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Abstract: Source signals often contain various hidden waveforms, which further provide precious
information. Therefore, detecting and capturing these waveforms is very important. For signal
decomposition (SD), discrete Fourier transform (DFT) and empirical mode decomposition (EMD) are
two main tools. They both can easily decompose any source signal into different components. DFT is
based on Cosine functions; EMD is based on a collection of intrinsic mode functions (IMFs). With the
help of Cosine functions and IMFs respectively, DFT and EMD can extract additional information
from sensed signals. However, due to a considerably finite frequency resolution, EMD easily causes
frequency mixing. Although DFT has a larger frequency resolution than EMD, its resolution is
also finite. To effectively detect and capture hidden waveforms, we use an optimization algorithm,
differential evolution (DE), to decompose. The technique is called SD by DE (SDDE). In contrast,
SDDE has an infinite frequency resolution, and hence it has the opportunity to exactly decompose.
Our proposed SDDE approach is the first tool of directly applying an optimization algorithm to
signal decomposition in which the main components of source signals can be determined. For source
signals from four combinations of three periodic waves, our experimental results in the absence
of noise show that the proposed SDDE approach can exactly or almost exactly determine their
corresponding separate components. Even in the presence of white noise, our proposed SDDE
approach is still able to determine the main components. However, DFT usually generates spurious
main components; EMD cannot decompose well and is easily affected by white noise. According to
the superior experimental performance, our proposed SDDE approach can be widely used in the
future to explore various signals for more valuable information.

Keywords: signal detection; hidden waveform; optimization algorithm; discrete Fourier transform;
empirical mode decomposition; intrinsic mode function; signal decomposition

1. Introduction

Signal decomposition (SD) is a very useful tool for analyzing the components of source
signals in order to determine interesting and meaningful hidden signal patterns. When
analyzing a signal, we usually approximate the signal or function by “atoms,” which may
be sinusoids, wavelets, or Gabor functions [1]. In order to find these qualified “atoms”
to represent the function, an effective algorithm must be adopted. In general, we choose
some “atoms” from a larger collection of “atoms” called a “dictionary” [1]. “Atoms” are
signal components—especially, meaningful signal components—and the “dictionary” is a
collection of signal components.

In general, source signals contain some precious information in hidden waveforms,
and therefore SD plays a very important role in signal analysis. Unlike traditional analysis
tools, such as Fourier transform (FT) and series [2], as well as wavelet transform (WT) [1,3],
empirical mode decomposition (EMD) [4–6] has attracted a great deal of attention over the
past two decades as it is a data-driven decomposition tool without preset basis functions.
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Huang et al. [4] first reviewed non-stationary data processing methods, such as FT
and WT, then discussed their potential problems, and finally proposed their outstanding
EMD and Hilbert spectra. In the work by Huang and Shen [6], many related theories and
applications were provided. In addition, various fields have also shown the practical value
of EMD, including in medicine [7,8], hydrology [9], mechanics [10,11], civil engineering [12]
and theoretical analysis [13].

EMD can directly, adaptively and quickly decompose a source signal into a collection
of intrinsic mode functions (IMFs) [4,6]; each IMF must satisfy two conditions: (1) in the
whole data set, the number of extrema and the number of zero crossings must either equal
or differ at most by one; and (2) at any point, the mean value of the envelope defined by
the local maxima and the envelope defined by the local minima is zero. Therefore, each
IMF can also be viewed as special basis functions; they are directly derived from the data
rather than being predetermined by basis functions such as FT and WT.

IMFs are derived through the following sifting process. First, the extrema of a signal
are identified; second, all the local maxima are connected by a cubic spline line as the upper
envelope and all the local minima are connected by a cubic spline line as the lower envelope;
finally, their mean is calculated, and the difference between the data and the mean is the
first component. Repeat the procedure until two conditions of IMFs are satisfied.

IMFs are in turn generated from highest-frequency to lowest-frequency components
and finally to the residue. Indeed, these data-derived IMFs sometimes contain some
meaningful and valuable signal patterns, but some components are often hard to explain.
Therefore, they generally need some auxiliary tools, such as time–frequency or time–
frequency–energy distribution, for clarification.

Furthermore, EMD-related methods are prone to mode mixing [14–16], end effects [14,15]
and detrend uncertainty [15]. Therefore, a new noise-assisted data analysis tool, called
ensemble empirical mode decomposition (EEMD) [14], was proposed to reduce mode
mixing and end effects. EEMD consists of one part different from EMD: it sifts an ensemble
of white noise-added signal (data), and then treats the mean as the final true result. The
aim of finite amplitude white noise is to force the ensemble to exhaust all possible solutions
in the sifting process.

Further, compact empirical mode decomposition (CMED) [15] was proposed to reduce
mode mixing, end effects and detrend uncertainty. CMED is composed mainly of two parts:
one is to use highest-frequency sampling to generate pseudo extrema for effectively identi-
fying upper and lower envelopes; the other is to use a set of 2N (for N data points) algebraic
equations for determining the maximum (minimum) envelope at each decomposition step.

Zhang et al. [16], with the help of an improved genetic algorithm (GA), also proposed
an improved ensemble empirical mode decomposition method (GAEEMD) to solve mode
mixing. In the improved GA, Zhang et al. used a difference selection operator instead of
a traditional selection operator (roulette selection or tournament selection) and selected
the amplitudes of the added white noise and the number of trials as the parameters of
their fitness function, which was the reciprocal of an orthogonal index concerning the
decomposed IMFs. More exactly, GAEEMD applies an improved GA in the IMFs obtained
from the sifting process of EEMD, rather than directly in the source signal; in other words,
it indirectly applies an improved GA in the source signal.

For a wide range of applications, EMD has been further extended for use in two-variant
(bivariate) [17], three-variant (trivariate) [18] and multiple-variant (multivariate) [19] sig-
nals. These methods can extract two-dimensional to multiple-dimensional common oscilla-
tory modes and facilitate the fusion of information from two or multiple sources.

Different from EMD-like methods, Singh et al. [20] also proposed an adaptive decom-
position method, which was based on Fourier theory, called the Fourier decomposition
method (FDM); it can decompose any data into a small number of Fourier intrinsic band
functions (FIBFs) and thus can be viewed as a generalized Fourier expansion with variable
amplitudes and frequencies.
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Since EMD and FDM act essentially as a dyadic filter bank [21–23], some waves
within the same dyadic filter bank cannot be decomposed into separate waves, even
simple periodic waves. To solve this problem, we proposed a direct decomposition tool to
decompose the source signals into separate components.

Similar to GAEEMD, our proposed method also applies another nature-inspired
optimization algorithm to search the optimal parameters; in contrast to GAEEMD, we
adopted a standard differential evolution (DE) algorithm, which is a real-coded algorithm,
rather than a traditional GA, which is a binary-coded algorithm. In addition, we directly
selected the amplitudes, frequencies and phases of the source signal as the parameters of
the fitness function, which is the mean squared error (MSE) between the source signal and
its searched signal.

At a pioneering stage, we selected four combinations of three periodic waves as source
signals, including sinusoidal, square and triangular waves. They were a combination of
three sinusoidal waves (continuous and smooth), a combination of three square waves
(non-continuous and also non-smooth), a combination of triangular waves (continuous but
non-smooth) and a composite of the three above-mentioned waves (non-continuous and
non-smooth).

In the absence of noise, experimental results show that our proposed SD by DE (SDDE)
can perfectly or almost perfectly decompose these four source signals into corresponding
separate waves, where their corresponding amplitudes, frequencies and phases are also
exactly or almost exactly obtained. In contrast, EMD, limited by a considerably finite
frequency resolution, tends to view these simple periodic signal combinations as special
basis functions, and it therefore cannot further decompose them into separate components.
Similarly, limited by a finite frequency resolution, discrete Fourier transform (DFT) usually
generates spurious main components.

Even in the presence of white noise, our proposed SDDE approach can still determine
the main signal components; however, EMD is easily affected by white noise, and it
therefore cannot decompose contaminated signals into separate components. Likewise,
DFT easily generates more spurious main components.

The rest of the paper is organized as follows. Section 2 outlines some related tools
for SD and DE. Section 3 presents the problem formulation of the paper. Section 4 gives
experimental results and a detailed discussion. Finally, Section 5 concludes with some
observations and possible developments for the future.

2. Related Tools

In this section, the basics of SD and the standard procedure of DE will be mentioned;
some tools of SD include the Fourier series and transform, wavelet transform and EMD.

In the case of SD, a signal x(t) or function f (t) can often be analyzed, described, or
processed by a linear decomposition [3]

f (t) = ∑
l

alψl(t), (1)

where l is an integer index for a finite or an infinite sum; al represents the real-valued
expansion coefficients; and ψl(t) is a set of real-valued functions of t, called the expansion
set. If Equation (1) is unique, the set is called a basis for the class of functions that can be
expressed in that way. If the basis is orthogonal, meaning:

〈ψk(t), ψl(t)〉 =
∫

ψk(t)ψl(t)dt = 0, k 6= l, (2)

then the coefficients can be calculated by the inner product:

ak = 〈 f (t), ψk(t)〉 =
∫

f (t)ψk(t)dt. (3)
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For the Fourier series [2], the orthogonal basis functions ψk(t) are sin(kω0t) and
cos(kω0t) with frequencies of kω0. These are especially suitable for periodic, time-invariant
or stationary signals. When the period approaches infinity, the Fourier series tends to the
Fourier transform [2].

For the wavelet expansion, a two-parameter system is constructed so that Equation (1) becomes:

f (t) = ∑
k

∑
j

aj,kψj,k(t), (4)

where both j and k are integer indices and ψj,k(t) represents the wavelet expansion functions
that usually form an orthogonal basis.

The set of expansion coefficients aj,k are called the discrete wavelet transform (DWT)
of f (t), and Equation (4) is its inverse transform.

Wavelet transforms are especially suitable for transient, nonstationary or time-varying
signals; for applications with nonlinear and non-stationary signals, empirical mode decompo-
sition [4–6] is more suitable. The method is data-driven without any basis functions presumed.

Through the sifting process, a signal x(t) or function f (t) can be expanded or decom-
posed as follows:

f (t) =
n

∑
i=1

ci + rn, (5)

where ci represents the intrinsic mode functions and rn is a residue.
Overall, c1 should contain the highest-frequency component of the signal; cn should

contain the lowest-frequency component; and rn should be either a trend or a constant.
In the case of DE, a d-dimensional optimization problem was considered. In our

experiments, we used a population size, n, of solution vectors, xi, i = 1, 2, . . . , n, to search
for the optimal solution. These solutions can be represented by xj,i, j = 1, 2, . . . , d (the
dimension of a solution is d) and i = 1, 2, . . . , n. For generation t, the solution vector xi is
denoted by xt

i . Initially, x0
i values are uniformly generated between the lower bound of the

domain, xmin and the upper bound, xmax.
Typically, a DE algorithm [24–29] contains three main steps: mutation, crossover and

selection. In the step of mutation, three random independent indices r1, r2 and r3 ranging
from 1 to n are first selected—i.e., r1 6= r2 6= r3—and their corresponding solution vectors,
xr1 , xr2 and xr3 are then obtained. Finally, a mutant vector [26] or a donor vector [27]
is generated,

vt+1
i = xt

r1
+ F

(
xt

r2
− xt

r3

)
, (6)

where F, the differential weight, is a positive real number that normally lies between
0 and 1. In addition, these three random independent indices also meet the constraint
r1 6= r2 6= r3 6= i.

In the crossover step, a crossover vector or a trial vector [26] via the binominal scheme
is obtained as follows:

ut+1
j,i =

{
vt+1

j,i if rj,i ≤ Cr or j = Ir
j

xt
j,i otherwise

, (7)

where Cr is the crossover rate and Ir
j is a random index, i.e., an integer ranging from 1 to d.

In the step of selection, a greedy scheme is adopted. For our minimization problem,
this is mathematically described as follows:

xt+1
i =

{
ut+1

i if f
(

ut+1
i

)
≤ f

(
xt

i
)

xt
i otherwise

. (8)

For the purpose of this study, the fitness or objective function f (x) is the MSE between
the source signal and the searched signal, i.e., a combination of searched waves.



Sensors 2021, 21, 588 5 of 22

3. Problem Formulation

Even EEMD can deal with some mode-mixing problems of EMD, but it cannot decom-
pose some source signals with a combination of single or complex waveforms into separate
components. The main reason for this is that EMD and EEMD act essentially as a dyadic
filter bank [21–23]. Therefore, when these single or complex waveforms lie within the same
dyadic filter bank, they cannot be well decomposed into separate components; even for
the source signals with a combination of simple periodic waves, EMD-like data-driven
methods cannot decompose them well, which is especially true for non-continuous waves.

Therefore, the main purpose of this paper is to propose an effective technique to
decompose this kind of source signal into separate components. A feasible approach is to
directly rather than indirectly use nature-inspired optimization algorithms. In this paper,
DE is adopted because it is a real-coded algorithm, which is much more efficient than a
binary-coded algorithm; binary-coded algorithms need additional computational time to
transform binary code into real code and vice versa. An appropriate objective function
plays a very important role in optimization algorithms. In this work, we choose the MSE
between a source signal and its corresponding searched signal as our objective function.
Therefore, the source signals and their corresponding objective functions are presented in
the following subsections.

3.1. Source Signals

As a pioneering work, this paper only considers four simple yet representative source
signals, consisting of three combinations of single waves and one combination of composite
waves. These three single waves are sinusoidal, square, and triangular waves; the remain-
ing one is a composite of the previous three single waves. Each source signal is composed
of three components. Based on each individual source wave, the objective function is
defined accordingly.

3.1.1. Sinusoidal Waves

As components of the Fourier transform [2], sinusoidal waves are the most representa-
tive of signals. Thus, the first source signal is a signal synthesis of three sinusoidal waves
as follows:

s(t) =
3

∑
k=1

ak sin(2π fkt + pk), (9)

where the ak values for k = 1, 2, 3, are amplitudes; fk values are normalized frequencies
(simply called frequencies in the following) lying between 0 and 1; pk values are phases
lying between 0 and 2π; and t is an integer from 0 to L− 1, where L is the length of the
signal series.

3.1.2. Square Waves

The second signal source is a signal synthesis of three square waves as follows:

s(t) =
3

∑
k=1

aksquare(2π fkt + pk), (10)

where the definitions of the ak, fk, and pk values for k = 1, 2, 3 as well as t are the same as
those of Equation (9).

3.1.3. Triangular Waves

The third signal source is a signal synthesis of three triangular waves as follows:

s(t) =
3

∑
k=1

aktriangle(2π fkt + pk). (11)

Likewise, the definitions of all symbols are the same as those of Equation (9).
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3.1.4. Composite Waves

The fourth signal source is a signal synthesis of the previous three waves as follows:

s(t) = a1 sin(2π f1t + p1) + a2square(2π f2t + p2) + a3triangle(2π f3t + p3). (12)

The definitions of all symbols are also the same as those of Equation (9).

3.2. Objective Function

The formulas of Equations (9)–(12) indicate that every wave consists of three parameters—the
amplitude, frequency and phase—and thus each source signal contains nine unknown parameters;
or its dimension is nine, i.e., d = 9. Therefore, we set the xi, i = 1, 2, . . . , 9 as our searched
parameters, and z(t) as the searched signal:

z(t) = x1 sin(2πx2t + x3) + x4 sin(2πx5t + x6) + x7 sin(2πx8t + x9). (13)

It is reasonable and effective for the objective function to be defined as the MSE
between the source signal and the searched signal as follows:

f (x) =
1
L

L−1

∑
t=0

(s(t)− z(t))2, (14)

where s(t) is taken from Equation (9).
For other source signals, their objective functions are defined accordingly.

4. Experimental Results and Discussion

In this section, experimental parameters for DE are set, including the differential
weight, the crossover rate, the dimension and the population size. Afterwards, our experi-
ments are presented and then the corresponding experimental results are discussed.

4.1. Experimental Settings

Since each source signal consisted of nine parameters, its dimension of DE was nine,
i.e., d = 9. The amplitude of the first component was set to be 1, the frequency 0.01 and the
phase 0; the amplitude of the second component was to be 2, the frequency 0.02 and the
phase 0.125π; the amplitude of the third component was to be 3, the frequency 0.03 and
the phase 0.25π. For clarity, the first source signal is represented as follows:

s(t) = sin(2π(0.01)t + 0) + 2 sin(2π(0.02)t + 0.125π) + 3 sin(2π(0.03)t + 0.25π). (15)

The population size, n, of DE was set to be 90, i.e., n = 90; each experiment was run
20 times, and the maximum number of iterations—the termination criterion—was set to be
15,000 for each run. In addition, the differential weight was set to be 0.5, and the crossover
rate was 0.1.

For the domains of the amplitude, frequency and phase parameters, it is much eas-
ier to set; a good choice for the amplitude is the difference between the maximum and
minimum values of the source signal, which is sufficient to cover all potential amplitudes.
With the help of DFT, a better choice for the amplitude is two times the maximum value
of all frequency amplitudes, which is sufficient to cover all potential amplitudes in a
smaller range.

For normalized frequencies, the domain of frequency, [0, 0.5], and the domain of phase,
[0, 2π], together will cover all possibilities of frequency and phase. Therefore, the domains
of the amplitude, frequency, and phase were set to be [0, 10], [0, 0.5] and [0, 2π], respectively.
All initial positions of each population were randomly and uniformly distributed in the
search space.

During the search process, all members of the population were restricted in the search
space; when any member of the population flew out of the domain, it was replaced by
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the upper or lower limit of the domain according to its solution. The operation was
implemented by a clamping function of the position, lying between xmin and xmax, where
xmin is the lower limit and xmax the upper limit.

4.2. Experimental Results

In the following subsections, four source signals are considered, consisting of three
combinations of single waves and one combination of three waves. These three single
waves are sinusoidal, square and triangular waves; the composite wave is composed of the
previous three single waves.

4.2.1. Sinusoidal Waves

The first source signal, as in Equation (15), consisted of a combination of three sinu-
soidal waves, which were common continuous and smooth functions. Figure 1 shows the
results through SDDE.

Figure 1. The first source signal: (a) the source signal and its three individual components; (b) the searched components
and their combination (top).

The first graph (in the first panel) of Figure 1a is the first source signal; the second graph (in the
second panel) is the first original sinusoidal wave, (a1, f1, p1) = (1, 0.01, 0); the third graph (in the
third panel) is the second original sinusoidal wave, (a2, f2, p2) = (2, 0.02, 0.125π); and the fourth
graph (in the fourth panel) is the third original sinusoidal wave, (a3, f3, p3) = (3, 0.03, 0.25π).

In order to understand the feasibility and potential of SDDE, we only show a plot
with the best performance, i.e., the minimum error among 20 runs. Even in the primary
stage, Table 1 shows that two runs can still achieve the true minimum error; therefore, the
searched parameters of Run 7 were fetched to generate Figure 1b.

Obviously, Figure 1b shows the same results as Figure 1a; that is, we can find three
exact components through SDDE. It is worth noting that even if we can determine the exact
components, the order of appearance from the source signal is usually different from that
from searched signal.

Except for two runs with the best zero error, Table 1 also shows the MSEs of 12 runs
that were close to 0, while the other six runs had bad performance.

On the surface, it seems to be easy to decompose this smooth signal into separate
components. For comparison, EMD was adopted to perform the decomposition task.
Under the same source signal, its decomposition results are shown in Figure 2. The first
graph of Figure 2 is the source signal; the second is the first IMF, simply denoted by IMF1;
the third to fifth graphs are IMF2 to IMF4; and the final graph is the residue.
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Table 1. Performance of four source signals.

Runs Sinusoidal Square Triangular Composite

1 7.58E−02 0.00E+00 2.75E−01 6.80E−01
2 3.51E−32 0.00E+00 1.65E−01 9.10E−01
3 3.51E−32 0.00E+00 2.02E−03 0.00E+00
4 3.51E−32 0.00E+00 8.58E−02 1.69E−30
5 3.51E−32 0.00E+00 3.07E−02 5.09E−01
6 5.10E−22 0.00E+00 1.37E−03 1.24E+00
7 0.00E+00 0.00E+00 1.09E−01 8.09E−01
8 0.00E+00 0.00E+00 9.62E−01 1.12E−01
9 4.99E−01 0.00E+00 4.31E−31 4.84E−01

10 3.51E−32 0.00E+00 1.31E−03 1.40E+00
11 3.51E−32 0.00E+00 4.16E−01 5.09E−01
12 1.67E−01 0.00E+00 3.59E−01 6.31E−04
13 4.99E−01 0.00E+00 5.26E−03 7.97E−03
14 5.55E−32 0.00E+00 4.16E−01 1.95E−15
15 5.55E−32 0.00E+00 6.18E−01 1.13E+00
16 3.51E−32 0.00E+00 4.31E−01 6.80E−01
17 1.65E−30 0.00E+00 4.16E−01 7.78E−01
18 3.33E−02 0.00E+00 8.22E−02 1.24E+00
19 5.29E−03 0.00E+00 4.16E−01 1.49E+00
20 5.55E−32 0.00E+00 2.75E−01 8.34E−24

Mean 6.39E−02 0.00E+00 2.53E−01 5.99E−01
Std. 1.54E−01 0.00E+00 2.55E−01 5.19E−01

Figure 2. Empirical mode decomposition of the first source signal: the source signal, IMF1–IMF4 and
residue from top to bottom.

Compared to our proposed SDDE approach, Figure 2 shows that the waveforms
of graphs 1 and 2 (the source signal and the highest-frequency component) are almost
the same except for their amplitudes and boundaries. From another perspective, EMD
automatically views the source signal as a special high-frequency component (IMF1), and
its special low-frequency component (IMF2) is similar to a sinusoidal function. The results
also reflect the fact that EMD acts essentially as a dyadic filter bank [21–23]. Therefore, some
compound waves, even sinusoidal waves, cannot further be decomposed into separate
waves when these components lie in the same dyadic filter bank.

In this case, the special composite high-frequency component consists of three sinu-
soidal waves. Because of the inherent characteristics of EMD, it cannot further decompose
the special composite high-frequency component into separate components.

4.2.2. Square Waves

The second source signal consisted of a combination of three square waves, which
were non-continuous and also non-smooth functions. Their amplitudes, frequencies and
phases were the same as those of the sinusoidal waves. The formula of the second source
signal is almost the same as Equation (15), except that the sinusoidal function is replaced
by its corresponding square function.
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Figure 3a shows the second source signal and its separate waves; Figure 3b shows
the searched components through SDDE and their combination. Likewise, these graphs
were produced based on the first set of parameters with the best performance, i.e., the
parameters of Run 1.

Figure 3. The second source signal: (a) the source signal and its three individual components; (b) the
searched components and their combination (top).

Generally, non-continuous functions are difficult to decompose; however, this task is
easy for our proposed SDDE. In fact, Table 1 shows that all 20 runs can achieve the true
minimum error. Therefore, we can determine three exact components through SDDE.

Figure 3b shows almost the same waves as Figure 3a except for the order of appearance.
The change of the order of appearance is due to the randomness of DE.

For comparison, EMD was used to decompose the second source signal; the decom-
position results, consisting of eight panels or graphs, are shown in Figure 4. For visual
consideration, Figure 4 is composed of two plots (Figure 4a,b); the four graphs of Figure 4a
are the source signal and IMF1 to IMF3, from top to bottom; the four graphs of Figure 4b
are IMF4 to IMF6 and the residue from top to bottom.

Figure 4. Empirical mode decomposition of the second source signal: (a) the source signal, IMF1–
IMF3 from top to bottom; (b) IMF4–IMF6 and residue from top to bottom.

As expected, EMD cannot decompose the source signal into three square waves
well. Since the square waves are non-continuous and also non-smooth functions, EMD
produces an extremely complicated highest-frequency component (IMF1) in response to
non-continuity and also non-smoothness. Except for the potential end effects of EMD,
IMF2 to IMF3 can be viewed as two special periodic components; IMF4 is a relatively
low-frequency component similar to a sinusoidal function.
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Although EMD can decompose some hidden signal patterns in the case of a combi-
nation of periodic waves, these signal patterns are generally compound waves within the
same dyadic filter bank [21–23], and they are therefore difficult to recognize and explain.
For better understanding, it is necessary to further decompose them into separate signal
patterns. Obviously, our proposed SDDE approach is much better than EMD in this case.

4.2.3. Triangular Waves

The third source signal consisted of a combination of three triangular waves, which
were continuous but non-smooth functions. Likewise, their amplitudes, frequencies and
phases were the same as those of the sinusoidal waves. The formula of the third source
signal is almost the same as Equation (15) except that the sinusoidal function is replaced by
its corresponding triangular function.

Figure 5a shows the third source signal and its separate waves; Figure 5b shows
the searched components through SDDE and their combination. These graphs were also
produced based on the first set of parameters with the best performance, i.e., the parameters
of Run 9.

Figure 5. The third source signal: (a) the source signal and its three individual components; (b) the
searched components and their combination (top).

Table 1 shows that Run 9 exhibited the best performance. Except for tolerable compu-
tational error, we were almost able to determine three exact components through SDDE,
and hence its result was chosen to generate Figure 5b. Not surprisingly, Figure 5b shows
almost the same waves as Figure 5a except for the order of appearance.

Compared to the previous two source signals, Table 1 also shows that the third source
signal is more difficult to search or decompose into its exact signal components. Even
though only one of 20 runs exhibited close to zero error, SDDE shows potential for perfectly
decomposing source signals.

Figure 6 shows the decomposition results of the third source signal by EMD. Similar
to the first source signal, EMD essentially views the source signal as an intrinsic mode
function, and thus it can only decompose the source signal into two main components:
one is a scaled version of the source signal (IMF1), and the other is almost a sinusoidal
function (IMF2). The results also reflect the fact that EMD acts essentially as a dyadic filter
bank [21–23]. Therefore, some compound waves, even triangular waves, cannot further be
decomposed into separate waves when these components lie in the same dyadic filter bank.
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Figure 6. Empirical mode decomposition of the third source signal: the source signal, IMF1–IMF4
and residue from top to bottom.

4.2.4. Composite Waves

The fourth source signal consisted of a combination of three different waves, which
were also non-continuous and non-smooth functions. The first wave was the sinusoidal
wave; the second was the square wave; and the third was the triangular wave. The
amplitude, phase and frequency were the same as those of the first source signal. For
clarity, the fourth source signal is represented as follows:

s(t) = sin(2π(0.01)t + 0) + 2square(2π(0.02)t + 0.125π) + 3triangle(2π(0.03)t + 0.25π). (16)

Figure 7a shows the fourth source signal and its separate waves; Figure 7b shows
the searched components through SDDE and their combination. Likewise, these graphs
were produced based on the first set of parameters with the best performance, i.e., the
parameters of Run 3.

Figure 7. The fourth source signal: (a) the source signal and its three individual components; (b) the
searched components and their combination (top).

Table 1 shows that Run 3 could achieve the true minimum error; thus, SDDE was able
to decompose the source signal into three exact components. Obviously, Figure 7b shows
the same waves as Figure 7a.

Similar to the second source signal, EMD cannot decompose the source signal into
three separate waves. Its decomposition results are shown in Figure 8. For visual consider-
ation, Figure 8 is composed of two plots (Figure 8a,b): the four graphs of Figure 8a are the
source signal and IMF1 to IMF3 from top to bottom, and the four graphs of Figure 8b are
IMF4 to IMF6 and the residue from top to bottom.
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Figure 8. Empirical mode decomposition of the fourth source signal: (a) the source signal, IMF1–IMF3
from top to bottom; (b) IMF4–IMF6 and residue from top to bottom.

As with the second source signal, the fourth source signal contains a non-continuous
square wave and a non-smooth triangular wave. Therefore, EMD also produces an ex-
tremely complicated highest-frequency component (IMF1) in response to non-continuity
and non-smoothness. Likewise, IMF2 is also viewed as one special periodic component;
except for the potential end effects, IMF3 and IMF4 are two relatively low-frequency
components similar to a sinusoidal function; the frequency of IMF3 is about twice that
of IMF4.

In the case of the fourth source signal, our proposed SDDE approach can directly
decompose the source signal into three different waves, but EMD only can provide some
hidden characteristics which need further analysis and explanations.

4.2.5. Signal Decomposition in the Presence of Noise

To show that our proposed SDDE approach can work in practical applications, in
the following two experiments, we added 10 dB white noise to each source signal; the
signal-to-noise ratio (SNR) [30] is defined by:

SNR = 10 log10(Ps/Pn), (17)

where

Ps =
1
N

N−1

∑
t=0

s2(t) (18)

and the variance of the white noise is as follows:

Pn = σ2
n . (19)

After we compute the power, Ps, of the signal, the standard deviation of the white
noise can be computed by the following formula:

σn =
√

Ps/10SNR/10. (20)

In the first experiment, we only knew the exact type of hidden signal components
but did not know how many components existed. Since the dimension of true signal
components was nine (three signal components, each with three parameters), we supposed
that there were six signal components, and hence the dimension was a total of 18. Likewise,
the population size, n, was set to be 90.

Table 2 lists four experimental results, where Pr is the power of real noise. In the pres-
ence of noise, zero error is impossible. The error for each run will reflect the performance of
SDDE; the closer the value to Pr, the better the performance. These results show that SDDE
could still determine hidden signal components in the presence of noise in all four cases.
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Table 2. Performance of four noised source signals (10 dB white noise) with known type and
unknown number.

Runs Sinusoidal Square Triangular Composite

1 6.41E−01 1.56E+00 1.01E+00 7.54E−01
2 6.44E−01 1.55E+00 9.98E−01 7.65E−01
3 6.33E−01 1.52E+00 9.98E−01 7.81E−01
4 6.32E−01 1.54E+00 9.94E−01 7.56E−01
5 6.41E−01 1.55E+00 1.00E+00 8.77E−01
6 6.29E−01 1.57E+00 9.98E−01 7.70E−01
7 6.44E−01 1.56E+00 9.97E−01 8.67E−01
8 6.37E−01 1.53E+00 1.01E+00 7.44E−01
9 6.40E−01 1.54E+00 1.00E+00 9.34E−01

10 6.30E−01 1.53E+00 1.01E+00 9.30E−01
11 6.43E−01 1.52E+00 1.01E+00 7.67E−01
12 6.38E−01 1.53E+00 1.00E+00 7.62E−01
13 6.35E−01 1.55E+00 1.01E+00 7.54E−01
14 6.30E−01 1.54E+00 1.01E+00 8.23E−01
15 6.37E−01 1.55E+00 1.00E+00 8.74E−01
16 6.45E−01 1.56E+00 1.01E+00 7.72E−01
17 6.45E−01 1.55E+00 9.98E−01 7.67E−01
18 6.41E−01 1.54E+00 9.98E−01 9.11E−01
19 6.33E−01 1.54E+00 1.00E+00 7.50E−01
20 6.44E−01 1.55E+00 1.00E+00 8.46E−01

Mean 6.38E−01 1.54E+00 1.00E+00 8.10E−01
Std. 5.47E−03 1.24E−02 4.97E−03 6.58E−02

Ps 7.09E+00 1.51E+01 1.02E+01 7.78E+00
Pn 7.09E−01 1.51E+00 1.02E+00 7.78E−01
Pr 6.58E−01 1.61E+00 1.03E+00 7.70E−01

To visualize the data in a limited space, we only show the decomposed results of
the first source signal—a combination of three sinusoidal waves—in Figure 9. The first
six graphs of Figure 9 show six possible sinusoidal waves, respectively. The first graph
of Figure 9a is equivalent to the second original sinusoidal wave; the second graph is
equivalent to the first original sinusoidal wave. The first graph of Figure 9b is equivalent to
the third original sinusoidal wave. The magnitudes of the other three possible sinusoidal
waves were all lower than 0.15, which were in fact artifacts due to white noise. The third
graph of Figure 9b is a combination of six possible sinusoidal components, which is quite
similar to the first source signal; the residue is in the fourth graph.

Figure 9. The searched components of the first noised source signal (10 dB white noise): (a) four
possible sinusoidal signal components; (b) two possible sinusoidal signal components, a combination
of six possible sinusoidal components and the residue from top to bottom.
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For comparison, Figure 10 shows the decomposition results through EMD of the first
noised source signal (10 dB white noise); Figure 10a contains the first noised source signal
and IMF1 to IMF4 from top to bottom; and Figure 10b contains IMF5 to IMF8 and the
residue from top to bottom. Unlike our proposed SDDE approach, EMD is easily affected
by white noise; no separate sinusoidal wave could be decomposed by EMD under the
contaminated source signal.

Figure 10. Empirical mode decomposition of the first noised source signal (10 dB white noise): (a)
the source signal with noise, IMF1–IMF4 from top to bottom; (b) IMF5–IMF8 and residue from top
to bottom.

In the second experiment, we only knew that hidden signal components were com-
posed of three types of sinusoidal, square and triangular waves but did not know how
many components existed. Since the dimension of true signal components was nine, we
supposed that there were nine signal components and hence the dimension was a total of
27. In addition, the population size, n, was set to be 135.

Table 3 lists three experimental results. Since the error for each run was closer to
the power of real noise, Pr, the table shows that SDDE could determine hidden signal
components even in the presence of noise in all three cases.

Likewise, due to a limited space, we only visualize the decomposed results of the
second source signal—a combination of three square waves—in Figure 11. The first nine
graphs of Figure 11 in turn show the sinusoidal, square and triangular waves, respectively.
The second graph of Figure 11a is equivalent to the third original square wave; the third
graph is 0; and the amplitudes of the other two graphs are lower than 0.4, which are in fact
artifacts due to white noise.

The first graph of Figure 11b is equivalent to the first original square wave; the fourth
graph shows the second original square wave; and the amplitudes of the other two graphs
are lower than 0.15, which are in fact artifacts due to white noise. The amplitude of the first
graph of Figure 11c is zero; the second graph shows a combination of nine possible square
components, which is quite similar to the second source signal; a residue is shown in the
third graph; and the fourth graph shows the second noised source signal.

For comparison, Figure 12 shows the decomposition results through EMD of the
second noised source signal; Figure 12a contains the second noised source signal and IMF1
to IMF4 from top to bottom; Figure 12b contains IMF5 to IMF8 and the residue from top to
bottom. Unlike our proposed SDDE approach, EMD is easily affected by white noise; no
separate square wave can be decomposed by EMD under the contaminated source signal.

4.2.6. Signal Decomposition through Discrete Fourier Transform

To understand the differences between our proposed SDDE approach and DFT, Figure
13a shows the amplitude spectrum and phase spectrum through DFT with L = 1000 of the
first source signal as well as the plot of the corresponding sinusoidal amplitudes; Figure
13b shows the corresponding plots for L = 1024. In the phase spectrums, the magnitudes are
normalized by π for easy comparison. Since DFT has a frequency resolution of 1/L, L = 1000



Sensors 2021, 21, 588 15 of 22

can make our adopted three frequencies (0.01, 0.02 and 0.03) match the resolution, but
L = 1024 cannot. In Figure 13, the points marked in red represent three main components
closer to the original three frequencies; except for the previous three main components, the
points marked in blue represent other main components that their amplitudes are 0.1 times
larger than the maximum value of all amplitudes.

Table 3. Performance of three noised source signals (10 dB white noise) with three known types and
unknown number.

Runs Sinusoidal Square Triangular

1 7.18E−01 1.32E+00 9.74E−01
2 7.18E−01 1.62E+00 1.00E+00
3 7.28E−01 1.47E+00 1.00E+00
4 7.53E−01 1.32E+00 1.00E+00
5 7.33E−01 1.43E+00 1.02E+00
6 7.28E−01 1.34E+00 1.02E+00
7 7.38E−01 1.32E+00 9.81E−01
8 7.20E−01 1.33E+00 9.97E−01
9 7.35E−01 1.39E+00 9.80E−01
10 7.36E−01 1.38E+00 9.80E−01
11 7.32E−01 1.39E+00 9.77E−01
12 7.31E−01 1.55E+00 9.81E−01
13 7.33E−01 1.30E+00 1.01E+00
14 6.96E−01 1.38E+00 9.63E−01
15 7.44E−01 1.61E+00 9.85E−01
16 7.71E−01 1.31E+00 1.01E+00
17 7.25E−01 1.47E+00 9.92E−01
18 7.39E−01 1.50E+00 9.93E−01
19 7.37E−01 1.50E+00 9.88E−01
20 7.28E−01 1.75E+00 1.00E+00

Mean 7.32E−01 1.43E+00 9.93E−01
Std. 1.48E−02 1.23E−01 1.58E−02

Ps 7.09E+00 1.51E+01 1.02E+01
Pn 7.09E−01 1.51E+00 1.02E+00
Pr 7.55E−01 1.33E+00 1.03E+00

Figure 11. The searched components of the second noised source signal (10 dB white noise): (a) possible sinusoidal, square,
triangular and sinusoidal signal components from top to bottom; (b) possible square, triangular, sinusoidal and square signal
components from top to bottom; (c) a possible triangular signal component, a combination of nine possible components, a
residue and the second noised source signal from top to bottom.
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Figure 12. Empirical mode decomposition of the second source signal with 10 dB white noise: (a)
the source signal with noise, IMF1–IMF4 from top to bottom; (b) IMF5–IMF8 and residue from top
to bottom.

Figure 13. Amplitude spectrum and phase spectrum of the first source signal through DFT as well as
the corresponding sinusoidal amplitude plot (from top to bottom): (a) L = 1000; (b) L = 1024.

For L = 1000, Figure 13a obviously shows that there are only three main frequency
components; they are exactly 0.01, 0.02 and 0.03; their corresponding phases are −0.5π,
−0.375π and −0.25π; their corresponding sinusoidal amplitudes are 1, 2 and 3. Since
the fundamental basis function of DFT for reconstruction is the Cosine function, their
corresponding phases for the Sine function need to be right shifted by 0.5π; the shifted
phases are 0, 0.125π and 0.25π, which are the same as the phases of the first source signal.
Figure 14a shows from top to bottom the first source signal, the reconstructed signal
with three main components and the corresponding signal error; Figure 14b shows the
corresponding plots for the reconstructed signal with all main components.

Figure 14. The source signal, the reconstructed signal and the corresponding signal error (from top
to bottom) for L = 1000: (a) three main components; (b) all main components.
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Since our adopted three frequencies match the resolution, DFT can accurately decompose
the first source signal into three main components; therefore, there is no difference between
the reconstructed signal with three main components and that with all main components.

For L = 1024, Figure 13b shows that there are more than three main frequency com-
ponents. We chose as our three main components three frequencies of 0.0098, 0.0195 and
0.0303, which are closer to three frequencies of the first source signal; their corresponding
phases are−0.2282π, 0.1193π and−0.5349π for the Cosine function or 0.2718π, 0.6193π and
−0.0349π for the Sine function, which are much different from the corresponding original
phases (0, 0.125π and 0.25π); their corresponding sinusoidal amplitudes (0.9493, 1.3639 and
2.6559) are also a little different from the corresponding original amplitudes (1, 2 and 3).

Figure 15a shows the first source signal, the reconstructed signal with three main
components and the corresponding signal error; Figure 15b shows the corresponding plots
for the reconstructed signal with all main components.
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Figure 15. The source signal, the reconstructed signal and the corresponding signal error (from top
to bottom) for L = 1024: (a) three main components; (b) all main components.

Due to a finite frequency resolution, DFT cannot accurately determine three compo-
nents. Therefore, the error between the first source signal and the reconstructed signal with
three main components is much significant; even all main components are considered, the
error is also significant. In contrast, our proposed SDDE approach can exactly determine
the three main components.

In the presence of 10 dB white noise, Figure 16a shows the amplitude spectrum and
phase spectrum of the first noised source signal through DFT with L = 1000 as well as the
corresponding sinusoidal amplitudes plot; Figure 16b shows the corresponding plots for
L = 1024.

Figure 16. Amplitude spectrum and phase spectrum of the first source signal contaminated by 10 dB
white noise through DFT as well as the corresponding sinusoidal amplitude plot (from top to bottom):
(a) L = 1000; (b) L = 1024.
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For L = 1000 and in the presence of 10 dB white noise, Figure 16a shows that there
are also only three main frequency components; they are exactly 0.01, 0.02 and 0.03; their
corresponding phases are −0.5081π, −0.3734π and −0.2536π for the Cosine function, or
−0.0081π, 0.1266π and 0.2464π for the Sine function, which are close to the phases of the
first source signal; their corresponding sinusoidal amplitudes are 0.9884, 2.0958 and 3.0135,
which are close to the amplitudes of the first source signal.

Figure 17a shows from top to bottom the first noised source signal, the reconstructed
signal with three main components, the error between the reconstructed signal and the first
source signal, and the error between the reconstructed signal and the first noised source
signal. Figure 17b shows the corresponding plots for the reconstructed signal with all
main components.
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Figure 17. The first noised source signal (10 dB white noise), the reconstructed signal, the error
between the reconstructed signal and the first source signal, and the error between the reconstructed
signal and the first noised source signal (from top to bottom) for L = 1000: (a) three main components;
(b) all main components.

For L = 1024 and in the presence of 10 dB white noise, Figure 16b shows that there are
more than three main frequency components. We chose as our three main components
three frequencies of 0.0098, 0.0195 and 0.0303, which are closer to three frequencies of
the first source signal; their corresponding phases are −0.2168π, 0.1303π and −0.5331π
for the Cosine function or 0.2832π, 0.6303π and -0.0331π for the Sine function, which
are much different from the corresponding original phases (0, 0.125π and 0.25π); their
corresponding sinusoidal amplitudes (0.9500, 1.3752 and 2.6818) are also much different
from the corresponding original amplitudes (1, 2 and 3).

Figure 18a shows from top to bottom the first noised source signal, the reconstructed
signal with three main components, the error between the reconstructed signal and the first
source signal, and the error between the reconstructed signal and the first noised source
signal. Figure 18b shows the corresponding plots for the reconstructed signal with all
main components.

Likewise, DFT cannot accurately determine three components due to a finite frequency
resolution. Therefore, the error between the first source signal and the reconstructed signal
with three main components is much significant; even all main components are considered,
the error is also significant. In contrast, our proposed SDDE approach can determine the
three main components at a tolerable level.

4.3. Discussion

Through EMD, the currently most widely-used data-driven decomposition tool, we
can determine some regular patterns for signals with hidden periodic functions. The
number of all possible signal components, IMFs, depends on the complexity of the source
signal; it is normally a fraction of the length of the source signal. Hence, EMD has a
potential problem of frequency resolution.
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Figure 18. The first noised source signal (10 dB white noise), the reconstructed signal, the error
between the reconstructed signal and the first source signal, and the error between the reconstructed
signal and the first noised source signal (from top to bottom) for L = 1024: (a) three main components;
(b) all main components.

For smooth and non-smooth continuous signals with hidden periodic functions, EMD
generally produces sinusoidal patterns with deformations in the boundaries because of
end effects; in addition, it also produces some special periodic signal patterns with little
deformation in the boundaries, which can be viewed as its unique basis functions, while
some are a combination of several standard basis functions, such as sinusoids.

For non-continuous signals with hidden periodic functions, it also produces some
special periodic signal patterns with little deformation in the boundaries, which fluctuate
wildly depending on how many non-continuous components the source signal contains.
For example, a combination of three square waves varies more wildly than a composite of
three different waves because the former contains more non-continuous components than
the latter.

Because of the inherent characteristics of EMD—i.e., the fact that EMD acts essentially
as a dyadic filter bank [21–23]—it cannot further decompose some compound waves, even
sinusoidal waves, into separate waves when these compound waves lie in the same dyadic
filter bank. In contrast, our proposed SDDE approach can perfectly or almost perfectly
decompose any compound waves into separate waves when the types of waves and the
number of these types are known. Even in the presence of 10 dB white noise, our proposed
SDDE approach still determine the main signal components when one or three types of
waves are known but without knowing the number of these types.

On the other hand, based on the basis functions of the Sine function or Cosine function,
DFT can also decompose any signal into a combination of the basis functions. The number
of all possible signal components shown by its amplitude spectrum is the length of the
source signal. Hence, DFT also has a potential problem of frequency resolution, but less
severer than that of EMD.

For the first source signal, a combination of sinusoidal waves, if the frequencies of
the original signal components match the resolution, then DFT can accurately determine
three main components even in the presence of 10 dB white noise; but if the frequencies of
the original signal components do not match the resolution, DFT decomposes the signal
into more than three main components, causing a big error between the reconstructed
signal and the source signal. As for the other three source signals or combinations of other
periodic waves, DFT cannot decompose well even for signals without noise contamina-
tion. In contrast, our proposed SDDE approach perform well ever for signals with 10 dB
white noise.

EMD and DFT both can quickly decompose any signal into possible signal components;
through IMFs, EMD shows possible composites of single components of a signal; through
amplitude spectrum, DFT shows possible single components of a signal. Even in the
presence of 10 dB white noise and with a finite frequency resolution, EMD always shows
possible patterns of a signal; DFT always shows possible components of a signal. The
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importance of an IMF is proportional to its magnitude; likewise, the importance of the
sinusoidal wave at a certain frequency is proportional to the magnitude of the frequency
spectrum at the frequency. The components with relative large magnitudes are called the
main components.

Due to a considerably finite frequency resolution, EMD easily causes frequency mixing,
i.e., an IMF consisting of different frequency components. Although DFT has a larger
frequency resolution than EMD, its resolution is also finite. In contrast, our proposed
SDDE approach has an infinite frequency resolution, and hence it has the opportunity to
exactly decompose.

In addition, EMD and DFT both cannot do well in the signals of non-smooth waves;
for EMD, how to explain the decomposed components is a big challenge; for DFT, the basis
functions are always sinusoidal waves. In contrast, our proposed SDDE approach can
adopt various periodic waves as our basis functions.

Contrary to EMD and DFT, it is necessary for our proposed SDDE approach to first
decide what types of signal components are searched, and therefore how to determine
the types of hidden signal components is a big challenge. Except for domain knowledge
and individual experience, the main components of EMD and DFT can provide much
information about types of signal components and their corresponding numbers.

In the current stage, our proposed SDDE approach focuses on three common periodic
signals, but it can be easily applied to complex signals, such as chirp signals [31], or
aperiodic signals, such as aperiodic rectangular pulses, or radar signals [32], or amplitude-
and frequency-modulated (AM and FM) component signals [6], as long as their signal
features can be described by formulas. When source signals are complicated and even
contaminated by noise, it is usually necessary to adopt an advanced optimization algorithm
combined with domain knowledge and the information provided by DFT and EMD.

DFT provides all possible single components, and therefore, DFT performs well in the
signals with sinusoidal waves; EMD provides possible simple and complex combinations
of all single components, and therefore EMD performs well in the signals with AM and FM
waves. As EMD provides an auxiliary tool to help DFT obtain and explain some complex
signal waveforms, our proposed SDDE approach provides an auxiliary tool to help DFT
obtain more accurate information about signals with combinations of sinusoidal signals,
and can also decompose signals with combinations of various periodic waves.

5. Conclusions

In this paper, a novel signal decomposition technique, called signal decomposition
by differential evolution (SDDE), was proposed to decompose various periodic signals.
At the pioneering stage, we only considered four common periodic signals, which were a
combination of three sinusoidal waves, a combination of three square waves, a combination
of three triangular waves and a combination of the three different above-mentioned waves.
Obviously, the first source signal was continuous; the second was non-continuous and
non-smooth; the third was continuous but non-smooth; and the final wave was non-
continuous and non-smooth. First, their types and their corresponding numbers were
known to us. Of 20 runs, our proposed SDDE approach could perfectly or almost perfectly
decompose these four periodic source signals into separate waves. In contrast, empirical
mode decomposition (EMD), the currently most widely-used data-driven decomposition
tool, could not decompose these four periodic signals into separate waves. By nature, the
outcomes of EMD, intrinsic mode functions, are combinations of amplitude-modulated
modes and frequency-modulated modes; thus, EMD tends to view some periodic waves,
single or composite, as its basis functions; and it also produces special non-periodic waves,
generally transient and non-stationary, which sometimes are not easy to explain. In the
second condition, one or three types of waves were known to us, but their corresponding
numbers were unknown. Our proposed SDDE approach was still able to determine the
main components even in the presence of 10 dB white noise.
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Limited by a finite frequency resolution and sinusoidal basis functions, discrete Fourier
transform (DFT) can decompose well only for signals with combinations of sinusoidal
waves whose frequencies all match the frequency resolution. In contrast, our proposed
SDDE approach can decompose well for combinations of various periodic waves. DFT
and EMD well suit for roughly localizing the main components in order to provide much
information about the source signal. With the help of DFT and EMD, our proposed SDDE
approach can perform well in an efficient and effective way and detail more about how
many main components indeed exist.

In the future, many works can be performed, including the use of source signals with
more components, collecting various signal components—even complex components—into
a collection of signal components as possible known types, and applying SDDE to some
interesting source signals. In addition, we can adopt other advanced DE methods or other
nature-inspired optimization algorithms, such as real-coded genetic algorithms or particle
swarm optimization, to perform signal decomposition under newly developed objective
functions. It can be expected that these objective functions may also be used as another set
of benchmark functions, which are simple in theory but difficult in practice, to compare the
performance among various optimization algorithms in the near future.
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