
sensors

Article

Epidemic Analysis of Wireless Rechargeable Sensor Networks
Based on an Attack–Defense Game Model

Guiyun Liu 1 , Baihao Peng 2,* and Xiaojing Zhong 1

����������
�������

Citation: Liu, G.; Peng, B.; Zhong, X.

Epidemic Analysis of Wireless

Rechargeable Sensor Networks Based

on an Attack–Defense Game Model.

Sensors 2021, 21, 594.

https://doi.org/10.3390/s21020594

Received: 21 December 2020

Accepted: 12 January 2021

Published: 15 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou 510006, China;
liugy@gzhu.edu.cn (G.L.); zhongxj@gzhu.edu.cn (X.Z.)

2 School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China
* Correspondence: 2111807063@e.gzhu.edu.cn

Abstract: Energy constraint hinders the popularization and development of wireless sensor networks
(WSNs). As an emerging technology equipped with rechargeable batteries, wireless rechargeable
sensor networks (WRSNs) are being widely accepted and recognized. In this paper, we research
the security issues in WRSNs which need to be addressed urgently. After considering the charging
process, the activating anti-malware program process, and the launching malicious attack process
in the modeling, the susceptible–infected–anti-malware–low-energy–susceptible (SIALS) model is
proposed. Through the method of epidemic dynamics, this paper analyzes the local and global
stabilities of the SIALS model. Besides, this paper introduces a five-tuple attack–defense game model
to further study the dynamic relationship between malware and WRSNs. By introducing a cost
function and constructing a Hamiltonian function, the optimal strategies for malware and WRSNs
are obtained based on the Pontryagin Maximum Principle. Furthermore, the simulation results show
the validation of the proposed theories and reveal the influence of parameters on the infection. In
detail, the Forward–Backward Sweep method is applied to solve the issues of convergence of co-state
variables at terminal moment.

Keywords: wireless rechargeable sensor network; cyber security; stability analysis; optimal control

1. Introduction

Wireless sensor networks (WSNs) are the research hotspot worldwide over the last few
years [1–3]. Sensor nodes which serve the function of data storing and data transmitting
capacities form WSNs in the way of multi-hop or single-hop, as depicted in Figure 1. To
monitor the physical parameters, such as temperature, humidity, pressure, etc., sensor
nodes are randomly deployed in unattended areas. WSNs have widespread applications
which are ranging from everyday life to various manufacturing industries [4]. However,
due to the vulnerability of the sensor nodes and battery capacity limitations, the issues of
security [5] and short lifespan [6] of WSNs are urgent to be tackled.

Focusing on optimizing energy utilization, scholars have proposed efficient schemes.
However, comparing with the optimizing strategies, the operation of deploying recharge-
able batteries can figure out the energy problem radically. Networks which are composed of
rechargeable sensor nodes are named as wireless rechargeable sensor networks (WRSNs).
Research hotspots on WRSNs mainly focus on solving the problems of both charging
scheduling and system performance optimizations [7–9] in recent years. However, se-
curity issues in WRSNs are seldom attracting the attention of scholars. Malware, as a
self-replicating malicious code, can lead to network interruption and paralysis once it
propagates in the networks. Even worse, rechargeable sensor nodes also suffer from the
Denial of Charge (DOC) attacks [10]. Such attacks will cause catastrophic consequence to
real-time and pre-warning application fields [11]. Thus, it is urgent to study the security of
WRSNs based on the rechargeable characteristics.
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For the past few years, some scholars have made contributions to security issues of
WRSNs based on the characteristics of information transmission. Recent relevant studies
are listed in Table 1.

Figure 1. Communication architecture of wireless sensor networks.

Table 1. Research on WRSN security.

Authors Problems Methods Results

A.N. Nguyen et al.
[12] Securing the physical layer Time-switching power-splitting

(TSPS) mechanism

The secrecy performance under
TSPS is higher than the

traditional scheme

J. Jung et al. [13]
Excessive energy consumption in
the forward error correction(FEC)

method
Energy-aware FEC method

The developed method
performs better than the former

one.

V.N. Vo et al. [14]

Securing energy harvesting
wireless sensor

networks(EH-WSNs) under
eavesdropping and signal

interception

An optimization scheme that uses a
wirelessly powered friendly jammer The hypotheses are supported.

A. EI Shafie et al.
[15]

Securing a single-antenna
rechargeable source node in the

presence of a multi-antenna
rechargeable cooperative jammer

and a potential single-antenna
eavesdropper

An efficient scheme which can
optimize the transmission times of

the source node

The average secrecy rate gain of
the scheme is demonstrated

significantly

B. Bhushan et al.
[16]

Securing the mobile sinks
position information

Energy Efficient Secured Ring
Routing (E2SR2) protocol

E2SR2 achieves improved
performance than the existing

protocols

S. Lim et al. [17] Securing EH-WSNs under the
Denial-of-Service (DoS) attacks

Hop-by-hop Cooperative Detection
(HCD) scheme

HCD scheme can significantly
reduce the number of

forwarding misbehaviors and
achieve higher packet delivery

ratio

K J.S.R. Kommuru
et al. [18]

Balancing the trade-off between
improving security and reducing

energy consumption

Low complexity XOR technique
and Hybrid LEACH-PSO algorithm

The proposed approach
performs better than the

existing approaches.

A. DI Mauro et al.
[19]

Securing the communications
under energy constraints

Adaptive approach which allows
nodes to dynamically choose the

most appropriate parameters

Adaptive solution performs
better
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Table 1. Cont.

Authors Problems Methods Results

X. Hu et al. [20] Securing the up-link (UL)
transmission

Establishing the communication
model; deriving the energy outage

probabilities (EOP), connection
outage probabilities (COP) and

secrecy outage probabilities (SOP)
through comprehensive analysis

The theoretical derivations are
verified

O. Bouachir et al.
[21]

Securing the transmission
between sensor nodes and base

stations

A novel strategy to select cluster
heads and implement the

non-orthogonal multiple access
(NOMA) technique in the

transmission

The secrecy performance can be
improved

Due to the high similarity between infection mechanism of diseases in the population
and the propagation mechanism of malware in WSNs, epidemic dynamics has also been
widely used in the research of WSN security issues. In general, the applications of epidemic
dynamics in WSNs mainly focus on the stability analysis of the built model. Recent relevant
studies are listed in Table 2.

Table 2. Research on stability of epidemic model in WSNs.

Authors Characteristics Model Stability

S.Y. Huang et al. [22] Heterogeneity Susceptible-Infected-Quarantined-
Recovered-Susceptible (SIQRS) 1

P.K. Srivastava et al. [23] Anti-malware process Susceptible-Exposed-Infectious-
Antimalware-Recovered (SEIAR) 2

L.H. Zhu et al. [24] Time delay Susceptible-Believed-Denied (SBD) 2

G.Y. Liu et al. [25] Low-energy Susceptible-Infected-Low-energy-
Susceptible(SILS) 1

S. Hosseini et al. [26]
User awareness, network delay

and diverse configuration of
nodes

Susceptible–Exposed–Infected–Recovered-
Susceptible with Vaccination and Quarantine

state
2

R.P. Ojha et al. [27] Quarantine and vaccination
techniques

Susceptible–Exposed–Infectious–
Quarantined–Recovered–Vaccinated

(SEIQRV)
2

D.W. Huang et al. [28] Patch injection mechanism Susceptible–Infected–Patched–Susceptible
(SIPS) 3

L.H. Zhu et al. [29] Time delay in homogeneous and
heterogeneous networks

Ignorants–Spreaders1–Spreaders2–Stiflers1–
Stiflers2
(I2S2R)

1

J.D. Hernández Guillén et al.
[30] Carrier state

Susceptible–Carrier–Infectious–Recovered–
Susceptible

(SCIRS)
1

S.G. Shen et al. [31] Heterogeneity and Mobility
Vulnerable–Compromised–Quarantined–

Patched–Scrapped
(VCQPS)

2

1: Local and global stability in malware-free and epidemic points; 2: Local and global stability in malware/rumor/worm-free point;
3: local and global stability in epidemic point.

Although the above models consider the characteristics of WSNs from various aspects,
they do not analyze and model the networks based on the energy level. Besides, to our
knowledge, the studies combining epidemic dynamics with WRSNs are very few. Therefore,
this paper divides sensor nodes in WRSNs according to the residual energy and infection
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of sensor nodes and introduces the charging process. Differential games are also widely
used in WSNs as a method of studying optimal dynamic strategies. Recent relevant studies
are listed in Table 3.

Table 3. Research on differential game applied in WSNs.

Authors Players Goal Strategies

S. Eshghi et al. [32] Malware and mobile WSNs Leverage the heterogeneity of
malware propagation Optimal patching policies

M.H.R. Khouzani
et al. [33] Malware and Mobile WSNs

Attain desired tradeoffs between
security risks and bandwidth

consumption

Optimal control in activating
dispatchers and selecting their

transmission rate

L.T. Zhang, et al.
[34]

Malware and device to Device
(D2D) offloading-enabled mobile

network

Understand the malware
propagation process in D2D

offloading-enabled mobile network

Optimal dynamic defense and
attack strategies

H. Al-Tous et al.
[35]

An energy-harvesting multi-hop
WSN

Balance the normalized buffer
states of all sensor nodes and

minimize the amount of energy
used for data transmission.

An online power control and
data scheduling algorithm

Y.H. Huang et al.
[36] Virus and sensor nodes Mitigate virus spreading Virus-resistant weight

adaptation policies

Y. Sun et al. [37] Edge nodes (ENs)

Realize the balance between reward
and energy consumption cost of

ENs in the deployment of defense
measures

Optimal defense strategy

S.G. Shen et al. [38] malware and WSNs Limit malware in WSNs Optimal dynamic strategies for
the system and malware

J.H. Hu et al. [39] A healthcare-based wireless
sensor network (HWSN) Minimize the transmission cost Optimal data transmission

strategies

S. Sarkar et al. [40] Multi-hop wireless networks Optimize network throughput Optimal routing and scheduling
policies

Based on the previous works [41] and inspired by [23], this paper proposes an epidemic
model that includes the anti-malware (A) state, constructs game between malware and
WRSNs, and obtains the optimal control strategies for both parties.

In the research on the security of WRSNs, few scholars analyze the issues by applying
the relevant knowledge of epidemic dynamics. By establishing the dynamic differential
equations of the propagation of malware in WRSNs, both the propagation mechanism of
malware and the defense mechanism of WRSNs can be dynamically understood so as to
provide novel thoughts and directions for resisting the invasion of malware.

In this paper, a susceptible infected anti-malware low-energy susceptible (SIALS)
model is proposed by considering the charging process and the process of activating of
the anti-malware program.The SIALS model can not only reflect the infection in WRSNs
but also reveal the trend of the residual energy of the sensor nodes. At the same time, to
describe the attack modes of malware, this paper considers the hardware attacks launched
by malware and charging process compromised with malware.

Additionally, through the theory of stability analysis, the local and global stabilities of
the disease-free equilibrium point and the epidemic equilibrium point of SIALS model are
proved. Furthermore, this paper analyzes the game composed of malware and WRSNs by
applying the Pontryagin Maximum Principle and obtains the optimal control strategies.
Consequently, this work enriches the application of epidemic dynamics and differential
games in addressing the security issues on WRSNs.

The rest of the paper is organized as follows. The introduction of the modeling of
SIALS is presented in Section 2. Theorems of the local and global stability and the optimal
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strategies are proved in Section 3. The simulation results are shown in Section 4. The
conclusions are drawn in Section 5.

2. Modeling
2.1. Dynamic Equation

In this paper, WRSNs consist of homogeneous rechargeable nodes which are randomly
distributed. Meanwhile, the number of nodes increase at rate Λ, where Λ is greater
than 0. Suppose that nodes in the networks belong to one of six possible compartment:
susceptible (S), infected (I), anti-malware (A), low-energy and susceptible (LS), low-energy
and infected (LI), and dysfunction (D). The relationship between the six compartments are
depicted in Figure 2. S nodes are vulnerable to malware; I nodes are compromised with
attacker; A nodes clear malware by activating anti-malware program; LS and LI nodes
are both in low-energy level and remain dormant; and D nodes are totally out of function.
Now, let us impose a set of hypotheses as follows.

Figure 2. Flow diagram of the improved epidemic model.

(a) Malware propagates by broadcasting. Assuming that the ratio of I nodes successfully
infecting S nodes is α1S(t), where α1 is greater than 0, then the proportion of the new
infected in the network is α1S(t)I(t).

(b) Considering mobile chargers and rechargeable modules, after the nodes in A drop
to LS at β2, anti-malware programs stop running, and the nodes return to S at rate γ
when they are fully charged. β2 and γ are all greater than 0.

(c) Nodes in S, I, and A drop to low-energy level at different ratios β1, β3, and β2, where
β1 < β2 < β3. Among them, owing to the running of anti-malware program, β2 is
greater than β1. Due to the software attack launched by malware, β3 is greater than
β1 and β2. β1, β2, and β3 are all greater than 0.

(d) Suppose that, except for I, the four remaining compartments S, A, LS, and LI have
the same mortality µ. I is different in that malware also launches hardware attacks at
rate a to cause damage. µ and a are all greater than 0.

(e) Regardless of other protective measures, this paper only considers activating anti-
malware program to achieve the purpose of clearing malware temporarily.

In particular, the parameters are summarized in Table 4.
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Table 4. Epidemiological coefficients of the model.

Symbol Description

Λ Birth rate
γ The rate of charging sensor nodes from low-energy to high-energy
β1 Depletion rate determined by the working strength of susceptible nodes
β2 Depletion rate determined by the working strength of anti-malware nodes
β3 Depletion rate determined by malware
α1 Transmission rate of malware
α2 The rate of activating anti-malware
µ Death rate
a The rate of hardware attack determined by malware

On the basis of the above hypotheses, a novel dynamical system is obtained in (1)–(6):

˙S(t) = Λ− (α1 I(t) + β1 + µ)S(t) + γLS(t), (1)

˙I(t) = α1S(t)I(t)− (α2 + β3 + µ + a)I(t) + γLI(t), (2)

˙A(t) = −(β2 + µ)A(t) + α2 I(t), (3)

˙LI(t) = −(γ + µ)LI(t) + β3 I(t), (4)

˙LS(t) = −(γ + µ)LS(t) + β1S(t) + β2 A(t), (5)

and

˙D(t) = µN(t) + aI(t), (6)

where N(t) = S(t) + I(t) + A(t) + LS(t) + LI(t) and

˙N(t) = Λ− µN(t)− aI(t). (7)

2.2. Computation of the Steady States and the Basic Reproductive Number

Considering LS(t) = N(t)− S(t)− I(t)− A(t)− LI(t), (1) can be rewritten as

˙S(t) = Λ− (α1 I(t) + β1 + µ)S(t) + γ(N − S(t)− I(t)− A(t)− LI(t)), (8)

where N(t) = N(∞) =
Λ− aI(t)

µ
.

Then, the solutions of the limit system (8) and (2)–(4) are the steady states of the
system (1)–(5).

The first solution is the disease-free steady state: E0 = (S0, I0, A0, LI0), where I0 = 0,
A0 = 0, LI0 = 0, and

S0 =
Λ(µ + γ)

(µ + γ)(µ + β1)− γβ1
. (9)

The second solution is the epidemic steady state E∗ = (S∗, I∗, A∗, LI∗), and

S∗ =
(α2 + β3 + µ + a)(γ + µ)− γβ3

α1(γ + µ)
, (10)

I∗ =
∆1 + γΛ(β2 + µ)(γ + µ)

∆2 + ∆3
, (11)
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A∗ =
α2∆1 + α2γΛ(β2 + µ)(γ + µ)

(β2 + µ)(∆2 + ∆3)
, (12)

and

LI∗ =
β3∆1 + β3γΛ(β2 + µ)(γ + µ)

(γ + µ)(∆2 + ∆3)
, (13)

where
∆1 = [Λ− (β1 + µ + γ)S∗][µ(β2 + µ)(γ + µ)], (14)

∆2 = µ(β2 + µ)(γ + µ)[γ + α1S∗], (15)

and

∆3 = γ[a(β2 + µ)(γ + µ) + α2µ(γ + µ) + β3µ(β2 + µ)]. (16)

Consequently, considering the next generation matrix method, the basic reproductive
number R0 is its spectral radius.

Set

F =

(
α1S(t) 0

0 0

)
(17)

and

V =

(
α2 + β3 + µ + a −γ

−β3 γ + µ

)
. (18)

Thus,

R0 = F ·V−1 =
α1S0(γ + µ)

(α2 + β3 + µ + a)(γ + µ)− γβ3

=
α1Λ(γ + µ)2

[(β1 + µ)(γ + µ)− γβ1][(α2 + β3 + µ + a)(γ + µ)− γβ3]
.

(19)

3. Dynamic Analysis and Optimal Strategy

In this section, the stability and the optimal strategy in the SIALS model are discussed.
In Section 3.1, the local and global stabilities of the disease-free point are proved by using
the eigenvalues and the Lyaponov function. In Section 3.2, the local and global stabilities of
the epidemic point are proved by using the Routh criterion and Bendixson-Dulac criterion.
In Section 3.3, a five-tuple attack–defense game is proposed and the optimal strategies of
malware and WRSNs are obtained by applying the Pontryagin Maximum Principle.

3.1. Analysis of Disease-Free Equilibrium Point

Theorem 1. The disease-free equilibrium point, E0, is locally asymptotically stable if R0 < 1.

Proof. Here, we use matrix eigenvalues to verify the validity of the theorem. In general, if
the eigenvalues of the system matrix are negative, then the system must be stable.

Consider the follow matrix

F−V =

(
α1S0 − (α2 + β3 + µ + a) γ

β3 −γ− µ

)
(20)

The eigenvalues of (20) are

λ1 = 0.5(−B1 +
√

B2
1 + 4B2) (21)

and
λ2 = 0.5(−B1 −

√
B2

1 + 4B2), (22)
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where B1 = (γ + µ)− [α1S0 − (α2 + µ + β3 + a)] and B2 = [(µ + γ)(α2 + β3 + µ + a)−
γβ3](R0 − 1). The real parts of the two eigenvalues are negative if R0 < 1. Besides,

∂(Λ− (β1 + µ)S(t) + γ(N − S))
∂S

= −β1 − µ− γ < 0. (23)

Thus, E0 is locally asymptotically stable [42] when R0 < 1. Conversely, E0 is unstable if
R0 > 1.

Theorem 2. The disease-free equilibrium point, E0, is globally asymptotically stable if R0 ≤ 1.

Proof. Here, Lyapunov stability method is applied. In general, a positive definite Lyaponov
function with negative definite first derivative needs to be established to test the stability
of the system [43]. Considering a Lyaponov function V(t) = (γ + µ)I(t) + γLI(t) > 0, we
have:

˙V(t) = (γ + µ) ˙I(t) + γ ˙LI(t)

≤ I(t)[(γ + µ)α1S0 − (γ + µ)(α2 + β3 + µ + a) + γβ3]

= (γ + µ)[α1S0 I(t)− (α2 + β3 + µ + a)I(t)] + γβ3 I(t)

= I(t)[(γ + µ)α1S0 − (γ + µ)(α2 + β3 + µ + a) + γβ3]

≤ I(t)(R0 − 1)

(24)

In addition,
dV
dt

= 0 if and only if R0 = 1 and I(t) = 0. Moreover, (S, I, A, LI) tends to

E0 when t tends to infinity, and the maximum invariant set in {(S, I, A, LI) ∈ Ω :
dV
dt

= 0}
is E0. Thus, Theorem 2 is proved, after considering the La-Salle Invariance Principle
[44].

3.2. Analysis of Epidemic Equilibrium Point

Theorem 3. The epidemic equilibrium point, E∗, is locally asymptotically stable if R0 > 1.

Proof. Here, the Routh criterion is applied to prove the theorem. Firstly, the Jacobian
matrix of the limit system is:


−(α1 I(t) + β1 + µ)− γ −α1S(t)− γ− aγ

µ
−γ −γ

α1 I(t) α1S(t)− (α2 + β3 + µ + a) 0 γ
0 α2 −(β2 + µ) 0
0 β3 0 −(γ + µ)

 (25)

Then, the characteristic polynomial of (25) in E∗ is

P(λ) = P1λ4 + P2λ3 + P3λ2 + P4λ1 + P5, (26)

where
P1 = 1 > 0, (27)

P2 = a + β1 + α2 + β2 + β3 + 2γ + 4µ + α1θ3(R0 − 1) +
γβ3

γ + µ
> 0, (28)

P3 = (β2 + µ)
γβ3

γ + µ
+ α1(α1S∗ + γ)θ3(R0 − 1) + (γ + µ)(β2 + µ +

γβ3

γ + µ
) + θ1(θ2 +

γβ3

γ + µ
) > 0, (29)
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P4 = (γ + µ)(β2 + µ)
γβ2

γ + µ
+ α1θ3(R0 − 1)(α1S∗ + γ)(β2 + µ)θ2 + θ1[(γ + µ)(β2 + µ) + θ2

γβ3

γ + µ
] > 0, (30)

and

P5 = α1θ3(R0 − 1)(α1S∗ + γ)(γ + µ)(β2 + µ) > 0, (31)

where
θ1 = α1 I∗ + β1 + µ + γ, (32)

θ2 = γ + 2µ + β2, (33)

and
θ3 =

β2 + µ

α1(γ + µ)[(α2 + β3 + µ + a) + γµ(β2 + µ) + aγ(β2 + µ) + α2γµ]
(34)

Moreover, a simple calculation shows P2P3 − P1P4 > 0 and P2P3P4 − P1P2
4 − P2

2 P5 > 0.
Thus, if R0 > 1, applying the Routh criterion [45], the local asymptotically stability of E∗ is
tenable.

Theorem 4. The epidemic equilibrium point, E∗, is globally asymptotically stable if R0 ≥ 1.

Proof. Set
D(I, LI) =

1
ILI

, (35)

P = α1S(t)I(t)− (α2 + β2 + µ + a)I(t) + γLI(t), (36)

and

Q = −(γ + µ)LI(t) + β3 I(t). (37)

Considering the following formulation:

∂(DP)
∂I

+
∂(DQ)

∂LI
= −γI−2 − β3LI−2 < 0 (38)

By applying the Bendixson–Dulac criterion [46], the system admits no periodic orbits in
the interior of Ω.

Let (I, LI) be a smooth point on the boundary of Ω. Along the boundary, there exists
two possibilities:

(a) 0 ≤ I < 1, LI = 0. Then,
dP(t)

dt
= β3 I(t) ≥ 0. The value 0 occurs if and only if I = 0.

(b) 0 ≤ LI < 1, I = 0. Then,
dQ(t)

dt
= γLI(t) ≥ 0. The value 0 occurs if and only if

LI = 0.

Thus, there is no periodic solutions that pass through the boundary.
In view of Theorem 3, the claim follows from the generalized Poincare–Bendixson

theorem [46].

3.3. Optimal Strategies

Based on the evolution of node state during the confrontation between malware and
WRSNs, an attack–defense game model is constructed as follows.

The attack–defense game based on the SIALS model can be expressed as a five-tuple
G = {P , ν, µ,X , Λ}, where

• P = {PA, PD} is the set of plays in the attack–defense game. PA is the attacker and PD
is the defender.



Sensors 2021, 21, 594 10 of 25

• ν = {ASI(t), ALII(t), AID(t)} is a set of strategies implemented by the malware.
ASI(t) represents the spreading capability of the malware, ALII(t) represents the
strength of the attacks on the charging process, and AID(t) represents the strength of
the hardware attack. In particular, the three control strategies are all constrained by
the upper and lower bounds.

• µ = {DIA(t), DLSS(t)} is a set of strategies implemented by the WRSNs. DIA(t) rep-
resents the strength of activation of the anti-malware program and DLSS(t) represents
the control of the charging process by WRSNs. Similarly, the two strategies have
upper and lower bounds.

• X = {X (t)|S(t), I(t), A(t), LS(t), LI(t), D(t)} is a set of the state variables on the
SIALS model. The denotations of the state variables are the same as the statement in
Section 2.1.

• Λ = {Λ(t)|λS(t), λI(t), λA(t), λLS(t), λLI(t), λD(t)} is a set of the adjoint variables of
the games

Considering the controlled process stated above, (1)–(6) transform to

Ṡ(t) = Λ− (α1 ASI(t)I(t) + β1 + µ)S(t) + γDLSS(t)LS(t), (39)

İ(t) = α1 ASI(t)S(t)I(t)− (α2DIA(t) + β3 + µ + aAID(t))I(t) + γALII(t)LI(t), (40)

˙A(t) = −(β2 + µ)A(t) + α2DIA(t)I(t), (41)

˙LS(t) = −(γDLSS(t) + µ)LS(t) + β1S(t) + β2 A(t), (42)

˙LI(t) = −(γALII(t) + µ)LI(t) + β3 I(t), (43)

and

˙D(t) = µN(t) + aAID(t)I(t). (44)

In this paper, we mainly focus on how to effectively suppress the growth of malware.
Furthermore, in the purpose of maintaining the operation of the networks, the phenomenon
of network interruption and paralysis caused by the dysfunctionality of the sensor nodes
need to be minimized. Therefore, the number of the infected and dysfunctional sensor
nodes is used to measure the overall cost in the attack–defense game. Set J (·) as the overall
cost of the game and

J (X (t), µ(t), ν(t)) =
∫ t f

t0

{CI I(t) + CDD(t)}dt. (45)

The above description of the cost index is a classic Lagrange problem in differential
games. In (6), t0 and t f , respectively, represent the initial and terminal moment of the game.
Specifically, CI I(t) is the instantaneous cost determined by the damage capability and the
number of I nodes at time t, where CI > 0. CDD(t) is the instantaneous cost determined
by the impact of network interruption and paralysis at time t, where CD > 0.

In this game, the goal of both parties is to influence changes in the cost J (·) to make it
more beneficial to their own development. Malware aims to maximize J (·), while WRSNs
aim to minimize J (·). Therefore, malware needs to apply the dynamic strategies in ν(t) to
maximize J (·) and WRSNs need to use the dynamic strategies in µ(t) to minimize the J (·).
To achieve the purpose of both parties, Theorem 5 is given by applying the Pontryagin
Maximum Principle.
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Theorem 5. Based on the state functions (39)–(44), there exist an optimal strategy set {µ∗(t),
ν∗(t)} = {(D∗IA(t), D∗LSS(t)), (A∗SI(t), A∗ID(t), A∗LII(t))} in the attack–defense game such that

J(X(t), µ∗(t), ν∗(t)) = maxνminµ J(X(t), µ(t), ν(t)) = minµmaxν J(X(t), µ(t), ν(t)). (46)

The expressions of the optimal strategies are

A∗SI(t) =
{

maxASI , (λI(t)− λS(t))α1S(t)I(t) > 0
minASI , (λI(t)− λS(t))α1S(t)I(t) < 0,

(47)

A∗ID(t) =
{

maxAID, (λD(t)− λI(t))aI(t) > 0
minAID, (λD(t)− λI(t))aI(t) < 0,

(48)

A∗LII(t) =
{

maxALII , (λI(t)− λLI(t))γLI(t) + CCγLI(t) > 0
minALII , (λI(t)− λLI(t))γLI(t) + CCγLI(t) < 0,

(49)

D∗IA(t) =
{

minDIA, (λA(t)− λI(t))α2 I(t) > 0
maxDIA, (λA(t)− λI(t))α2 I(t) < 0,

(50)

and

D∗LSS(t) =
{

minDLSS, (λS(t)− λLS(t))γLS(t) + CCγLS(t) > 0
maxDLSS, (λS(t)− λLS(t))γLS(t) + +CCγLS(t) < 0.

(51)

Proof. First, there exists a saddle-point in the game according to [41].
Then, in view of (39)–(44) and (45), the Hamiltonian function constructs as:

H(X(t), λ(t), µ(t), ν(t), t) =λS(t) ˙S(t) + λI(t) ˙I(t) + λA(t) ˙A(t) + λLS(t) ˙LS(t)

+ λLI(t) ˙LI(t) + λD(t) ˙D(t) + CI I(t) + CDD(t)
(52)

Note that the constraints of the adjoint variables are given by the following formulas
[44]:

˙λS(t) = (λS(t)− λI(t))α1 ASI(t)I(t) + (λS(t)− λLS(t))β1 + (λS(t)− λD(t))µ, (53)

˙λI(t) =(λS(t)− λI(t))α1 ASI(t)S(t) + (λI(t)− λA(t))α2DIA(t)

+ (λI(t)− λLI(t))β3 + (λI(t)− λD(t))(µ + aAID(t))− CI ,
(54)

˙λA(t) = (λA(t)− λLS(t))β2 + (λA(t)− λD(t))µ, (55)

˙λLS(t) = (λLS(t)− λS(t))γDLSS(t) + (λLS(t)− λD(t))µ, (56)

˙λLI(t) = (λLI(t)− λI(t))γALII(t) + (λLI(t)− λD(t))µ, (57)

and

˙λD(t) = −CD. (58)

Furthermore, the end values of the adjoint variables all equal to 0, i.e.,

λSt f
= λIt f

= λAt f
= λLSt f

= λLIt f
= 0. (59)

Finally, according to the Pontryagin Maximum Principle, the optimal strategies are
obtained by

H(t, X∗(t), λ(t), µ∗(t), ν(t)) ≤ H(t, X∗(t), λ(t), µ∗(t), ν∗(t)) ≤ H(t, X∗(t), λ(t), µ(t), ν∗(t)). (60)
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As a consequence, in the optimal case, when (λI(t)− λS(t))α1S(t)I(t) > 0, the mal-
ware exerts the maximum effort to infect vulnerable sensor nodes; otherwise, it does not
propagate. When (λD(t)− λI(t))aI(t) > 0, the malware exerts the maximum effort to
launch the hardware attack; otherwise, it does nothing in hardware equipped in sensor
nodes. When (λI(t)− λLI(t))γLI(t) + CCγLI(t) < 0, the malware exerts the minimum
effort to influence the charging process to LI nodes; otherwise, the LI nodes accept the
charging requests. Moreover, when (λA(t)− λI(t))α2 I(t) < 0, WRSNs exist the maximum
effort to clear the malware; otherwise, the networks do nothing in activating anti-malware
program. When (λS(t) − λLS(t))γLS(t) + CCγLS(t) < 0, WRSNs exist the maximum
effort to charge the LS nodes; otherwise, LS nodes do not be charged.

4. Simulation

The purpose of this section is to further verify and develop the theorems stated in
Section 3. In detail, the first three subsections focus on the stability of the system (1)–(6)
and the last three subsections focus on the optimal control of the system (39)–(44).

The parameters used in the simulations were set as: Λ = 0.2, α1 = 0.0001, α2 = 0.001,
β1 = 0.005, β2 = 0.005, β3 = 0.008, µ = 0.004, a = 0.005, and γ = 0.05. All simulations
were run on MacOS Catalina (Intel Core i5, 8GB, 1.8GHz) and MATLAB 2017b.

4.1. Stable Analysis When R0 < 1

In this subsection, the stability of the system (1)–(6) is verified when R0 < 1. Sub-
stituting the parameters into (19), we obtained R0 = 0.432 < 1. Thus, there must exist
a disease-free equilibrium point (S0, I0, A0, LS0, LI0) in the system. According to (10),
S0 = 45.76, I0 = 0, A0 = 0, LS0 = 4.23, and LI0 = 0. The simulation results are illustrated
in Figure 3.

For the purpose of showing the changing trend of the system in a more three-
dimensional and comprehensive way, we consider to verify the stability of the system in the
form of three dimensions. We set N(t) ≤ 50 (i.e., S(t) + I(t) + A(t) + LS(t) + LI(t) ≤ 50).
Therefore, in the case of three dimensions, the feasible region is a regular triangular pyra-
mid with an equilateral triangle at its base and a right-angled isosceles triangle (Waist = 50)
at its three sides.

The curves in Figure 3a,c,e all begin from the axes and the curves in Figure 3b,d,f all
start at the boundary on the hypotenuses.

As shown in Figure 3a,b, in the three-dimensional area formed by the number of A
nodes as the x-axis, the number of I nodes as the y-axis, and the number of S nodes as the
z-axis, the curves eventually converge to (0, 0, 45.67) from the six boundaries. In detail, in
Figure 3a, when the curves start from x-axis, it is assumed that that there exists only A and
LI nodes in the networks at the initial moment; when the curve starts from the z-axis, it
is assumed that that only S and LI nodes in the network at the initial moment; and when
the curve starts from y-axis, it is assumed that that only I and LS nodes in the network at
the initial moment. The purpose of these assumptions is to ensure that malware exists in
the network at the beginning, otherwise it would be meaningless. In Figure 3b, in the S-A
plane, we set the sum of S nodes and A nodes as 49, and the number of LI nodes as 1 at
the beginning. In the S-I plane, we set the sum of the number of S and I nodes as 50 at the
beginning. In the A-I plane, we set that the sum of the number of A and I nodes is 50 at
the beginning.

Similarly, in the three-dimensional area formed by the number of LI nodes as the
x-axis, the number of I nodes as the y-axis, and the number of S nodes as the z-axis, the
curves eventually converge to (0, 0, 45.67), as shown in Figure 3c,d. Here, the principle of
assumption is the same as above. The curves start from y-axis contain only I and LS nodes
at the beginning. The curves start from the x-axis initially contain only LI and LS nodes
at the beginning. It is worth noting that, in Figure 3c, the curve starts from the z-axis is
reunited with the z-axis because it does not contain malware at the beginning. In Figure 3d,
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the curves start from the S-LI plane initially contain only S and LI nodes; the curves start
from the S-I plane initially contain only S and I nodes; and the curves start from the I-LI
plane initially contain only I and LI nodes.
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Figure 3. Variation of state variables in the case of R0 < 1.
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In the three-dimensional area formed by the number of LS nodes as the x-axis, the
number of A nods as the y-axis, and the number of S nodes as the z-axis, the curves
eventually converge to (4.23, 0, 45.76), as shown in Figure 3e,f. Similarly, in Figure 3e, the
curves begin from the z-axis initially contain S and I nodes; the curves begin from the
x-axis initially contain LS and I nodes; and the curves begin from the y-axis initially contain
A and I nodes. In Figure 3f, the curves begin from S-A plane initially contain S, A, and
I nodes, and the sum of the number of S and A nodes are 49 and the number of I nodes
is 1; the curves begin from S-LS plane initially contain S, LS, and I nodes, and the sum of
the number of S and LS nodes are 49 and the number of I nodes is 1; and the curves begin
from A-LS plane initially contain A, LS, and I nodes, and the sum of the number of A and
LS nodes are 49 and the number of I nodes is 1.

In Figure 3a–d, when the initial number of I nodes is less than a threshold, the number
of I nodes has a peak value and decreases after that, and finally reaches 0. When the number
of I nodes is greater than this threshold, the number of I nodes decreases continuously
because the number of newly infected nodes is smaller than the number of newly recovered
nodes. All these results confirm Theorems 1 and 2.

4.2. Stable Analysis when R0 > 1

In this subsection, the situation under R0 > 1 is discussed. Except for α1 = 0.001,
the parameters remain the same as above. In this simulation, R0 = 4.320 > 1, S∗ = 10.59,
I∗ = 15.25, A∗ = 1.69, LS∗ = 1.13, LI∗ = 2.25 and N(∞) = 30.9375 based on (10)–(13)
and (19). As in the Section 4.2, suppose N(t) ≤ 50. The simulation results are shown in
Figure 4.

The assumptions at the initial moment of the curve in this subsection are the same
as in Section 4.1. As shown in Figure 4a,b, in the three-dimensional area formed by the
number of A nodes as the x-axis, the number of I nodes as the y-axis, and the number
of S nodes as the z-axis, the curves eventually converge to (1.69, 15.25, 10.59) from the
boundaries at the axes and the hypotenuses. In the three-dimensional area formed by the
number of LI nodes as the x-axis, the number of I nodes as the y-axis, and the number
of S nodes as the z-axis, the curves eventually converge to (2.25, 15.25, 10.59) from the
boundaries, as shown in Figure 4c,d. In the three-dimensional area formed by the number
of LS nodes as the x-axis, the number of A nodes as the y-axis, and the number of S nodes
as the z-axis, the curves eventually converge to (1.13, 1.69, 10.59) from the boundaries, as
shown in Figure 4e,f. All these results confirm Theorems 3 and 4.

Compared with the case of R0 < 1, more peaks exist in the process of quantity change
when R0 > 1, but the general trend is similar. For I nodes, when the initial number is less
than a certain threshold, it peaks and then eventually stabilize at the steady state value.
When the initial number is greater than this threshold, the number of I nodes continues to
decline until the steady state value. It is worth noting that the trend of the number of nodes
is affected by the initial value. The trend changes if the initial values are set differently.
However, if the model parameters do not change, the final value of the number of nodes
does not change.
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Figure 4. Variation of state variables in the case of R0 > 1.



Sensors 2021, 21, 594 16 of 25

4.3. Influence of Parameters under Stable State

In this subsection, the influence of parameters on the spread of malware is analyzed.
In detail, we analyzed the influence of α1, α2, β3, and γ on the number of I nodes. The
values of α1, α2, and β3 range from 0.0001 to 0.01, and the value of γ ranges from 0.01 to 1.

Figure 5a shows the relationship between α1 and α2 and the number of I nodes when
t→ ∞. Figure 5a shows that, by reducing the transmission rate α1, malware can eventually
be cleared. At the same time, increasing the removal rate α2 of malware can effectively
suppress the increasing of malware; Figure 5b shows the relationship between α1 and β3
and the number of I nodes when t→ ∞. As shown in Figure 5b, the behavior of malware to
drops nodes to LI state by increasing the frequency or intensity of exhaustion attacks cannot
be too effective to increase the number of I nodes in the steady state. Figure 5c shows the
relationship between γ and α2 and the number of I nodes in steady state. Figure 5c clearly
shows that controlling the frequency or power of charging γ can restrain the spread of
malware to a certain extent. Figure 5d shows the relationship between γ and β3 and the
number of I nodes in the steady state. As shown in Figure 5d, increasing the intensity of
software attacks has little effect on the eventual prevalence of malware. On the contrary,
when the charging rate γ drops to a certain extent, the amount of malware is greatly
reduced. This suggests that we can control the charging rate γ to suppress the spread of
malware. Figure 5e shows the relationship between β3 and α2 and the number of I nodes in
the steady state. In Figure 5e, the influence of β3 on the eventual prevalence of malware is
verified again. At the same time, the effect of increasing the rate of activating anti-malware
programs on the prevalence of malware is more obvious. Figure 5f shows the relationship
between α1 and γ and the number of I nodes in the steady state. As shown in Figure 5f, the
method of reducing the number of I nodes by reducing the charging rate and transmission
rate is verified again.

Among them, the most effective suppression method is to reduce the transmission
rate α1. By increasing removal rate α2 and reducing the charging rate γ, the number of
malware can be reduced to a certain extent when t→ ∞. In detail, although the method of
reducing the transmission rate has a good effect, the effect is obvious when it is reduced
to a certain extent, which is impractical in real life. The most direct method is to activate
the anti-malware program to remove its own malware. The method of charging control is
similar to the method of adjusting the transmission rate, which needs to be reduced to a
certain threshold before the effect becomes obvious. Therefore, the method of suppressing
malware by adjusting the transmission rate and charging rate is effective but requires much
more consideration than activating the ant-malware program.
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Figure 5. Change of infection under various parameters when t→ ∞.

4.4. Variation of State Variables when R0 < 1

Here, the evolution of state variables under optimal control is discussed. To verify the
optimality, a non-optimal control group is set to compare with the optimal one. In detail,
the situation under R0 < 1 is stated first.

To satisfy (53)–(59), a Forward–Backward Sweep (FBS) method is applied. The flow
diagram of the method is illustrated in Figure 6. First, the supposed values of model
parameters are given. Then, by applying the finite difference method, the numerical
solutions of the state variables are calculated in order and adjoint variables in reversed
order. Furthermore, the values of controls are obtained at the same time. Finally, if and
only if the difference between the two iterations is less than an error value δ multiplied
by the iteration value at the current moment, then the optimality conditions stated in
Theorem 5 are considered to be satisfied. Here, we set δ = 0.001. It is worth noting that,
when the system has low computational complexity, the FBS method can achieve better
convergence of the adjoint variables. However, with the increasing complexity of the
system, the method has difficulty achieving convergence, and it needs to update, which is
also one of the directions of our future work.
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Figure 6. Flow diagram of Forward–Backward Sweep (FBS) method.

Figure 7 shows the comparison of evolution of state variables under optimal control
and non-optimal control. Here, the blue lines represent the evolution under optimal control
and the red lines represent the evolution under non-optimal control. In Figure 7a, we set up
100 datasets, in which cases of the optimal control and the non-optimal control are equally
divided. In the sets under optimal control, we assume that the sum of the initial number
of nodes S and I of the networks is 50. For example, when the initial number of S nodes
is 24, the initial number of I nodes is 26. Figure 7a shows the comparison of the number
of S nodes in the two cases. Figure 7a shows that the number of S nodes under optimal
control reach the equilibrium point more quickly, and the number is less than that under
non-optimal control. Furthermore, the number of S nodes under optimal control is lower
than that under non-optimal control when the number stay steady.

The data in Figure 7b follow those in Figure 7a. In the case of optimal control, as the
number of S nodes decreases, the number of I nodes decreases more rapidly, as shown in
Figure 7b. In other words, malware is eliminated faster under optimal control.

In the setting of the data of the two cases in Figure 7c, we assume that it contains A
and I nodes at the beginning, and the sum is 50. As illustrated in Figure 7c, the difference
in the number of A nodes is not evident in the two cases, which indicates the removal
action never stops.

In Figure 7d, we assume that it contains only LS and LI nodes at the beginning, and
their sum is 50. As illustrated in Figure 7d, the reason for the decrease in the number of S
nodes is that WRSNs choose to stop charging the LS nodes, which leads to an increase to
the number of LS nodes.

The data setting in Figure 7e follows that in Figure 7d. Similarly, the difference in
the number of LI nodes is not significant in the two cases, as shown in Figure 7e, which
indicates the software attacks never stop.

Therefore, although the spread of malicious programs can be suppressed under the
optimal control, the performance of the system is sacrificed, that is, the existence of more
low-energy sensor nodes leads to problems in network operation.
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(a)The number of S nodes (b)The number of I nodes

(c)The number of A nodes (d)The number of LS nodes

(e)The number of LI nodes

Figure 7. Evolution of state variables under various controls in the case of R0 < 1.

4.5. Variation of State Variables when R0 > 1

In this subsection, the situation under R0 > 1 is discussed. Comparing with Section 4.4,
if the value of T is too high, the adjoint variables do not converge finally under the FBS
method, so we set the terminal time of the game to 200, i.e., T = 200. Meanwhile, the data
setting is the same as in Section 4.5.
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Figure 8 shows the comparison of the changes in the number of the state variables in
the same two cases stated in Section 4.4. Similar to the statement in Section 4.4, the number
of S nodes under optimal control always shows a faster decline, as shown in Figure 8a. In
contrast, the number of S nodes with non-optimal control does not change much from time
0 to 200. Therefore, in the case of R0 > 1, WRSNs can restrain the growth of I nodes by
reducing the number of S nodes.
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Compared with the case without optimal control, more LS nodes stay in the LS state
at this time instead of returning to the S state, as shown in Figure 8d. For the case of
non-optimal control, the number of LS nodes decreases rapidly since LS nodes constantly
send charging requests and get fully charged. For the optimal control, LS nodes choose to
stop charging in order to reduce the growth rate of S nodes’ number.

As illustrated in Figure 8b,c,e, with the effective reduction of the number of S nodes,
the numbers of I nodes, A nodes, and LI nodes all show a significant decrease, compared
with the situation under non-optimal control.

In the case of R0 > 1, for malware, to make the cost as large as possible, the three
means controlled by malware maintain the maximum degree of control; for WRSNs, in
addition to removing malware in the maximum efforts, it also stops charging the LS nodes
to further deter more vulnerable nodes from being attacked.

4.6. Influence of Parameters under Optimal Controls

As in Section 4.3, the influence of parameters on malware is developed here. It is easy
to know from Section 4.4 that, when R0 < 1, malware is completely eliminated eventually.
Therefore, we only consider the case R0 > 1. At the same time, to maintain the continuity
with Section 4.3, suppose T = 200.

Figure 9 shows the influence of the parameters on the number of I nodes, and the
range of the parameters is consistent with Section 4.3. It is worth mentioning that, at this
time, since the time setting is much smaller than that in Section 4.3, the number of I nodes is
larger. Comparing with Figure 5 in Section 4.3, it is not difficult to find that, under optimal
control, the influence of parameters on the propagation of malware is very similar to that
under non-optimal control. Similarly, the conclusion is similar to Section 4.3, and is not
repeated here.

In the optimal dynamic game, the three control methods of malware, namely ASI(t),
AID(t), and ALII(t), are always present and undiminished. As WRSNs, it stops charging
the LS nodes while exerting greatest effort to activate the anti-malware program. Therefore,
in the game process, the overall architecture of SIALS model is not affected. In other words,
stopping charging has little effect on the model. Meanwhile, this phenomenon also reveals
that the influence of reduced charging rate on the spread of malware mainly occurs in the
state transition of sensor nodes from LI state to I state.
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Figure 9. Change of infection in optimal controls under various parameters when t = 200.

5. Conclusions

In this paper, we use epidemiology to propose a dynamic model, namely SIALS,
describing the propagation of malware in WRSNs. In this model, not only the remaining
energy of the sensor nodes is revealed, but also the description of the recovered process
is enriched by introducing the anti-malware (A) state. Meanwhile, through the stability
analysis of the model, we proved the local and global stability of disease-free equilibrium
point and the epidemic equilibrium point. Furthermore, based on the confrontational nature
of malware and WRSNs, this paper proposes a five-tuple attack–defense game model.
Specifically, after introducing the overall cost, by adopting the Pontryagin Maximum
Principle, this paper introduces the dynamic optimal strategies for malware and WRSNs.
We verified the validity of the theories through simulations in the form of three-dimensional
figures and analyzed the influence of the parameters on the propagation of malware. Then,
the evolution of the number of state variables based on optimal control in the two cases
of R0 < 1 and R0 > 1 was also simulated and analyzed. Meanwhile, the influence of
parameters on infection under optimal control was analyzed.

Simulation results show that the malware can be eliminated by adjusting the trans-
mission rate, but it needs to be reduced to a certain threshold. Activating anti-malicious
program is the most effective and direct way to suppress the spread of malware. Adjusting
the charging rate can also suppress the spread of malware effectively, but, again, it needs to
be below a certain threshold. In the dynamic game between malware and WRSNs, WRSNs
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effectively reduce the number of malware by refusing to charge. In particular, in the case
of R0 < 1, malware goes extinct more quickly. In the case of R0 > 1, the spread of malware
is suppressed obviously compared with the case with non-optimal control.

With the continuous development of the wireless power transfer and the intelligent
mobile vehicles, the potential security risk of mobile charger cannot be ignored. In our
future work, in view of the integrating of various devices, both the homogenous and het-
erogenous cases will be taken into consideration, and, if the ability permits, the stochastic
modeling and the advanced mathematical theories will be applied. Consequently, we hope
our works can give some inspirations to interested researchers.
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