an AMD Ryzen
3950x CPU, two NVIDIA GeForce RTX 2070 Super GPUs with 8 GB DRAM each, and
64 GB memory. Our experimental code was written using TensorFlow version 2.3.0 and
Keras version 2.4.3. The code is available in the FedPSO GitHub (FedPSO GitHub; https:
//github.com/tjdghks994/FedPSO).

The study was proposed to improve the network communication performance of
federated learning. Thus, we updated the weights of the distributed model using the
PSO and changed the form of the data sent by the client to the server. The CNN model
produced high accuracy but was not used because it was complicated. Therefore, we
conducted experiments using a two-layer CNN model (the first with 32 channels, the
second with 64, each followed by 2 × 2 max pooling), the same as FedAvg [5]. The layers of
the corresponding model are shown in Table 1.

Table 1. Parameters settings for the CNN.

Layer Shape

Conv2D 5 × 5 × 32
Conv2D 32
Conv2D 5 × 5 × 64
Conv2D 64
Dense 1024 × 512
Dense 512
Dense 512 × 10
Dense 10

The experiment was conducted using the CIFAR-10 and MNIST dataset. CIFAR-10
is a dataset frequently used for image classification. It consists of 32 × 32-pixel images
from 10 classes such as airplane, automobile, and cat, and it has 50,000 training images and
10,000 test images. MNIST is another computer vision dataset used for image classification
and verification. It consists of handwritten 28 × 28-pixel images of numbers, and it has
60,000 training images and 10,000 test images. Both datasets were shuffled, assigned to
particle numbers, and distributed to each particle to proceed with training.

The separate tuning process to improve accuracy during the training process was not
used except for the dropout layer. Both FedPSO and FedAvg used SGD methods for client
training, and the learning rate value was 0.0025. The hyperparameter value used in the
paper is also shown in Table 2.

Table 2. The constant of our proposed model.

FedAvg FedPSO

Client 10 10
C 0.1, 0.2, 0.5, 1.0 -

Epoch 30 30
Client-epoch 5 5

Batch 10 10
α - 0.3
c1 - 0.7
c2 - 1.4

https://github.com/tjdghks994/FedPSO
https://github.com/tjdghks994/FedPSO


Sensors 2021, 21, 600 9 of 13

4.2. Experimental Result for Accuracy

The accuracy experimental results with the CIFAR-10 dataset are presented in Figure 4
and Table 3. All of these graphs were based on test accuracy. FedPSO produced a higher
accuracy (70.12%) than FedAvg in all cases at 30 epochs, and it was more accurate from
an early epoch. The highest accuracy of FedAvg was 67.14% at C = 1.0. C is a constant
between 0 and 1 that restricts the number of clients to be used for training in FedAvg. In
each communication round, the experiment was conducted by selecting a client as high as
C from all the clients. The higher the value of C in Figures 4 and 5, the higher the accuracy,
but the amount of data transmitted between the server and client increases accordingly. At
C = 0.5, which has similar data transfer costs, the difference in accuracy is greater (65.00%
for FedPSO).

Figure 4. Accuracy comparison of several algorithm.

Figure 5. Communication Cost comparison of several algorithm.



Sensors 2021, 21, 600 10 of 13

Table 3. Test Accuracy.

Test Accuracy.

FedPSO 70.12%
FedAvg, C = 1.0 67.14%

C = 0.5 65.00%
C = 0.2 59.07%
C = 0.1 51.39%

The accuracy experimental results with the MNIST dataset are presented in Figure 6
and Table 4. The MNIST dataset results in good performance even in a model with a small
number of layers. Therefore, even if the size of the model was not sufficient, such as MNIST,
there was no significant difference between FedPSO and FedAvg. As shown in Figure 6 and
Table 4, the difference in accuracy between the two algorithms is negligible, approximately
0.1%. However, in the case of FedPSO, convergence occurs in fewer epochs.

Figure 6. Comparison of learning accuracy using MNIST.

Table 4. Test Accuracy.

10 Epochs 20 Epochs 30 Epochs

FedPSO 98.10% 98.23% 98.55%
FedAvg, C = 1.0 98.58% 98.61% 98.65%

C = 0.5 98.31% 98.46% 98.61%
C = 0.2 97.95% 98.22% 98.07%
C = 0.1 96.83% 97.47% 97.80%

4.3. Experimental Result for Unstable Network Environment

Next, we emulated an unstable network environment. Data transmitted from client to
server were dropped randomly in each communication round. To confirm the difference in
accuracy between the two algorithms in this environment, data were dropped in the ranges
of up to 0%, 10%, 20%, and 50%. Finally, for the validity of the experiment, all experiments
were conducted through the average value after 10 experiments. Figure 7 shows the result
of randomly dropping data for FedAvg when C = 1.0. FedAvg shows an average decline in



Sensors 2021, 21, 600 11 of 13

accuracy of 6.43% caused by the random data drops. Figure 8 shows the results for FedPSO,
which experienced an average accuracy decrease of 2.43%. Detailed accuracy results are
given in Table 5. In the experiment testing the model in an unstable network environment
in which the data cannot be transmitted completely, FedPSO’s accuracy reduction better
than FedAvg by 4%.

Figure 7. Comparison of FedAvg (C = 1.0) test accuracy in unstable network conditions.

Figure 8. Comparison of FedPSO test accuracy in unstable network conditions.



Sensors 2021, 21, 600 12 of 13

Table 5. Difference in accuracy according to the probability of communication failure.

Failure Rate 0% 10% 20% 50%

FedPSO 70.12% 69.18% 68.41% 65.47%
FedAvg, C = 1.0 67.14% 61.48% 61.09% 59.55%

5. Conclusions

This study proposed a particle swarm optimization-based FedPSO algorithm to im-
prove the network communication performance of federated learning and reduce the size
of data sent from clients to servers. The proposed algorithm aggregates the model trained
on the server by sharing the score value. The client with the best score provides the trained
model to the server. The proposed algorithm was trained on the CIFAR-10 datasets through
a two-layer CNN. On average, it produced an accuracy improvement of 9.47% over FedAvg
and an accuracy improvement of 5.12% in experiments when communication costs were
similar. When the same number of clients were used for training, the accuracy improved
by 2.98%, even when the network communication cost was greatly reduced to the 55%
level. The results showed that FedPSO can perform federated learning even in situations in
which network communication is unstable and it is difficult to send large amounts of data
to servers. In addition, when communication data are randomly dropped, FedPSO is on
average 4% more robust than FedAvg. However, in a model that does not require a deep
layer, such as MNIST, there was no significant difference between the two algorithms.

In the future, we plan to apply diverse forms of PSO to improve network communica-
tion performance. For example, we will study how to reduce the probability of falling into
local minima by using dynamic multi-swarm PSO and allow client P2P communication
using P2P-PSO. For further network communication efficiency with frequent client drops
and limited network bandwidth, we plan to apply diverse network protocols such as the
gossip protocol [14]. Moreover, as described above, when the ANN layer increases, the
size of the model increases proportionally. Therefore, we plan to experimentally verify the
results that can be displayed for each layer size in a model using deeper layers in the future.

Author Contributions: Conceptualization, S.P.; Project administration, S.P.; Software, S.P.; Supervi-
sion, J.L.; Validation, J.L.; Visualization, S.P.; Writing–original draft, S.P. and Y.S.; Writing–review &
editing, S.P., Y.S. and J.L. manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: FedPSO GitHub.

Acknowledgments: This research was supported in part by the MSIT(Ministry of Science and ICT),
Korea, under the ITRC(Information Technology Research Center) support program(IITP-2020-2018-0-
01799) supervised by the IITP(Institute for Information & communications Technology Planning &
Evaluation; This work was also supported in part by the National Research Foundation of Korea(NRF)
grant funded by the Korea government (MSIT) (No. 2018R1C1B5083050).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, C.; Patras, P.; Haddadi, H. Deep Learning in Mobile and Wireless Networking: A Survey. IEEE Commun. Surv. Tutor. 2019,

21, 2224–2287. [CrossRef]
2. Hard, A.; Rao, K.; Mathews, R.; Ramaswamy, S.; Beaufays, F.; Augenstein, S.; Eichner, H.; Kiddon, C.; Ramage, D. Federated

Learning for Mobile Keyboard Prediction. arXiv 2019, arXiv:1811.03604.
3. Konečný, J.; McMahan, H.B.; Ramage, D. Federated Optimization: Distributed Optimization Beyond the Datacenter. arXiv 2015,

arXiv:1511.03575.

https://github.com/tjdghks994/FedPSO
http://doi.org/10.1109/COMST.2019.2904897


Sensors 2021, 21, 600 13 of 13

4. Konečný, J.; McMahan, H.B.; Yu, F.X.; Richtarik, P.; Suresh, A.T.; Bacon, D. Federated Learning: Strategies for Improving
Communication Efficiency. In Proceedings of the NIPS Workshop on Private Multi-Party Machine Learning, Barcelona, Spain,
9 December 2017.

5. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-Efficient Learning of Deep Networks from
Decentralized Data. In Artificial Intelligence and Statistics; Singh, A., Zhu, J., Eds.; PMLR: Fort Lauderdale, FL, USA, 2017;
Volume 54, pp. 1273–1282.

6. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS’95—Sixth International
Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [CrossRef]

7. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]

8. Chen, Y.; Sun, X.; Jin, Y. Communication-Efficient Federated Deep Learning With Layerwise Asynchronous Model Update and
Temporally Weighted Aggregation. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 4229–4238. [CrossRef] [PubMed]

9. Zhu, L.; Liu, Z.; Han, S. Deep Leakage from Gradients. In Advances in Neural Information Processing Systems; Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019;
Volume 32, pp. 14774–14784.

10. Zhao, S.Z.; Liang, J.J.; Suganthan, P.N.; Tasgetiren, M.F. Dynamic multi-swarm particle swarm optimizer with local search for
Large Scale Global Optimization. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress
on Computational Intelligence), Hong Kong, China, 1–6 June 2008; pp. 3845–3852. [CrossRef]

11. Zhao, S.; Suganthan, P.N.; Das, S. Dynamic multi-swarm particle swarm optimizer with sub-regional harmony search. In
Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18–23 July 2010; pp. 1–8. [CrossRef]

12. Xu, X.; Tang, Y.; Li, J.; Hua, C.; Guan, X. Dynamic multi-swarm particle swarm optimizer with cooperative learning strategy.
Appl. Soft Comput. 2015, 29, 169–183. [CrossRef]

13. Sun, S.; Abraham, A.; Zhang, G.; Liu, H. A Particle Swarm Optimization Algorithm for Neighbor Selection in Peer-to-Peer
Networks. In Proceedings of the 6th International Conference on Computer Information Systems and Industrial Management
Applications (CISIM’07), Elk, Poland, 28–30 June 2007; pp. 166–172. [CrossRef]

14. Biazzini, M. A Flexible P2P Gossip-based PSO Algorithm. In Proceedings of the ICN 2014, The Thirteenth International
Conference on Networks, Nice, France, 23–27 February 2014; pp. 81–85.

15. Sahu, A.; Panigrahi, S.K.; Pattnaik, S. Fast Convergence Particle Swarm Optimization for Functions Optimization. Procedia Technol.
2012, 4, 319–324. [CrossRef]

16. Wang, B.; Sun, Y.; Xue, B.; Zhang, M. A Hybrid GA-PSO Method for Evolving Architecture and Short Connections of Deep
Convolutional Neural Networks. In PRICAI 2019: Trends in Artificial Intelligence; Nayak, A.C., Sharma, A., Eds.; Springer
International Publishing: Cham, Switzerland, 2019; pp. 650–663.

17. Rachmad Syulistyo, A.; Purnomo, D.; Rachmadi, M.; Wibowo, A. Particle Swarm Optimization (PSO) for Training Optimization
on Convolutional Neural Network (CNN). J. Ilmu Komput. Dan Inf. 2016, 9, 52. [CrossRef]

18. Fernandes Junior, F.E.; Yen, G.G. Particle swarm optimization of deep neural networks architectures for image classification.
Swarm Evol. Comput. 2019, 49, 62–74. [CrossRef]

19. Serizawa, T.; Fujita, H. Optimization of Convolutional Neural Network Using the Linearly Decreasing Weight Particle Swarm
Optimization. arXiv 2020, arXiv:2001.05670.

20. da Silva, G.L.F.; Valente, T.L.A.; Silva, A.C.; de Paiva, A.C.; Gattass, M. Convolutional neural network-based PSO for lung nodule
false positive reduction on CT images. Comput. Methods Progr. Biomed. 2018, 162, 109–118. [CrossRef] [PubMed]

21. Santucci, V.; Milani, A.; Caraffini, F. An Optimisation-Driven Prediction Method for Automated Diagnosis and Prognosis.
Mathematics 2019, 7, 1051. [CrossRef]

22. Wang, B.; Moayedi, H.; Nguyen, H.; Foong, L.K.; Rashid, A.S.A. Feasibility of a novel predictive technique based on artificial
neural network optimized with particle swarm optimization estimating pullout bearing capacity of helical piles. Eng. Comput.
2020, 36, 1315–1324. [CrossRef]

23. Band, S.S.; Janizadeh, S.; Chandra Pal, S.; Saha, A.; Chakrabortty, R.; Shokri, M.; Mosavi, A. Novel Ensemble Approach of Deep
Learning Neural Network (DLNN) Model and Particle Swarm Optimization (PSO) Algorithm for Prediction of Gully Erosion
Susceptibility. Sensors 2020, 20, 5609. [CrossRef] [PubMed]

24. Qolomany, B.; Ahmad, K.; Al-Fuqaha, A.; Qadir, J. Particle Swarm Optimized Federated Learning For Industrial IoT and Smart
City Services. arXiv 2020, arXiv:2009.02560.

http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/TNNLS.2019.2953131
http://www.ncbi.nlm.nih.gov/pubmed/31899435
http://dx.doi.org/10.1109/CEC.2008.4631320
http://dx.doi.org/10.1109/CEC.2010.5586323
http://dx.doi.org/10.1016/j.asoc.2014.12.026
http://dx.doi.org/10.1109/CISIM.2007.6
http://dx.doi.org/10.1016/j.protcy.2012.05.048
http://dx.doi.org/10.21609/jiki.v9i1.366
http://dx.doi.org/10.1016/j.swevo.2019.05.010
http://dx.doi.org/10.1016/j.cmpb.2018.05.006
http://www.ncbi.nlm.nih.gov/pubmed/29903476
http://dx.doi.org/10.3390/math7111051
http://dx.doi.org/10.1007/s00366-019-00764-7
http://dx.doi.org/10.3390/s20195609
http://www.ncbi.nlm.nih.gov/pubmed/33008132

	Introduction
	Background and Related Work
	Federated Learning
	Particle Swarm Optimization
	Related Work

	FedPSO: Federated Particle Swarm Optimizing
	Experiments
	Experimental Setup
	Experimental Result for Accuracy
	Experimental Result for Unstable Network Environment

	Conclusions
	References

