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Abstract: In this work, we have designed and simulated a graphene field effect transistor (GFET) with
the purpose of developing a sensitive biosensor for methanethiol, a biomarker for bacterial infections.
The surface of a graphene layer is functionalized by manipulation of its surface structure and is used
as the channel of the GFET. Two methods, doping the crystal structure of graphene and decorating
the surface by transition metals (TMs), are utilized to change the electrical properties of the graphene
layers to make them suitable as a channel of the GFET. The techniques also change the surface
chemistry of the graphene, enhancing its adsorption characteristics and making binding between
graphene and biomarker possible. All the physical parameters are calculated for various variants of
graphene in the absence and presence of the biomarker using counterpoise energy-corrected density
functional theory (DFT). The device was modelled using COMSOL Multiphysics. Our studies show
that the sensitivity of the device is affected by structural parameters of the device, the electrical
properties of the graphene, and with adsorption of the biomarker. It was found that the devices made
of graphene layers decorated with TM show higher sensitivities toward detecting the biomarker
compared with those made by doped graphene layers.

Keywords: GFET; methanethiol biosensor; COMSOL modelling; bandgap engineering; DFT; func-
tionalized graphene

1. Introduction

Yielding monolayer of honeycomb networked carbon (C) atoms from the graphite
leads to one of the most promising materials for photonics and electronics research and
industry [1,2]. sp2 hybridised carbon in this 2D material, called graphene, reveals remark-
able electronic and mechanical properties such as very large mobility of charge carriers
and high electric and thermal conductivities [1,2]. Graphene is a zero-bandgap material
considered to be a semimetal [3] a the property that conceals its functionalities and limits
its applications especially for semiconductor technology [4–6]. To overcome this limitation,
this hexagonally structured material is transformed into a semiconductor through various
band gap engineering methods including creating edge and quantum confinement effects
by fabrication of one-dimensional graphene nanoribbons [7–11], passivation with foreign
molecules [12,13], as an outcome of straintronics [14,15], and doping with impurities [16,17]
and by applying electric field perpendicular to the graphene surface [18,19]. Using the
above techniques, not only do we induce a gap in the band structure of the graphene, but we
are able to tune the gap. Graphene has potential for many applications, such as graphene
field effect transistor (GFET) [20–24], photonic devices such as photodetectors [25–30],
phototransistors [31–33], and mode-locked lasers [34].

Moreover, due to the high surface-to-volume ratio and the possibility of generat-
ing high adsorption site density [35], graphene is extensively used in sensor technology.
Schedin et. al. [36] developed the first graphene-based gas sensor. The sensor works based
on the change in the hall resistance of the graphene layer as the local carrier concentration
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varies due to the adsorption of NO2 molecules on the surface. Thereafter, researchers work
extensively on graphene and its derivatives for sensory activities based on piezoelectric
effects [37–40], optical effects [41–43], surface phenomenon [44–46], and others. The con-
temporary graphene sensor technology is mostly based on a GFET [20,23,47]. GFETs are
reported for sensing several chemical/biomolecules such as OH ions [48], monosodium
L-glutamate [49], Escherichia coli (E. coli) [50], ethanol [51], glucose [52], hydrogen gas [53],
exosomes [54], and nitrogen-based gases [55].

In this report, we model, design, and analyse GFET biosensors. For this, graphene is
transmuted into semiconducting material using two methods. The first approach is doping
graphene with impurities such as boron (B), aluminium (Al), and gallium (Ga) as n-type and
nitrogen (N) phosphorous (P) and arsenic (As) as p-type dopants. Decorating the graphene
surface with a transition metal (TM) such as palladium (Pd) is the second technique that
we use to manipulate the band gap structure of the graphene. Using these techniques not
only allows for transferring of the semimetal graphene to a semiconducting material but
also gives the capability to generate and control the concentration of adsorption sites on the
surface of graphene layers to attach the biomolecules under investigation. The prepared
graphene layers are then used to design GFET-based biosensors to detect biomarkers such
as methanethiol.

Methanethiol is volatile organo-sulphur material that is considered as a biomarker
for the diseases caused by microorganisms like Helicobacter pylori bacteria (H. pylori) [56],
Porphyromonas gingivalis (P. Gingivalis) phylum Bacteroidetes [57,58]. To the best of our
knowledge, this is the first time that a graphene-based electronic device is used to de-
tect methanethiol.

Density functional theory (DFT) accompanied by drift-diffusion formalism is used
to calculate the physical properties of the semiconducting graphene such as band struc-
ture, mobility, and effective density of states. Adsorption energy is also calculated to
analyse the surface phenomena on all variants of graphene with or without adsorption of
methanethiol. The calculated parameters are used to design and simulate the GFET devices
using COMSOL Multiphysics. The dependencies of I-V curves on the electronic properties
of the graphene layer as well as the geometrical parameters of the device are considered to
evaluate the device’s sensing performance.

2. Device Structure

The semiconductor module of COMSOL Multiphysics was used to design and simu-
late a GFET biosensor. The geometrical configuration of the proposed device is illustrated
in Figure 1. The device comprises a one-atom-thick graphene monolayer laying on a silicon-
oxide/silicon (SiO2/Si) substrate. The SiO2 is an insulating layer, serving as a dielectric
with a dielectric constant (
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r) of 3.99. For the sake of calculations, the boundary conditions
at all terminals are considered ohmic. I-V measurements were used to determine the per-
formance and characteristics of the device. These measurements were subjected to varying
the dimensions of the graphene channel and its surface chemistry (functionalization), the
thickness of the dielectric layer, and the doping concentration of the Si substrate.

The graphene layer serves as a channel in the above structure and must be in the
semiconducting state. As it was a semimetal material in nature, we needed to manipulate
its band structure to transfer it to a semiconductor. Among several methods to induce
bandgap in the graphene band structure, we used the following two methods.

In the first method, the graphene was doped with both donors and acceptors, making
it compensated. Here, although graphene is doped with impurities, the material remains
intrinsic since the concentration of the introduced n-type and p-type dopants will be
the same.
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n-type impurity by incorporating one electron per nm2 into the graphene lattice, whereas 
the Al atom is one electron deficient and acts as a p-type impurity by incorporating one 
hole per nm2 to the lattice structure. 

Figure 1. The proposed graphene field effect transistor (GFET) model. The back-gate structure
enables binding of the biomarker to the channel surface.

Most common dopants used in graphene are elements from group III for acceptors
and from group V for donors (as carbon is in group IV). In this work, the semiconducting
properties of graphene are studied for B-N, Al-P, and Ga-As doping.

In the second method, the bandgap opening for graphene arises by adsorption of
TMs to the graphene surface. The adsorption happens without introducing crystal defects
in graphene lattice. Among TMs, we used Pd due to its high stability and catalytic
activities [59–64]. The electrical properties of the functionalized graphene layer in the
absence and presence of the biomarker are crucial parameters to determine the overall
sensing performance of the device. These parameters are evaluated precisely by atomistic
analytical studies through DFT implemented in Quantum ATK (QATK) software.

3. Results and Discussion
3.1. Atomistic Modelling via Quantum ATK
3.1.1. Band Gap Engineering of Graphene
Compensated Doping Method

Figure 2a illustrates the atomic structure of Al-P doped graphene lattice. Optimization
is performed to achieve the lowest energy structure and therefore the most stable atomic
conformation. The zoomed-in areas in the figure present the calculated Al—C, P—C and
C—C bond lengths of a ground-state optimal structure.

In the proposed structure, the P atom with one extra electron than C atom acts as an
n-type impurity by incorporating one electron per nm2 into the graphene lattice, whereas
the Al atom is one electron deficient and acts as a p-type impurity by incorporating one
hole per nm2 to the lattice structure.

After geometry optimization, it was found that co-doping of graphene with Al-P
atoms did not destroy the Clar’s structure but slightly deformed it, as shown in Figure 2a.
Figure 2b illustrates the doped graphene structure with semi-infinite extension in [100] and
[010] directions considered for energy-band structure calculations.
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(b) extended structure of co-doped graphene considered for the energy band structure calculations. 
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Figure 2. Ground-state optimal structure of Al-P doped graphene; (a) optimized bond lengths of Al—C, P—C, and C—C;
(b) extended structure of co-doped graphene considered for the energy band structure calculations.

The same analyses were also performed for B-N and Ga-As dopants. Each dopant
atom was linked with three C atoms and forms different bond lengths. The bond lengths
along with the induced bandgap are summarized in Table 1. All the DFT calculations
were performed on the same concentration of dopants of one donor–acceptor pair per
nm2. It was found that the Ga-As pair has induced maximum bandgap as compared to
other dopants.

Table 1. Induced bandgap and C—dopant bond length in different doped graphene.

Material B-N Doped
Graphene

Al-P Doped
Graphene

Ga-As Doped
Graphene

Bandgap (eV) 0.24 0.24 0.55

Bond length 1 (Å)
Acceptor 1.47 1.62 1.71

Donor 1.4 1.7 1.7

Bond length 2 (Å)
Acceptor 1.47 1.65 1.72

Donor 1.41 1.72 1.72

Bond length 3 (Å)
Acceptor 1.48 1.65 1.72

Donor 1.41 1.72 1.72

Transition Metal Decoration

TMs have high adsorption capabilities compared to other elements [65]. In this
method, a Pd hetero atom was used to functionalize graphene surface [66–72]. The most
stable position of a Pd atom on graphene is a bridge position (the position between
two consecutive atoms attached through a bond), as shown in Figure 3a [73]. Mulliken
population analysis shows that bond formation between C and Pd atom occurs due to
interaction between pz orbital of C atom (which is perpendicular to the plane of C atoms)
and d orbital of Pd valence band. After optimization, bond length between the Pd and
C is 5.44 Å, as depicted in Figure 3a. The extended surface of Pd decorated graphene is
shown in Figure 3b with one Pd atom per nm2. In semiconductor industries, an appropriate
concentration of the dopant is usually considered to eliminate the effects of dopant–dopant
interaction. In this work, we considered the 1 Pd atom per/ 1 nm2, by which there will be
the least interaction between Pd atoms.
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3.1.2. Interaction with Methanethiol Biomarker

Characteristics of the interactions between the methanethiol, (CH3SH), and graphene
is determined by their binding energy (EAD) [74]. Figure 4a,b present the most stable
position of methanethiol on the surface of Al-P co-doped and Pd-decorated graphene,
respectively, in terms of high adsorption energy.
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Compensated doped graphene shows a powerful association with the methanethiol
through interaction between sulphur (S) and Al atoms. As illustrated in the Figure 4a, the
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Al atom relocates itself by rising towards the methanethiol molecule, causing curvature in
the structure. However, there is no chemical bond formed between the biomarker and Al-P
co-doped graphene, and adsorption of biomarker by the graphene is due to physisorption
phenomena. Even though P atoms do not show strong enticement towards the biomarker,
it plays a crucial role in opening the bandgap of the graphene. A single impurity atom, like
Al or P, opens the Dirac point, but the material remains metallic in nature as some valence
bands overlap with Fermi level.

Contrary to what was observed for the case of compensated graphene, Figure 4b illus-
trates that a bond formation occurs between the methanethiol molecule and Pd-decorated
graphene. The involvement of an S atom in bond formation with Pd confirms the occur-
rence of chemisorption, representing stronger binding between the guest–host complex.
Table 2 summarizes the calculated adsorption energies in proposed complexes. The values
are counterpoise-corrected interaction energies (EAD+CP), which correct the errors arising
due to overlapping of basis orbitals of the two interacting atoms [74].

Table 2. The total energies, adsorption energies between biomarker and graphene.

Material EAD+CP (eV)

Methanethiol adsorbed Pd decorated graphene −1.22
Methanethiol adsorbed B-N doped graphene −0.01
Methanethiol adsorbed Al-P doped graphene −0.90
Methanethiol adsorbed Ga-As doped graphene −0.02

The negative values of the EAD+CP in Table 2 indicates the favourable host–guest
molecules adsorption. Furthermore, larger negative EAD+CP corresponds to more efficient
adsorption and consequently higher sensing functionalities toward methanethiol. There-
fore, the comparison between the values shows that the graphenes doped with B-N and
Ga-As do not have efficient adsorption energy towards the indicated biomarker. As a result,
for further analyses, we only considered Al-P-doped graphene and Pd-decorated graphene
with adsorption energies of −0.90 eV and −1.22 eV, respectively.

Electrical Properties of Al-P Doped Graphene before and after Interactions
with Methanethiol

Figure 5 illustrates the calculated band structure of Al-P-doped graphene before and
after methanethiol adsorption. As is seen, methanethiol adsorption increases the bandgap
of the graphene from 0.24 eV to 0.45 eV. However, the intrinsic behaviour of material
remains the same after adsorption.
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The effective density of states (Nc or Nv) represents the sum of quantum states
disseminated on the entire band in the form of two Dirac delta function defined at the edge
of the band [75]. Nc (Nv) is a function of the carrier mass (mdos

e or mdos
h ) [76]. mdos

e (mdos
h )

is the longitudinal (transverse) effective mass and depends on the valley degeneracy of the
energy bands [77]. In all cases, valley degeneracy is constant, which means only the values
of longitudinal and transverse effective masses affect the Nc and Nv. The longitudinal
and transverse effective mass of electron decrease as conduction band minima (CBM)
and valence band maxima (VBM) converge towards the Fermi level, and they become
massless at the Dirac point, which is the same as those of intrinsic graphene. After the
adsorption of the biomarker, the bandgap increases, and consequently effective masses
increase; as a result, Nc and Nv increase as tabulated in Table 3. The work function (Φ)
expresses the total amount of energy required to knock out one electron from Fermi level
to vacuum level [75] and it is inversely proportional to Fermi energy (Ef). Since adsorption
of methanethiol decreases Ef, it leads to increment in the work function of methanethiol
adsorbed complexes. As is summarized in Table 3, Al-P-doped graphene has a work
function of 4.2 eV, which increases to 4.5 eV once the biomarker is adsorbed.

Table 3. Physical parameters of different variants of graphene before and after methanethiol adsorp-
tion calculated by DFT analysis.

Al-P Doped
Graphene

Methanethiol
Adsorbed Al-P

Doped
Graphene

Pd Decorated
Graphene

Methanethiol
Adsorbed Pd

Decorated
Graphene

Eg (eV) 0.24 0.45 0.018 0.026
EVBM − EF (eV) 0.12 0.23 0.011 0.019
ECBM − EF (eV) 0.12 0.23 0.007 0.007

EF (eV) 5.32 4.99 4.97 4.88
Nature Semiconductor Semiconductor Semiconductor Semiconductor

ml(e)
me

0.048 0.160 0.003 0.004
mt1(e)

me
0.099 1.909 0.007 0.010

mt2(e)
me

0.092 0.174 0.005 0.008
ml(h)
me

0.052 0.164 0.003 0.004
mt1(h)

me
0.108 2.287 0.007 0.010

mt1(h)
me

0.098 0.176 0.005 0.008
mdos

e
me

0.120 0.596 0.00748 0.011
mdos

h
me

0.130 0.641 0.00748 0.011

Nc(cm−3) 1.04 × 1018 1.15 × 1019 1.61 × 1016 2.88 × 1016

Nv(cm−3) 1.17 × 1018 1.28 × 1019 1.61 × 1016 2.88 × 1016

Φ(eV) 4.200 4.500 4.010 4.700
χ (eV) 4.080 4.270 4.003 4.693

µe (cm2/Vs) 1.25 × 105 1.79 × 104 9.58 × 104 1.28 × 105

µh(cm2/Vs) 2.29 × 105 4.00 × 104 3.5 × 104 1.90 × 105

Boltzmann Transport Equation (BTE) with relaxation time approximation (RTA) is
used to calculate mobility (µ) in graphene structures. µ is directly proportional to the
relaxation time of carrier (
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. As is tabulated in Table 3, our calculations show that carriers mobilities are
decreased when methanethiol is adsorbed in Al-P-doped graphene, which affirms that the
velocity of the electrons and holes are also decreased. The structural distortion in Al-P
graphene during the biomarker adsorption is the major cause of reduction of mobility.



Sensors 2021, 21, 580 8 of 16

Electrical Properties of Pd-Decorated Graphene before and after Interactions with
Methanethiol

The Pd decorated graphene shows n-type behaviour with a bandgap of 0.018 eV. As is
illustrated in Figure 6, the adsorption of the biomarker increases the bandgap to 0.026 eV.
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Our calculations show that the longitudinal and transverse effective mass of carriers
increases as the methanethiol molecule is adsorbed on the graphene. Consequently, Nc and
Nv also increase with adsorption. Biomarker adsorption also reduces the EF of the system
as presented in Table 3. Due to the inverse relationship of EF with Φ, Φ of Pd-decorated
graphene changes from 4.01 to 4.77 eV after adsorption.

Structural distortion increases the phonon scattering in the lattice, which adversely
affects the mobility of the material. Decoration of Pd atom on the graphene decreases
the mobility to 105 as it creates distortion in lattice. Pd atom acts as a linking agent
between graphene and analyte and impedes graphene distortion. Therefore, adsorption of
methanethiol increases mobility as summarized in Table 3.

3.2. Device Characterization via COMSOL

COMSOL Multiphysics is used to investigate the DC characteristics of the proposed
GFET devices. The software efficiently allows assigning physical properties of materials
to model the device. The investigated semiconducting properties of the functionalized
graphene in the presence and absence of the biomarker (as summarized in Table 3) are
applied in the material properties section required by the model.

The Al-P doped GFET (AlP-GFET) and Pd decorated GFET (Pd-GFET) performances
are characterized by considering the effect of geometrical and physical parameters of the
devices.

The impact of device parameters variation on the sensitivity of the sensor is discussed
in the following sections.

3.2.1. DC Characteristics of Device

A GFET is a three-electrode device, composed of a graphene channel between two
electrodes and a gate contact to modulate the electronic response of the channel. In this
section, the electrical characteristics of the AlP-GFET and Pd-GFET devices in the absence
of biomarkers are evaluated. For these analyses, the channel length (L, the source-drain
spacing) and channel width (W) of the device are considered 2 µm and 1 µm, respectively.
A p-type Si with the doping concentration of 1018 cm−3 is used as the substrate. While
the source is grounded, the drain current (Id) is measured by sweeping the gate voltage
(Vg) from 0 to 2 V at a drain voltage (Vd) of 10 mV. I-V characteristics of the devices are
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shown in Figure 7a (AlP-GFET) and Figure 7b (Pd-GFET). Two distinct regions appear in
the graphs: negative differential resistance (NDR) and the positive differential resistance
(PDR). A minimum happens as these two regions meet, which is known as the Dirac point
at gate voltage, Vn (neutral voltage). According to the graphs, the Vn of 0.93 V and 1.09 V
were observed for AlP-GFET and Pd-GFET, respectively.
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This peculiar behaviour of the I-V characteristics of the device is due to the ambipolar
transport nature of graphene, which implies the coupled motion of holes and electrons.
Therefore, the charge carrier concentration along the graphene channel gives more insight
into the Id-Vg curve discussed in Figure 7.

The density of the carriers for AlP-GFET and Pd-GFET devices versus the gate voltage
are shown in Figure 8a,b, respectively. The figure shows that the holes are the majority
carrier when the value of Vg is below the value of Vn of the device. At Vn, the concentration
of both carriers is equal, and as Vg increases beyond Vn, a channel inversion is observed
and the electrons will dominate the carrier concentrations.
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occurrence of inversion of the device channel at Vn.

The conductance of the channel is determined by the abundance of charge carriers,
which is influenced by the applied gate voltage. The conductance, in return, determines
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the Id. Therefore, in Figure 7, the negative slope of Id in the NDR region corresponds to the
decreasing.

The trend of carrier hole concentration and the positive slope of Id in the PDR region
correspond to the increasing trend of the carrier electron concentration.

Figure 9a illustrates the Id-Vg curve of AlP-GFET at different drain voltages. It is
observed that with an increment of the drain voltage, the I-V curve shifts toward the
higher current values. The Vn of 0.93 V remains nearly constant for all Vd values. Id-Vg
characteristics of Pd-GFET shown in Figure 9b follow the same trend as discussed for
AlP-GFET. For this device, Vn is at the voltage of 1.09 V, which is higher than what is
observed for AlP-GFET. Moreover, the lower current intensity of Pd-GFET is due to the
lower carrier mobilities in this device compared to AlP-GFET, as summarized in Table 3.
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graphs, Vn of the devices remains constant as Vd varies.

To give a more authenticated perception to the device study, Id-Vg curves were
calculated at Vd of 10 mV for the devices with different channel dimensions (W × L). Figure
10a presents the obtained results for the AlP-GFET devices, and Figure 10b presents those
for Pd-GFET devices. As the results show, the value of Vn for both devices remains constant
and is independent of the device geometry. This is one of the positive characteristics of
the device that shows the sensing properties of the device will not be affected by the
structural device dimensions. However, the device Id is a function of channel length and
width, Id ∝ W

L . The effect of the channel dimension on the device Id follows the following
equation [80].

Id =
W
L

∫ Vd

Vs
(qµpp + qµnn + q

µp+µn

2
npud) (1)

where the parameters W and L are width and length of the channel, respectively; µn and
µp are electron and hole mobility, respectively; and σ = qµnn + qµpp is the conductivity

of the channel. The term, q
µp+µn

2 npud denotes that the residual charge occurs due to the
spatial homogeneity.



Sensors 2021, 21, 580 11 of 16

Sensors 2021, 21, x FOR PEER REVIEW 11 of 17 
 

 

Id=
W
L  න (qμpp+

Vd

Vs

 qμnn+q
μp+μn

2 npud) (1) 

where the parameters W  and L  are width and length of the channel, respectively; μ୬and μ୮ are electron and hole mobility, respectively; and	σ	 ൌ qμ୬n ൅ qμ୮p is the con-
ductivity of the channel. The term, q ஜ౦ାஜ౤ଶ n୮୳ୢ denotes that the residual charge occurs 
due to the spatial homogeneity. 

 
Figure 10. I–V characteristics as a function of channel dimension (W × L), for (a) AlP-GFET (b) Pd-GFET. The Id of the 
devices with equal ௐ௅  ratios are overlapped. 

We also investigated the characteristics of the device with respect to electrical 
properties of the silicon substrate for both variants of the device. The results show that 
they have a significant effect on the value of Vn as we change the doping type and its 
concentration of the substrate. The I-V characteristics in Figure 11a (AlP-GFET) and Fig-
ure 11b (Pd-GFET) illustrate that as the concentration of dopants increases, the position 
of Vn moves toward higher voltages for p-type substrates, while it moves toward lower 
voltages for the n-type substrate case. 

Figure 12a shows the measured Id-Vg for the AlP-GFET device, and Figure 12b 
shows it for the Pd-GFET device for two different oxide thicknesses, 200 nm and 400 nm. 
According to the graphs, the variation of the oxide layer thickness does not affect the 
sensing properties of the devices as the value of Vn remains the same for both cases. 

 
Figure 11. I–V characteristics as a function of doping type and concentration for (a) AlP-GFET, (b) Pd- GFET. 

Figure 10. I-V characteristics as a function of channel dimension (W × L), for (a) AlP-GFET (b) Pd-GFET. The Id of the
devices with equal W

L ratios are overlapped.

We also investigated the characteristics of the device with respect to electrical proper-
ties of the silicon substrate for both variants of the device. The results show that they have
a significant effect on the value of Vn as we change the doping type and its concentration of
the substrate. The I-V characteristics in Figure 11a (AlP-GFET) and Figure 11b (Pd-GFET)
illustrate that as the concentration of dopants increases, the position of Vn moves toward
higher voltages for p-type substrates, while it moves toward lower voltages for the n-type
substrate case.
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Figure 12a shows the measured Id-Vg for the AlP-GFET device, and Figure 12b shows it
for the Pd-GFET device for two different oxide thicknesses, 200 nm and 400 nm. According
to the graphs, the variation of the oxide layer thickness does not affect the sensing properties
of the devices as the value of Vn remains the same for both cases.

3.2.2. Detection of Methanethiol Biomarker

To check the sensitivity of the device against biomarkers, the device DC characteristics
are typically evaluated in the presence of a biomarker and compared with a reference test
in the absence of biomarkers.
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For this study, a device with channel dimensions of 1 × 2 µm2 (W × L) and a p-type
substrate with doping concentration 1018 cm−3 is considered. Vg is swept from 0 to 2 V,
while a constant Vd of 10 mV is applied on the drain. One biomolecule per nm2 was
considered for the adsorption concentration of the biomarker on the graphene layer.

Figure 13a illustrates the Id-Vg characteristics of the AlP-GFET device, and Figure 13b
illustrates it for the Pd-GFET device, in the presence of the methanethiol as compared to a
reference test in absence of the biomarker.
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Id-Vg curves obtained for AlP-GFET show a clear shift in Vn from 0.93 V to 0.63 V after
the adsorption of methanethiol by the channel surface, while for the Pd-GFET, it changed
from 1.09 V to 0.42 V. The shift in Vn is attributed to the change of µ, bandgap, Nc or Nv,
and Φ of the functionalized graphene once it is exposed to the methanethiol molecule.
As summarized in Table 3, these physical quantities show variation after adsorption of
methanethiol, which affects the Vn value. The observed shift in Vn for the Pd-GFET is
larger than that of the AlP-GFET, which affirms the higher sensitivity to the biomarker for
this device.

It is observed that the overall current intensity for AlP-GFET decreases after the
adsorption of the biomarker. However, for the case of Pd-GFET, the intensity of the current
slightly increases after biomarker adsorption. This behaviour of the device corresponds to
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the effect of adsorption on the carrier mobility of the graphene channel (as summarized in
Table 3). The increase in mobility of the carriers will be correlated with an increase in Id of
the device and vice versa.

Based on the results discussed in Section 3.2.1, the Vn of the device is only a function
of semiconductive properties of the graphene channel and varies by functionalization
of the graphene and its interaction with the molecules. The geometry of the device and
the biasing parameters does not alter the Vn, and therefore the sensitivity of the sensors
towards exposure to methanethiol could be simply defined as S ∼=

∣∣∣∆Vn
Vn

∣∣∣. The calculated
sensitivity of the AlP-GFET towards methanethiol when the Vn changes from 0.93 V to
0.63 V is 32.25%; similarly, Vn in the Pd-GFET changes from 1.09 V to 0.42 V, which shows
60.55% sensitivity towards this biomarker.

There are other reports in the literature regarding applying methanethiol as a biomarker
to develop biosensors [81–83]. Compared to those, the present work proposes a design to
develop a device with higher sensitivity and simpler structure.

4. Conclusions

In this work, we demonstrated the possibility of using a GFET biosensor for the
detection of methanethiol biomarker, which is used to identify diseases caused by mi-
croorganisms such as Helicobacter pylori bacteria (H. pylori) and Porphyromonas gingivalis
(P. Gingivalis) phylum Bacteroidetes. Surface chemistry of the graphene layers is manipulated
using two methods: (a) doping the graphene crystals and (b) decorating the surface of the
graphene with TMs before using it as the channel of the GFET. The device was designed
and characterized using COMSOL Multiphysics. The NDR characteristic of the graphene,
which is due to its ambipolar behaviour, was observed using three-terminal measurements.
The deep that appeared in the I-V characteristics of the device is used to study the sen-
sitivity of the sensors. The results show that the device characteristic is only sensitive to
the doping level of the silicon substrate; otherwise, it is independent of other physical
parameters of the device. However, our investigations show that electrical properties of the
functionalized graphene layers particularly in the absence and presence of the biomarkers
are largely affected the characteristics of the sensor. The device is more sensitive to the
adsorbed biomarker in the case of Pd-GFET compared to the devices developed using
Al-P doping.
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