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Abstract: Traditional rigid exoskeletons can be challenging to the comfort of wearers and can have
large pressure, which can even alter natural hand motion patterns. In this paper, we propose a low-
cost soft exoskeleton glove (SExoG) system driven by surface electromyography (sEMG) signals from
non-paretic hand for bilateral training. A customization method of geometrical parameters of soft
actuators was presented, and their structure was redesigned. Then, the corresponding pressure values
of air-pump to generate different angles of actuators were determined to support four hand motions
(extension, rest, spherical grip, and fist). A two-step hybrid model combining the neural network and
the state exclusion algorithm was proposed to recognize four hand motions via sEMG signals from
the healthy limb. Four subjects were recruited to participate in the experiments. The experimental
results show that the pressure values for the four hand motions were about −2, 0, 40, and 70 KPa,
and the hybrid model can yield a mean accuracy of 98.7% across four hand motions. It can be
concluded that the novel SExoG system can mirror the hand motions of non-paretic hand with good
performance.

Keywords: exoskeleton; surface electromyography; hand motion recognition; bilateral training

1. Introduction

As a cardiovascular disease, stroke is common in the elderly. It often occurs with
paralysis, which inhibits the motor ability of the patients. Especially, loss of the ability to
move the hands and fingers can reduce one’s quality of daily life considerably [1]. It has
been demonstrated that rehabilitation training using the specified assistant systems can
help regain function in the affected limb [2]. Most stroke patients have a strong demand
for follow-up continuous care at home. However, professional rehabilitation therapy often
costs a lot and is not suitable for ordinary patients [3,4]. Therefore, there is an urgent need
for a system that can make hand rehabilitation more accessible and comfortable.

Recently, there are many research groups that are developing exoskeletons and wear-
able robots for hand rehabilitation [5,6]. At present, rigid robot technology has been
relatively mature and widely used [7]. However, these rigid exoskeletons still have some
limitations, such as being cumbersome, inconvenient operation, limited freedom, dif-
ficult structural design, complex control system, and poor portability due to excessive
weight [7,8]. Rigid exoskeletons use actuators that are less compliant than the joints
themselves [4], so they cannot provide users with good wearable comfort [9]. In con-
trast, the environmental adaptability and mechanical compliance of soft exoskeletons are
better, so they can provide safer human–robotic interactions [10]. Exoskeletons made
of lightweight and low-profile textiles are more comfortable and cheaper than those of
hard-mechanical structure [11]. One of the earliest soft exoskeletons for hand rehabilitation
was a pneumatic glove with polyurethane air bladders [12]. A personal computer with a
Visual Basic program was used to control the glove to practice grasp-and-release motions.
Therefore, soft exoskeletons have greater market prospects than rigid ones [13,14].
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The exoskeletons can be controlled by programming, voice command, and surface
electromyography (sEMG) [15]. However, it is difficult for programming control to re-
alize the flexible jump of action. Voice command control can involve patients’ decisions
into rehabilitation training naturally. However, voice control systems are susceptible to
environmental noise, and do not allow fast feedback or error correction [15]. By contrast,
the sEMG-based control can provide continuously variable or fast feedback commands [15].
As a non-invasive and painless measure of the electrical potential present on the skin from
a muscle contraction, sEMG has been successfully applied in hand motion recognition for
exoskeletons and prostheses. For example, Vogel et al. [16] proposed a robotic arm DLR
LWR-III based on sEMG remote control. There have been several scientific efforts aiming
to apply machine learning algorithms, such as neural network [17], SVM [16], random
forest [18], and so on, to investigate the sEMG-driven exoskeletons.

Unilateral training and bilateral training are two main strategies for exoskeleton
control. Unilateral training is performed on the impaired hand, and the motion intention
is directly detected from the impaired hand. Meeker et al. [18] explored a glove with
exotendon network, which can detect the user’s intention from sEMG signals to control
hand to open or close. Bilateral training can assist the exercise of the impaired limb with
the help of the healthy limb. Stoykov et al. [19] illustrated that the effect of bilateral
training was significantly higher than that of unilateral training. The reason for this is that
patients could express and implement the intention of movement during bilateral training
autonomously. Leonardis et al. [17] proposed a hand exoskeleton, BRAVO, that could
perform on the paretic hand to assist grasp. It was made of metal, driven by motors, and its
total weight was about 950 g. The guidance grasping force for the BRAVO was estimated
via sEMG activities registered from the intact hand.

Most recently, many researchers have focused on the design of actuators for soft hand
exoskeletons. For example, Whitesides’s team [20] proposed a soft grasp robot based on the
PneuNet. On this basis, Polygerinos et al. [4] developed an elastomeric actuator. Besides,
they designed an elastomer actuator with fiber reinforcements that could induce specific
bending, twisting, and extending trajectories under fluid pressurization [21]. Yap’s team
fabricated a glove with bending actuators that were made of two different types of silicone
rubber [22]. They optimized the design of the gloves through fabric regulating to constrain
radial expansion [23]. Variable stiffness for the actuators was introduced to conform to the
finger profile [24]. Also, inflatable plastic actuators were set to provide torques for finger
extension [25].

The option to integrate the above mentioned sEMG-based control method and bilateral
training into soft exoskeletons are currently being investigated by an increasing number of
research groups. Polygerinos’s team constructed a rehabilitation assistant system with the
glove that could detect user’s intent of hand closing or opening by monitoring forearm
sEMG [26]. A fully fabric-based glove [27] was developed by Yap’s team to assist in
bidirectional finger acting through a flexion actuator and an extension actuator that was
integrated into the glove. For this soft glove, four control strategies were offered for
rehabilitation training, including passive button driving, cyclic movement training, sEMG
intention detection (the desire to activate, hold, or release), and bilateral training through a
commercial data glove. However, one of the biggest challenges on sEMG involved hand
rehabilitation is that the academic achievements were barely implemented in a commercial
system [28]. The important criteria for patients’ widespread acceptance included low
consumption, limited complexity, real-time control, minimal training, and so on [28].

In conclusion, although much progress has been made, sEMG-driven soft exoskeletons
should be redesigned to drive more subtle hand motions, not just detecting the intent to
open or close. Thus, the structure of actuators should be optimized to generate and
support more human-like bending states. In addition, the accuracy of subtle hand motion
recognition model via sEMG signals should be further improved.

In this paper, we developed a soft exoskeleton glove (SExoG) for hand bilateral
training, which can be used to train injured fingers of wearers to complete four types of
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hand motion: Extension, rest, spherical grip, and fist. When the motion type of the healthy
hand is recognized from the sEMG signals of the healthy forearm, The SExoG will drive the
disabled hand to perform the same hand movement. The main idea behind the SExoG is to
combine two-step algorithms for hand motion recognition from sEMG signals. The first
step is sEMG classification by a neural network, the second step is optimization by the
state exclusion algorithm.

2. Materials and Methods
2.1. The Framework of the SExoG System

The design of the SExoG system is shown in Figure 1. The SExoG system contains four
blocks, including sEMG collection, recognition model, control system, and SExoG. Figure 2
shows the schematic diagram of the SExoG. Firstly, the sEMG signals were collected from
the healthy forearm. The recognition model of hand motion intention via sEMG signals
was constructed combining neural networks and a state exclusion algorithm. Then the
sEMG signals for validation would be fed into the model to generate control messages to
drive the robot terminal based on a control strategy. The experiments were tested offline.
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Figure 2. System diagram of the SExoG.

The SExoG system can be used to recognize and assist in four hand motions for
bilateral rehabilitation training. The four motions are the basic ones in our daily life,
as shown in Figure 3. For description, we encoded the names of the motions into four
letters: E for Extension, R for Rest, S for Spherical Grip, and F for Fist.
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Figure 3. Four hand motions.

2.2. Signal Acquisition

An OpenBCI (Cyton with Bluetooth receiver) board was used for sEMG collection in
the experiments. It is an open-source device, which could be furtherly developed to be
used for real-time monitoring. Through the OpenBCI GUI, the raw signals were sampled
at 250 Hz and band-pass filtered at 5–50 Hz with a notch filter implemented to remove the
50 Hz line interference.

Figure 4 shows the process of sEMG collection. The single disposable Ag/AgCl strip
electrodes (JK-1, Jun Kang Medical Supplies Ltd., Shanghai, China) were used to record
sEMG activities. The electrodes were 5 cm in length and 3.5 cm in width and were pasted
on the skin of four positions on the subject’s forearm. A common electrode was used for
each channel.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 18 
 

 

 

Figure 4. The process of surface electromyography (sEMG) collection. (a) The electrode positions 

of 1 and 2. (b) The electrode positions of 3 and 4. (c) The hardware for sEMG collection. (d) The 

software of sEMG collection. 

2.3. The Hybrid Recognition Model 

2.3.1. Machine Learning 

To generate reliable control messages for the SExoG, a hybrid classification model 

was designed to recognize the sEMG and exclude impossible results. The hybrid model 

consisted of two sub-models, including the machine learning method and the state 

exclusion algorithm. The solution pattern was to classify the sEMG by a neural network 

and then use the state exclusion algorithm to filter and revise. 

First, a neural network was utilized to build the relationship model between sEMG 

and motions. The root mean square (RMS), as the features of sEMG, were extracted under 

a frequency of 125 Hz. Though there are many features to choose from, still, RMS has 

proved its productiveness in many concerning studies. The analysis windows have a 

duration of 500 ms for feature extraction, and the successive analysis windows are 

adjacent and disjoint [29]. In this study, the sampling frequency is 250 Hz, which means 

that two RMS values can be calculated for sEMG signals per second. RMS is calculated for 

each of the 4 sEMG channels separately. The calculating formula for RMS is: 

𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑣𝑖

2𝑁
𝑖=1 , 

where 𝑁 is the number of sample points (N = 125 samples), and 𝑣𝑖 is the voltage value 

at the time 𝑖. 

Now a recognition model could be trained. Given that the discrete signals, the 

recognition algorithm, has been developed well, many platforms are offering convenient 

ways to construct neural network models. Among them, Keras, a powerful deep learning 

frame for Python, was employed to build a neural network in this study. We divided the 

dataset of single motions into 70% and 30% for model training, including cross-validation, 

and accuracy testing. Figure 5 shows the structure of the neural network. We tried 

different configurations of hyper-parameters to train the neural networks repeatedly, and 

judged the performance of each model by the accuracy curve and loss curve, and then 

found the appropriate hyper-parameters. 

Figure 4. The process of surface electromyography (sEMG) collection. (a) The electrode positions of 1
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Each of these positions does not correspond exactly to one muscle but is distributed
around the arm at a certain distance from the wrist so that these electrodes can form a ring.
The reason for this is to position the electrode in an easier and faster way, not only when
carrying out repeating experiments but also when applying the SExoG in a real situation.

The dataset of sEMG signals was randomly divided into two subsets, a training set
and test set. The training set was used to construct a machine learning model that maps
the sEMG to four hand motions, and the signals were independently stored based on a
single motion. The test set was used to validate the SExoG through continuous control
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messages from sEMG of motion sequences. The details for sEMG acquisition are described
in Experiment 2.

2.3. The Hybrid Recognition Model
2.3.1. Machine Learning

To generate reliable control messages for the SExoG, a hybrid classification model was
designed to recognize the sEMG and exclude impossible results. The hybrid model con-
sisted of two sub-models, including the machine learning method and the state exclusion
algorithm. The solution pattern was to classify the sEMG by a neural network and then
use the state exclusion algorithm to filter and revise.

First, a neural network was utilized to build the relationship model between sEMG
and motions. The root mean square (RMS), as the features of sEMG, were extracted under a
frequency of 125 Hz. Though there are many features to choose from, still, RMS has proved
its productiveness in many concerning studies. The analysis windows have a duration
of 500 ms for feature extraction, and the successive analysis windows are adjacent and
disjoint [29]. In this study, the sampling frequency is 250 Hz, which means that two RMS
values can be calculated for sEMG signals per second. RMS is calculated for each of the 4
sEMG channels separately. The calculating formula for RMS is:

RMS =

√√√√ 1
N

N

∑
i=1

v2
i ,

where N is the number of sample points (N = 125 samples), and vi is the voltage value at
the time i.

Now a recognition model could be trained. Given that the discrete signals, the recog-
nition algorithm, has been developed well, many platforms are offering convenient ways
to construct neural network models. Among them, Keras, a powerful deep learning frame
for Python, was employed to build a neural network in this study. We divided the dataset
of single motions into 70% and 30% for model training, including cross-validation, and ac-
curacy testing. Figure 5 shows the structure of the neural network. We tried different
configurations of hyper-parameters to train the neural networks repeatedly, and judged
the performance of each model by the accuracy curve and loss curve, and then found the
appropriate hyper-parameters.
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In this neural network, the RMS values of 4 channels were used as the input vec-
tors. Two hidden layers with 128 and 32 nodes were used, and the activation function
was “relu”. The output dimension is 4 (E, R, S, and F). The output layer took different
activation functions, using “softmax”. The Dense is used to specify the fully connected
layer. We set the dropout as 0.4. The learning rate was set as 0.01. We selected “categorical
crossentropy” as the loss function. The momentum was set as 0.000001, the decay was
set as 0.9, and the batch size was set as 16. The Stochastic Gradient Descent (SGD) was
selected as the optimizer.
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2.3.2. State Exclusion

Then, the predict results from the machine learning model were transformed into
the states of motions, and a conditional state exclusion algorithm was induced to filter
impossible situations following each motion. Based on the relationship between the four
motions (Figure 3), some of the motion sequences that occur adjacently are impossible,
such as RF, SE, FR, FE, EF, and ES, which should be excluded. Table 1 shows the possible
motion sequences of the current one and the next one. The motion groups without state
transition are RR, EE, SS, and FF. The motion groups without state transition are RE, RS,
SR, SF, FS, and ER.

Table 1. The motion sequences of the current one and the next one.

Current Motion Next Motion The Motion Groups with State Transition

R R, E, S RE, RS
S S, R, F SR, SF
F F, S FS
E E, R ER

The pattern for this algorithm was to take different actions by the situation. When the
current state comfort to any occasion in the above table, it stayed the same way. In other
cases, the signal would be replaced by the earlier one to maintain state.

2.4. Control Strategy

The control messages in our experiments were directly sent from Python, received and
conducted by Arduino (Arduino Uno, Arduino) through serial communication. The Python
run on a computer with a 3.40 GHz Intel Core i5-7500 CPU and 8 G RAM. The strategy in
this process was to wait for one motion to be completed before sending the next one, so the
timing was not taken into consideration. Under the circumstances, we focused on whether
the system can carry out the sequences with assigned motions.

The electro-pneumatic system mainly consisted of a microcontroller, an air-pump
(MAP-AM-265, Mitsumi, Tokyo, Japan), a vacuum-pump (DZ 15370A, Beyok, Dong-
guan, China), a pressure sensor (MPX5100, NXP, Eindhoven, The Netherlands), minia-
ture solenoid valves, relays (JQC-3FF-S-Z, Tongling, China), and an adapter. We inte-
grated these elements on an acrylic board as shown in Figure 6. The size of the board is
300 × 200 × 8 mm, which is migrated-friendly.
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Figure 6. The control board. (a) The schematic diagram. (b) The prototype.

The microcontroller Arduino could shift between output modes of either supply air,
release air, extract vacuum, or stay loop close. According to Figure 7, the control messages
were compared with real-time states to decide the power mode. The control messages
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were transformed into the corresponding preset pressure that was able to assist in specific
hand motion. The current pressure was monitored upon an air sensor. If the value of PP
were close to that of CP, the system would delay and wait for the next control message;
or the control system would keep adjusting until meeting the condition. When PP-CP is
less than an acceptable value of error x. When x is infinitely close to 0, CP is much closer to
PP. However, in this experiment, taking into account the performance of air pump, we set x
as 1 KPa for RE, and we set x as 5 KPa for SF and RS.
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2.5. Actuator and Prototype
2.5.1. Design

Since the only bending part of the fingers are the joints while the phalanges re-
main straight, the actuators were designed complying with this regulation. As shown in
Figure 8a, the soft joint exoskeleton (SJE) and the soft phalange exoskeleton (SPE) were em-
bodied in an actuator. The SJEs cover the finger joint, including the metacarpophalangeal
(MCP), distal interphalangeal (DIP), and proximal interphalangeal (PIP) while the SPEs
cover the phalange.

Figure 8b shows the structure of the actuator. There were some disparities between
the chambers of the SJE and SPE. For the SJEs, several narrow chambers were rowed to
contribute to the finger’s bending. The chambers were smaller in length, and a couple
of chambers were sequenced to function. Also, the sidewalls were thin so that they
would easily squeeze on each other under air pressure. However, the chambers from
SPE, designed for maintaining, were within a certain length according to the length of
the different phalange. Its top walls were thicker than that of the SJE to restrain the
radial deformation.
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We designed both the elastomer surface and air chamber with variable stiffness. Ac-
cording to the skeletal characteristics of the human hand, the elastomer bends at the joints,
but it should be straight at the segments. We designed a structure with variable stiffness
at different localities of the elastomer, which is different from the work of Polygerinos [4].
We also designed the air chamber with variable stiffness to replace the pneumatic channels
inside the actuator in [24], as shown in Figure 8b. We also added an interface to reinforce
the bottom, so as to prevent air leakage between the bottom of the elastomer and restriction
layer made of non-woven fabric. The reinforced bottom of the actuator can improve the
success rate of molding effectively.

Then, two layers were added to the bottom to seal the chambers: An elastomer one
as the base and a piece of non-woven fabric embedded inside. The non-woven layer can
constrain deformation along the bottom of the actuator. So when the air was pumped in,
the actuator curves in the shape of a finger because of the impact from the chambers.

Besides, the geometrical parameters of the actuators were customized for the subject.
We proposed a customization scheme of actuator, as shown in Figure 9. Taking the index
finger for example, the geometrical parameters of the actuators were derived as follows:
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Step 1: Cut A4 paper into a strip with the width of 1 cm and place it on the surface of
the finger to be measured.

Step 2: Align one end of the strip with the tip of the index finger and use the tip as the
origin O. From this point, visually locate the finger’s position corresponding to the center
of PIP, DIP, and MCP. Use points P, D, and M, respectively, and mark on the strip with a
pencil.

Step 3: Start from point P, Point D, and point M, respectively, find the starting and
ending positions of the spanning joint length on the left and right sides of this point.
Accordingly, use points P′ and P”, D′ and D”, and M′ and M” respectively, and mark them
on the paper with a pencil.

Step 4: Start from point M, find a suitable point E in the wrist direction so that OE
is the total length of the actuator, and point E is to the right of point M”, and then mark
them on the paper with a pencil. At this point, the size customization of the actuator
corresponding to the index finger is completed.

In this paper, we used the average values across the four subjects. The actuators, at the
length of 133 mm, 128 mm, and 108 mm, were respectively designed for the middle finger,
the index as well as the ring fingers, and the little finger.

2.5.2. Fabrication

The actuators were manufactured via the followed steps: (i) Mix up the silicone A and
B (Elastosil M4601, Wacker, Munich, Germany) by the ratio of 9:1; (ii) pour the silicone
into the main mold; (iii) put the 3D printed molds (Weilai 8500, 3D, China) into a vacuum
chamber to de-gas on the silicone; (iv) pop the bubbles on the surface and remove the extra
silicones around the edge; (v) place the mold in a heat oven at 60 C and wait for 30 min;
(vi) pour a layer amount of silicone into the base mold, and add an non-woven layer on the
top; (vii) take the top piece of the mold off and pull the elastomer apart from the bottom
mold; (viii) assemble the elastomer with the base by one more layer of silicone; (ix) heat
the assembled actuator for another 30 min and take it off from the base mold.

After the four actuators were fabricated, they were attached to a glove by sewn cloth
loops. The glove would be the executor in the SExoG.

2.6. Experiment 1: The Acquisition of Pressure Values

This study was approved by the Ethics Committee of East China University of Sci-
ence and Technology. Four healthy male subjects (mean ± SD, age = 24.5 ± 0.58 years,
hand length = 188.75 ± 2.98 mm) volunteered to participate in the experiments. Before
the experiments, the age and hand length of subjects were recorded. The purpose of
experiment 1 is to acquire the corresponding pressure values of air-pump to generate
corresponding angels of the whole SExoG to support four hand motions.

2.6.1. The Acquisition of Pressure Values for the Unloaded Actuators

We need to find the specified values of air pressure to perform the four hand motions
of the actuators. The unloaded (not wore in hand) actuators was tested under different air
pressure, that of −2, 0, 10, 20, 30, 40, 50, and 60 KPa. Each actuator was photographed.
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As shown in Figure 10, a fixture was used to clamp the end of the actuator to imitate
the real flexing of a finger. In this case, the restricted end corresponds to the metacarpopha-
langeal joints that connect the metacarpal bone and the finger bone.
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Figure 10. The experimental scenario.

The bottom contour lines were drawn out from the photos to indicate the bending
status. The contour lines were listed together to show actuator expanding as the pressure
growing. Also, we measured the three angles (MCP, PIP, and DIP) of each SJE regarding
the purposive design of the actuator.

The test process was conducted via the Arduino with an air sensor monitoring the
pressure inside the actuator. To test the bending angles of the actuator for the rest, spherical
grip and fist, an air pump was used to feed air into the actuator. Once the air pressure
reached a preset value, the pump was closed, and the shape of the actuator was pho-
tographed. For the extension, the air was extracted out by a vacuum pump, and the shape
of the actuator was also photographed.

2.6.2. The Acquisition of Pressure Values for the SExoG Worn on Human Subjects

The pressure values for driving the whole SExoG worn on human subjects should
be determined. The subjects were required to be relaxed, so that the exoskeleton could be
driven by air with less resistance.

The purpose was to find out the pressure values for the SExoG to assist in the four
hand motions respectively. For motion E, the control system was set as air extracting
mode. For R, the system was inactive. For S and F, the control system was set as air supply
mode and stop at the satisfied states. The shape states for each motion as well as the
corresponding pressure values were recorded.

2.7. Experiment 2: The Acquisition of sEMG Signals

The experimental protocols were introduced and signed by the subjects with acknowl-
edge. Besides, the subjects were informed to wear a sleeveless shirt and the skin surface on
the tested arm was cleaned before attaching electrodes.

For the first stage, the labeled sEMG activities for a single motion was required.
The subject was asked to conduct and maintain the four motions of the hand, including
extension, rest, spherical grip, and fist. We separated the process into short-time sections
in order to avoid muscle fatigue. For each independent experiment, the subject offered
continuous valid signals for about 20 s and would then take a rest. After 30 times repeating,
we collected 10 min duration of sEMG in summary for each hand motion. Based on this
way, the sEMG for other hand motions were obtained. It took four days to complete all
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the experiments for one subject. The electrodes were taken off re-placed among the days,
which might enhance the generalization of the signal classification model.

For the second stage, the sEMG was registered without precise labels because the
switching time points between hand motions were not explicit. The subject was requested
to conduct the motion sequences (Figure 11) by switching between two motions every five
seconds and repeated for five times.
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2.8. Experiment 3: The Performance Evaluation of the SExoG System

The objective of Experiment 3 is to evaluate whether the SExoG system can mirror the
motion sequence of non-paretic hand precisely. The sEMG signals and repeat motions were
both measured. The SExoG was set to repeat motions of a designed sequence to detect
whether all the motions can be conducted in right order. Every two adjacent actions form
a loop. The designed sequences were shown in Figure 11, covering all possible adjacent
motion situations.

When the SExoG was driven by the control messages, the air pressures were traced
by the sensor simultaneously. The corresponding time points were also recorded as the
time dimension. The system performance was determined by the number of motion loops
recognized from the whole motion sequence.

3. Results
3.1. The Results of Pressure Values of Unloaded Actuators

The photos of the actuators under different pressure were imported into CAXA CAD
2015 (The CAXA Inc., Beijing, China), and then the bottom contour lines were traced
out from the photos. Finally, the corresponding angle values of MCP, PIP, and DIP were
measured in CAXA. Figure 12 shows the changing shapes of each actuator by putting the
contour lines together, as well as the three angles of SJEs, as air pressure growing from
−2 to 60 KPa. As shown in Figure 12, the actuators comply with the finger in the shape of
flexion or extension. With the restriction of a fixture, a nature hanging state of an actuator
was presented. When the air was pumped in, the actuator gradually flexed on the SJE
position. The angle values of MCP, PIP, and DIP are also shown in the figure.
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results for the actuator of 133 mm length. (c) The results for the actuator of 108 mm length.

Compared with the active range of motion (ROM) for each finger [30] (Table 2),
the angles from the unloaded actuators seem to be beyond the active range. However,
when the actuators were assembled into the glove, there were additional limitations on the
bending performance. Also, when one subject wears the glove, there would be the reaction
force from the hand skeleton. So, in a real-life scenario, these angles from the SExoG will
not go beyond the reasonable range.

Table 2. Mean range of motion (ROM) for finger joints.

Joint Extension (◦) (Mean ± SD) Flexion (◦) (Mean ± SD)

DIP −6.2 ± 4.2 84.5 ± 8.3
PIP −7.6 ± 3.5 101.3 ± 8.1

MCP −19.3 ± 6.4 90.4 ± 9.2
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3.2. The Results of Pressure Values of SExoG Worn on Human Subjects

Figure 13 shows the four states of one selected subject wearing the SExoG. The pressure
at −2 Kpa can yield the motion of extension, the pressure at 0 Kpa can yield the motion
of rest, the pressure at 40 Kpa can yield the motion of spherical grip, and the pressure at
70 Kpa can yield the motion of fist. The pressure values for the four human subjects are
the same.
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Figure 13. The four wearing states of sExoG. (a) Extension, (b) Rest, (c) Spherical grip, (d) Fist.

From the wearable ability evaluation, the subjects who wore the exoskeleton showed
no discomfort with wearing the device. The exoskeleton performed the four motions
of hand for the subject. The pressure values that contributed to the motion of E, R, S,
and F were approximately at −2, 0, 40, and 70 KPa. This result illustrates that when
the exoskeleton was loaded, larger pressure would be required to reach the shape like
independent actuators.

3.3. Recognition Results of Four Motions from sEMG Signals

The classification accuracy of the neural network model was judged by the discrete
test signal. After the neural network was well trained on the labeled sEMG, the new RMS
data were fed into the model to get classification results. The results were compared with
the true hand motion labels to calculate accuracies (Table 3).

Table 3. The average accuracy of the neural network model across four subjects.

Hand Motion Type Model Accuracy (%) Standard Deviation

E 92.61 0.67
R 98.47 1.72
S 97.22 0.61
F 98.11 0.48

Mean 96.6 0.51

Concerning the sequence signals generated from continuous motions, firstly, they
were fed into the neural network model for prediction. The results were transformed and
presented in the four motion labels, and then filtered by the exclusion of the state (Table 4).
After that, the signals were used as control messages.

Table 4. The average accuracy after optimization by the state exclusion algorithm.

Hand Motion Type Model Accuracy (%) Standard Deviation

E 97.06 0.68
R 99.45 1.68
S 98.98 0.63
F 99.31 0.45

Mean 98.7 0.53

For visualization, we transformed the classification results E, R, S, and F to the preset
pressure −2, 0, 30, and 60 KPa, respectively, based on the actuator performance. Then the
continuous signals were visualized, as shown in Figure 14. In other words, Figure 14 shows
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the ideal pressure graph from the system when driven by control messages of the specific
motion sequences.
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Figure 14. The pressure values transformed from the model prediction of the three motion sequences. The left graphs show
the results after the neural network model (blue lines); the right graphs show the results after the state exclusion (blue lines).
The red lines show the ground truth pressure values. (a) The results for motion sequence RE. (b) The results for motion
sequence RS. (c) The results for motion sequence SF.

3.4. SExoG Performance

The air pressures of each motion sequence were plotted under time dimension,
as shown in Figure 15. Ideally, 10 motions should be detected for each motion sequence
according to the signals acquiring process. There are 10 motions in total, repeated by two
motions or each motion sequence.
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Without considering the hardware response time, the trend of the ground truth pressure
curve and the target pressure curve after the state exclusion is consistent (Figures 14 and 15),
which means that the SExoG can perform the action orderly according to the control mes-
sage. However, in the process of actual execution, it is necessary to inflate and pressurize
the actuator to achieve different bending states. The aeration time increases with the
increase of the target pressure value, so there will be a certain delay. However, the effect
caused by this kind of delay can be weakened by the improvement of hardware perfor-
mance, or even be basically eliminated. In summary, continuous sEMG was delivered
to the hand exoskeleton in an orderly manner, demonstrating the effectiveness of the
SExoG system.

4. Discussion

In this work, we developed a low-cost soft exoskeleton glove (SExoG) system driven
by sEMG signals from non-paretic hand for bilateral training. The novel SExoG system



Sensors 2021, 21, 578 16 of 18

can mirror the hand motions of non-paretic hand with good performance across four hand
motions (extension, rest, spherical grip and fist).

The mean accuracy for concrete sEMG classification is 96.6% (Table 3). The accuracy
can well support the afterward state exclusion. The SExoG could be improved if the
concrete signal recognition was better developed. Also, as shown in Figure 14, unreasonable
situations were effectively filtered through the state exclusion, and the mean accuracy
was further improved to 98.7%. The recognition performance attained with our hybrid
algorithm is better than that achieved by traditional ones [16–18]. When these impossible
states are excluded, the conditions of dramatic state change will not occur, such as a straight
jump from −2 KPa to 70 KPa, or a plunge from 70 KPa to −2 KPa. The processed signals
were then transmitted as control messages. Thus, the control system could remain more
stable when receiving these messages.

The system can conduct the motions based on the supervisor’s control messages
successfully. First of all, we can find that the actual pressure-time graphs are consistent
with the ideal one by comparing Figure 15 to Figure 14. As shown in Figure 15, for the
RE sequence, 5 of the repeated scenarios can be recognized with three perfect times; for
the RS sequence, four times are well presented; for the SF sequence, three times could be
recognized. In a word, the continuous sEMG was orderly transmitted to the actuators to
prove the function of the SExoG.

In this study, we only collected the sEMG signals of forearm muscle groups, but the
recognition results are encouraging. Although the hand bilateral training involves both the
finger and wrist movements, surface EMGs can be recorded from intrinsic hand and fore-
arm muscles that produce these movements. However, the functional recovery movements
may arise electrode shift of hand, which will interfere the collection of EMG signals from
hand and reduce the recognition accuracy [29]. In addition, previous studies have shown
that the recognition rate of forearm EMGs is higher than that of hand EMGs [31]. Therefore,
forearm muscles can be leading muscles for investing the SExoG system in further study.

Overall, our findings are more optimistic than those of Polygerinos et al. [26], who only
detected the intent to open or close via sEMG signals. We used low-cost open source
hardware and traditional electrodes to detect more subtle hand motions. In future work,
the electrodes with a smaller surface area, more channels, and better signal-to-noise ratio,
such as microelectrode arrays [32], can be used for detecting more complicated hand
motions, involving much more precise location on specific muscle groups.

However, some limitations still need to be further improved:

(1) The dataset in our experiments was restricted to only four subjects. An enlarged
dataset is required for clinic devices developing after the prior study. Also, more
motion classes would be better for hand exercise. It appears that the ground truth for
each hand motion type is personalized to each subject. Individual calibration might
also be expected for each subject, when the exoskeleton is put into real-life use.

(2) For the four hand motions in this study, the motion state change of the thumb is
small, so the thumb actuators was not fabricated. When it comes to more subtle hand
movements, the thumb should be taken into account in future study.

(3) Because of the pump capacity, it took more time than that of the raw motion routine
for the actuator to reach certain states. In other words, there was a delay when
following continuous control messages. The system would have a better real-time
reflection within a delay duration under 300 ms.

(4) There are four tubes to supply air for the pneumatic actuators of the exoskeleton.
These tubes might cause clutter or inconvenience for the subject to wear and rely on.
Before the exoskeleton put into the clinic application, the air tubes connection would
be optimized via integration.

5. Conclusions

In this paper, we promoted a SExoG for bilateral hand rehabilitation. The system
was evaluated on both concrete sEMG recognition and continuous motion transform.
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We built the system at low consumption with open accessed software and hardware.
The actuators of the soft exoskeleton were designed to comply with the finger skeleton
structure. The exoskeleton was tested by healthy subjects to confirm comfort and safety. In
the future, the clinic tests should be involved in more valuable evaluations.
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