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Abstract: The paradigm of the Internet of everything (IoE) is advancing toward enriching people’s
lives by adding value to the Internet of things (IoT), with connections among people, processes, data,
and things. This paper provides a survey of the literature on IoE research, highlighting concerns in
terms of intelligence services and knowledge creation. The significant contributions of this study are
as follows: (1) a systematic literature review of IoE taxonomies (including IoT); (2) development of a
taxonomy to guide the identification of critical knowledge in IoE applications, an in-depth classifi-
cation of IoE enablers (sensors and actuators); (3) validation of the defined taxonomy with 50 IoE
applications; and (4) identification of issues and challenges in existing IoE applications (using the
defined taxonomy) with regard to insights about knowledge processes. To the best of our knowledge,
and taking into consideration the 76 other taxonomies compared, this present work represents the
most comprehensive taxonomy that provides the orchestration of intelligence in network connections
concerning knowledge processes, type of IoE enablers, observation characteristics, and technological
capabilities in IoE applications.
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1. Introduction

The Internet of everything (IoE) is a term that was first defined by CISCO in 2012 [1]
as a network of networks that reunites people, processes, data, and things in network
connections more significant and valuable than ever [2–4]. While the Internet of things
(IoT) is a dynamic global network infrastructure [5] concerned about things (i.e., physical
devices, accessed through the Internet), IoE lays an upper foundation over IoT and is
concerned with intelligent network connections and technologies [6–9].

IoE supports creating new capacities, better-off competencies, and outstanding eco-
nomic opportunities for businesses and society [1]. For Fiaidhi and Mohammed [10],
IoE expands on the IoT concept by connecting devices and people in one network. Beyond
the concept of IoT, the IoE paradigm covers a wide range of Internet-based concepts; for
example, the Internet of people (IoP), which considers social networks and connections
among people; and the industrial Internet (II), which is focused on data of interest to indus-
try [7]. The concept of IoE incorporates nanosensors in diverse objects using nano-networks.
It provides access to data that had previously been impossible to sense. This technology
transition involving IoE is a concept called the Internet of Nano things [11].

With more relevant connections than machine-to-machine communications, IoE has
enabled the global democratization of skills, including person-to-machine and person-to-
person connections [12,13].

Accordingly, Auger et al. [4] argue that IoE extends the concept of IoT by exceeding
the connections of things and integrating common impacts, risks, and economic benefits for
the novel interconnected society. Thus, “intelligent services”, together with the “things”,
represent the “everything” in IoE [14].
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For Raj and Prakash [13], IoE is a superset of IoT and requires advanced capabilities
within the area of information sharing. The IoE paradigm can extract and analyze real-time
data collected from diverse and heterogeneous IoE environments, from simple sensors
and actuators to complex robotic devices, and from autonomous service agents to human
actors [3]. Thus, IoE applications require appropriate measures to be taken in the initial
phases of their design and implementation [13]. Artificial intelligence (AI) integrated into
smart devices provides the increasing deployment of innovative and useful IoE-based
applications, where people and things interact appropriately within a social context and
multi-user environment [11].

Processes are the core of IoE; they represent network “connections” and real-time
data/information flows [15] among IoE nodes [16]. The result is smartness and intelli-
gence [17], and real-time insights working in concert [18], far beyond IoT context dis-
ruptions [19], addressing the societal and organizational needs for more data and more
actionable intelligence.

Actions and interactions within the IoE environment create and expand knowledge
in a transcending process through which entities (people, things, and data) acquire new
knowledge and new interactions are created in knowledge-creation cycles [20]. This trans-
formation from data to knowledge in IoE provides essential insights and various possible
applications [21,22].

Value-generating activities come through knowledge processes that filter data, in-
formation, and knowledge into a decision context, in which it becomes actionable intel-
ligence [23]. A knowledge-based strategy for selecting and managing technologies and
decision support artifacts (big data, data, information, knowledge, and intelligence) assists
in the management and governance of data and technologies to ensure great benefit from
IoE’s capacity to provide enhanced intelligent services.

Figure 1 shows the “four enablers” (people, data, processes, and things) in IoE.

Figure 1. Internet of everything, adapted from [16].

Several taxonomies for IoT [24–30] and IoE [6,13,15,17,31,32], have been proposed.
However, there are challenges concerning the ranking and managing of knowledge pro-
cesses in IoE applications.

First, there is still a fragmented framework: (1) A lack of consensus and new demands
are unique to the IoE context (e.g., empowering people and providing intelligence ser-
vices and insights through the collaboration of IoE enablers [sensors and actuators]); and
(2) A lack of consideration for the integration of IoE connections (machine-to-machine,
people-to-people, and people to machine) from perspectives that support the high hetero-
geneity of existing IoE devices and the expected value creation in IoE applications—the
perspective of knowledge that refers to actions, comprehension, and meaning derived
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from the information inside a context; the perspective of sensors and actuators physi-
cal characteristics and usage in IoE context, the perspective of information observation
within ever-changing IoE contexts, and the perspective of infrastructure capabilities and
resources required.

The successful adoption of a particular technology depends on the comprehension of
its use and features [33]. Research on knowledge management has focused on understand-
ing the complex relationships between data, information, and knowledge creation, and how
they are impacted and benefited by the sources (or spaces) of data and information and the
contexts in which they are analyzed and shared [34]. Therefore, an in-depth classification
of IoE enablers (sensors and actuators) identifies issues and challenges in existing IoE
applications regarding insights about managing knowledge processes that create value
from the IoT context.

In this current study, we present research challenges in the IoE paradigm and a
way forward in the classification of IoE knowledge enablers (sensors and actuators) to
support the identification of critical knowledge sources that lead to actionable intelligence
in IoE applications. We conducted a systematic literature review of existing IoE and IoT
taxonomies. From this, we were able to present a knowledge-based IoE taxonomy that
provides a consistent picture of IoE systems and their constituents (i.e., IoE sensors and
actuators characterized in knowledge processes, observations, and network characteristics).
The proposed taxonomy is based on knowledge in IoE applications—the knowledge
provided or used by different types of sensors and actuators. The focus is to identify to
what extent tacit knowledge from people, implicit knowledge generated from data analysis
and integrated into smart devices, and explicit knowledge available from diverse data
sources are composed to support observations that contribute to intelligent services in the
IoE context. We then validated the defined taxonomy with 50 IoE applications in order to
prove its quality attributes and identify research challenges.

The remainder of this paper is organized as follows: Section 2 introduces related
works, including the theoretical background and state of the art of IoE theory; Section 3
contains the systematic literature review and methodology that provided the basis for the
development of our proposed taxonomy; Section 4 describes our novel IoE taxonomy in
detail; Section 5 discusses the qualitative outcomes; Section 6 presents the validation of the
proposed taxonomy in diverse IoE domains; and, finally, Section 7 concludes the review
with proposed directions for future research.

2. Related Work

Several authors have proposed taxonomies for dealing with IoE and IoT systems
in the following distinct approaches: technology and architecture design [24,35–40], sen-
sors’ capabilities [26,41–45], and observation context issues [25,27,28,46–51]. However,
still, due to the considerable heterogeneity of actual IoT devices, these taxonomies have
approach limitations, mostly restricted to enabling technology and infrastructure. Nearly
all disregard the collective intelligence of IoE applications, in which human sensors are
knowledge producers and consumers [52]. This human-thinking perspective integrated
into IoE is still a research gap. Due to a large amount of heterogeneous and distributed
IoE entities (human and non-human sensors/actuators), IoE requires the orchestration
of intelligence in network connections concerning the knowledge provided, type of IoE
entities, observation characteristics, and technological capabilities. This section provides
an overview of related works, theoretical background, and state of the art of IoE theory.

2.1. Technology

As IoT is the technology architecture facet of IoE, many studies have focused on
central concepts and their relationships in an IoT domain [35]. IoT is a self-configuring,
adaptive, complex network with standard communication protocols that connects “things”
to the Internet [24]. Yaqoob et al. [25] proposed an end-to-end view taxonomy to categorize
and classify IoT architectures, considering requisites such as application domains, business
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objectives, enabling technologies, architectural requirements, network topologies, and IoT
platform architecture characteristics. Recent studies have addressed different research
challenges in IoT areas. In Mountrouidou et al. [26], the authors characterized IoT based
on generic building blocks or primitives, defining IoT devices as sensing or actuating
devices that can communicate with other devices and perform specific functions. Shahid
and Aneja [41] proposed an IoT taxonomy, developing technologies and solutions for
enabling IoT vision, which is related to smart objects’ ability to communicate and interact,
either in building networks of connected items or with end-users or other entities in the
network. Noura et al. [27] developed a taxonomy for IoT devices, networks and platforms
related to the heterogeneity challenges of syntactic and semantic interoperability. Obinikpo
and Kantarci [42] presented a taxonomy of methodologies to categorize types of sensors
and sensing data. Other works have proposed taxonomies to classify the IoT’s connected
objects, devices, and smart objects [43–45].

2.2. Management and Security

Management solutions must show grounds for efficient control of IoT systems. Sinche
et al. [30] proposed a taxonomy related to IoT device management, and Perera et al. [36]
surveyed a wide selection of techniques, methods, models, and solutions related to context
awareness in IoT. Some authors have proposed taxonomies for security approaches in the
adoption of IoT technologies and applications [46]. Using autonomic terminology, Ashraf
and Habaebi [53] proposed a taxonomy that aims to group IoT security vulnerabilities
and their mitigation solutions. Haron et al. [37] proposed a taxonomy of trustworthiness
for IoT sensor data. Based on the notion of trust, semantics, Kotis et al. [54] presented an
effective modeling approach towards supporting IoT entities’ selection and deployment.
Alsamani and Lahza [55] studied the relationship between object characteristics, security,
and privacy, and they proposed a taxonomy to categorize potential security threats in
IoT. In Zhang et al. [56], the authors presented an extensive analysis of data security
and privacy threats, protection technologies, and security solutions for edge computing.
Oteafy and Hassanein [57] proposed a taxonomy of edge-IoT systems designed for rapid
data acquisition.

Other studies have focused on network architecture for IoT and IoE. Thota et al. [58]
studied the emerging communication techniques for the implementation of IoE applications.
Gluhak et al. [38] provided a taxonomy for the scope and architecture of testbeds in the IoT.
Naha et al. [59] proposed a taxonomy considering the requirements of the fog computing
paradigm. In Hassan et al. [60], a taxonomy of edge computing classifies and categorizes
existing edge computing paradigms for IoT. Ahad et al. [61] provided a state-of-art review
of 5G- and IoT-enabled smart healthcare. Bellavista and Berrocal [39] presented a unified
architectural model and proposed a new taxonomy after comparing solutions that had
emerged for supporting the requirements of IoT applications. However, these works
ignored the critical role of data flow throughout sensors and actuators of different types,
how they collaborate to create value in cyberspace, and the context of observations.

2.3. Collaboration

Some works have focused on establishing an effective collaboration process between
smart devices integrating humans in the loop [62]. A comprehensive look at IoT en-
vironment collaboration is presented in [28], in taxonomy to clarify how IoT enables
collaboration. People (as customers) and applications are perspectives that nurtured the
IoT taxonomy presented by Smutný [29]. Sholla et al. [47] argue that integrating socio-
cultural and ethical aspects within a smart city architecture turns it into a people-friendly
environment.

Hui and Sherratt [63] discussed how to strengthen human senses and capture human
reactions, and they proposed a new taxonomy for disappearing user interfaces. Yebda
et al. [64] reviewed existing solutions for social sensing. In [65], the authors presented
a taxonomy based on the critical issues in mobile crowdsourcing. Chaochaisit et al. [66]
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presented an ontology for human localization sensors to address challenges in searching
for users’ location-aware sensors. Sethi and Sarangi [48] proposed a novel taxonomy for
IoT technologies and profiles and some applications that have the readiness to make a
remarkable difference in human life. Salim and Haque [67] proposed a taxonomy for
categorizing and characterizing urban computing technologies and also discussed the
level of participation these technologies stimulate in modern society. In [49], the authors
proposed a technical taxonomy for service composition in the IoT environment, based on
functional and non-functional aspects. Bugeja et al. [50] proposed a classification model
based on the functionality of smart home devices. Oberländer et al. [51] contributed
to the IoT’s descriptive knowledge and presented a classification of business-to-things
interactions to facilitate sense-making and theory-led design. In summary, these studies
focused on the collaboration perspective but seldom investigated how smart sensors and
humans contribute to knowledge creation to achieve a common goal.

2.4. Data Analysis

Many studies have focused on information flow, ranking information, and quality
of data for the data-driven perspective and analytics applications. Bisdikian et al. [68]
presented a framework for categorizing information products based on their value of
information attributes. Different works have paved the way for effective utilization of the
available opportunities in big data analytics and IoT. Shah et al. [69] created a thematic
taxonomy for deploying these solutions collaboratively to provide guidelines for harvesting,
transmitting, managing, and analyzing disaster data from diverse data sources in order to
deliver valuable information to assist disaster management environments.

Focusing on successfully understanding and extracting value and insights from data
analysis, [70,71], and [72] proposed semantic web techniques for better representation
and exploration of sensor data. Qanbari et al. [71] incorporated semantic and linked data
technologies to increase data quality. In [72], Rozsa et al. presented a taxonomy that
identifies and categorizes sensors as the source devices to support publishing, discovery,
sharing, reuse, and integration of sensed data.

Marjani et al. [40] explained the interdependence between big data analytics and IoT
and proposed a novel architecture for IoT big data analytics. The authors in [73] surveyed
the domain of big data by examining the different techniques utilized for processing
and analytics. Another taxonomy on big data sensing and services was presented by
Gao et al. [74]. The latest developments in the big data sensing field applied to context-
aware big data systems were discussed by Subbu and Vasilakos [75], who proposed a
taxonomy of recent works based on sensing platforms.

Ge et al. [76] surveyed big data technologies that stimulate knowledge sharing across
IoT domains, whereas Moustaka et al. [77] proposed a taxonomy to integrate data science
and smart city domains by focusing on concepts correlated to community data sources and
analytics approaches regarding data harvesting and data-mining processes.

However, few studies have investigated the interaction between human-based sensors
and smart devices and how and to what degree they contribute to and benefit from big
data analysis in cyberspace in the context of knowledge creation.

2.5. Interoperability

Many studies have focused on the interaction among sensors and actuators in tri-space
(cyber, physical, and cyber-physical). Kotis and Katasonov [78] presented a framework
for supporting semantic interoperability between many distributed and heterogeneous
IoT entities (sensors, actuators, and applications). Agarwal et al. [79] highlighted several
core concepts from various mainstream ontologies and taxonomies, and they proposed
an ontology for reusing and interconnecting existing ontologies. Alkhabbas et al. [24]
proposed a characterization of IoT systems, which provides a holistic view of IoT systems
synthesized from other existing taxonomies. Different works have discussed challenges
in mobility and localization. Shit et al. [80] proposed a hierarchical taxonomy of the
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localization technique based on offline localization training, namely self-determining and
training-dependent approaches. Saad et al. [81] presented a taxonomy that classifies variant
localization algorithms. Pozza et al. [82] made a classification between mobility-agnostic
and mobility-aware discovery protocols. Berger et al. [83] developed a multilayer taxonomy
of digital technologies that comprises eight structured dimensions coupled with four layers
of standard modular architectures: service, content, network, and devices.

Despite this, few works have investigated who participates in a smart environment
and how things interact with human sensors through knowledge processes that lead to
actionable intelligence. The critical goal of integrating human actors is to develop proper
interfaces based on application domains, type of operation to be performed, and integration
between human sensors within the role system [84]. As in a collaborative workspace [85],
humans can maintain situation awareness in order to work collaboratively with smart
devices. Moreover, things apprehend the situation, understand people’s requirements to
enhance the value chain autonomously, and support intelligence services [86].

2.6. Challenges

Even though recent works are similar to ours in terms of coverage and analysis of
the IoE paradigm, some approaches address our review criteria only to a varying degree.
To clarify the contributions of the current paper, Section 5 summarizes a brief comparison
of the scope of the proposed IoE taxonomy and 76 IoE and IoT previous works, selected in
the literature review (presented in Section 3). The scope of the proposed knowledge-based
IoE taxonomy is considerably more embracing in terms of visibility of intelligent connec-
tions between sensors and actuators in IoE applications than existing works. Some works
touch upon knowledge creation and collaboration among IoE devices, while others pro-
pose taxonomies concerning specific areas (e.g., observations, infrastructure, sensor type,
and analytics for IoT and IoE). They identify design challenges from several perspectives;
however, they fall short in the two respects detailed below.

First, they do not explicitly address the characteristics of knowledge enablers (sensors
and actuators) and to what degree they collaborate to improve efficiency in IoE solutions.
In general, the identification of knowledge sources in human and non-human sensor nodes
requires further research to enhance intelligence services through managing knowledge
processes. Furthermore, for knowledge-intensive IoE applications, the governance of
knowledge sharing in human–machine relationships are still mostly inadequate. This situ-
ation requires a complete taxonomy that leverages awareness from the length and breadth
of the knowledge hierarchy, considering knowledge interaction and transformations from
sensor platforms in collecting raw data for the foresight and intelligence that drive decision-
making processes and provide outcomes and wisdom.

Second, although they provide an overview of hardware and software components
in IoE systems, the studies do not categorize and organize them in a concise manner that
provides a contextual understanding of the complexity of IoE enablers. The related works
do not categorize the sensors and actuators in terms of knowledge users and providers
and how they participate in knowledge creation in IoE applications. We propose a com-
prehensive knowledge-based IoE taxonomy that optimizes technological and architectural
components as integrated resources that drive knowledge creation.

Providing a broad and forward-looking view of the IoE paradigm is, essentially,
the principal contribution of this present study. This paper proposes an IoE taxonomy,
based on knowledge, to elicit how intrinsic knowledge in sensors and actuators—in con-
junction with enabling technologies and infrastructures—are applied in observations to
produce intelligent services in the IoE context.

3. Research Methodology

Taxonomies are interpretations of reality and represent sense-making structures [87]
(p. 51) for organizing information and knowledge into hierarchical relationships between
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the terms. This involves uncovering how the theories evolve, which enables researchers to
study the essences and their relationships in the research territory [88].

As a form of classification [88], a taxonomy for IoE sensors that considers knowledge
enablers elucidates how some types of sensors are pooled and used in diverse application
domains and how issues with capabilities and observations can affect the quality of services
and knowledge creation. In order to develop a taxonomy to guide the identification of
critical knowledge in IoE applications and an in-depth classification of IoE enablers (sensors
and actuators), we surveyed existing taxonomies related to IoT and IoE. The first step
in developing our taxonomy was to review the existing classification schemes, semantic
descriptions, and taxonomies, which could suggest design implications for IoE systems.

The methodological guidelines suggested by Kitchenham and Charters [89] for litera-
ture reviews guided this survey. Our review included contributions from the ACM Digital
Library, IEEE Digital Library, ISI Web of Science, Science@Direct, and Scopus databases,
which we considered to be the most relevant for finding specific studies in journal and
conference papers in English. The following specific search string was sought: (“Internet of
everything” OR “IoE” OR “Internet of things” OR “IoT”) AND (“taxonomy”) in the “Title”,
“Abstract”, or “Keywords” fields.

We designed the search string to retrieve from the databases as many studies as
possible that were relevant to the review, even if the query results returned articles not
relevant to the survey. Relevant studies not retrieved after the first query were also included
in a second iteration analysis in June 2020, considering studies likely to be explicitly related
to IoE. Furthermore, most contributions were survey papers for IoT, which indicates a lack
of maturity in work in the field of IoE.

We selected only studies published in English in journals (already published and
in press), conference proceedings, books, and technical reports. After discarding the
duplicates, a total of 394 candidate articles remained from the initial search (Table 1).

Table 1. Summary of literature review stages.

Literature Review Stage Number of Papers

Search of ISI Web of Science 235
Search of Scopus 323
Search of IEEE 118

Search of ACM Digital Library 22
Science@Direct 62

Total 760
Duplicates 366

Total after discarding duplicates 394
Approval for analytical reading 76

Rejected 318

Each candidate article was subjected to the following series of steps before its eventual
selection: (1) evaluate the title and read the summary; (2) retrieve the selected papers and
read the introduction and conclusions; and (3) critically assess the contribution considering
the degree of adherence to IoE applications and the contribution’s relevance.

Finally, after applying the filters, 76 articles relevant to this literature review remained.
The studies were diverse and promoted different approaches. From the list of papers
selected, it was possible to extract works related to IoT and IoE taxonomies, thus revealing
the proposed IoE taxonomy. A qualitative analysis of the results summarized the main
findings and provided some guidelines and a comprehensive overview of the topic that
supported the novel knowledge-based IoE taxonomy proposal.

4. Proposed IoE Taxonomy

This section presents the proposed IoE taxonomy. For the conception of this taxonomy,
we selected a method proposed by Nickerson et al. [88] for taxonomy development that



Sensors 2021, 21, 568 8 of 35

has been adequately addressed for taxonomy development in the information systems (IS)
domain. The proposed taxonomy identifies and categorizes sensors, attributes, and charac-
teristics that are essential for developing IoE applications. This study is the first attempt to
represent the types of knowledge (from sensors and actuators) in the IoE domain and how
knowledge processes lead to intelligent services in IoE applications.

The development of an IoE taxonomy involves determining the characteristics of
the sensors in IoE applications that arise from a refinement process at various stages to
sufficiently satisfy the following qualitative attributes from Nickerson et al. [88] regarding
the taxonomy:

1. Concise: has a limited number of dimensions and characteristics, restricted to what is
relevant and understandable;

2. Robust: contains suitable dimensions and characteristics to distinguish the objects of
interest;

3. Comprehensive: includes appropriate and enough dimensions to classify all known
objects within the domain under regard;

4. Extendable: allows for the insertion of additional dimensions and characteristics
within a size to contemplate new incorporated objects;

5. Explanatory: provides useful explanations and valuable descriptions of the nature of
the objects under study.

Additionally, developing a useful taxonomy is a search process of design [88]. Kotis
et al. [90] presented requirements for a well-defined collaborative and iterative methodol-
ogy, addressing practical aspects that drive consensus on developments—a “live” method
of development in which the artifacts evolve over time. An artifact must preserve its live-
ness, evolution, and reusability during its life cycle (i.e., it may be in-use in a particular time
or instant, be under constant maintenance or update and be used in applications/projects
beyond its original purpose).

We followed an iterative method during the development process, as suggested by
Nickerson et al. [88], and a conceptual to the empirical approach, based on the surveyed
existing taxonomies related to IoT and IoE (Section 3). Furthermore, a collaborative
approach that relied on authors´ insight, experience, intuition led to proper identification
of the proposed dimensions and characteristics, as resumed in the following stages of the
development.

For Nickerson et al. [88], the taxonomy’s purpose (meta-characteristic) drives the
taxonomy’s dimensions and characteristics. Each element or classification proposed in the
taxonomy should be a logical outcome of the meta-characteristic. Our aim was “to guide
the identification of critical knowledge in IoE applications, an in-depth classification of IoE
enablers (sensors and actuators) based on the knowledge they provide in intelligent tasks”.

The development process ended when both objective and subjective conditions have
been met [88]. During the iterations processes, new characteristics were identified and
included, and when any characteristic turned out not to be relevant, they were eliminated
after consensus. Further analysis succeeded until reach the ending conditions, engag-
ing authors in close collaboration towards shaping commonly agreed dimensions and
characteristics. We used two objectives ending conditions: no new dimensions were
added in the last iteration, and every characteristic was unique within its dimension. Sub-
jectively, the process ended when the taxonomy was determined to be concise, robust,
comprehensive, extendible, and explanatory [88] and fulfilled the quality requirements of
liveness, evolution, and reusability [90] that are suitable to dynamics of the IoE pervasive
environment.

Accordingly, ranking knowledge in IoE sensors is a matter of eliciting the main
characteristics in IoE applications. In order to understand the IoE domain, we applied
specific questions by answering the 4 ws (what, when, who, and where) and 1 h (how)
identified using the 4W1H methodology [91,92]. This methodology addresses the challenge
imposed due to the high heterogeneity of existing IoE devices. A similar approach was
proposed in [68] to measure the quality and value of information when considering the
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value created by the IoE in applications. These questions guided the definition of the
following four complementary categories that drive the purpose of taxonomy dimensions
and characteristics:

(a) Knowledge: regarding knowledge in action; that is, the artifact or information inside
a context (what) with comprehension and meaning;

(b) Type: typifies sensors and actuators—who they are, their physical characteristics,
their usage, and their role in IoE context: sensors or actuators in cyber, physical,
or cyber-physical presentation;

(c) Observation: the physical context in time (when) and space (where); that is, the in-
stant and location that the information content was sensed or perceived within ever-
changing IoE contexts;

(d) Capabilities: how the information is flowing, the infrastructure capabilities, and the
resources required.

For this stage of development, we used the top-down development process, starting
with defining the most general categories (knowledge, type, observation, and capabilities).
We then selected dimensions and characteristics previously derived from a theoretical foun-
dation from reviewing the related literature, as presented in Section 3 and grouped them in
related knowledge, type, observation, and capabilities categories, revealing the resulting taxon-
omy. Our IoE taxonomy consists of four categories (see Figure 2) and groups 18 dimensions,
each comprising of mutually exclusive and generally collectively exhaustive characteristics.
Section 4.1 describes the knowledge category, which analyses the knowledge characteristics
and the value created by IoE applications. Section 4.2 details sensor characteristics related
to their use in IoE applications (types). Section 4.3 presents the observation category, which
classifies how data are sensed and gathered in IoE observations. Finally, in Section 4.4,
the sensors’ capabilities are classified into a few dimensions that address the technological
aspects for designing IoE applications.

Figure 2. IoE taxonomy.

4.1. Knowledge

The knowledge category contains five dimensions related to knowledge creation and
information flow: explicitness, structure, trust, outcome, and action. Each has its own
specific sub-dimensions or characteristics, as shown in Figure 3.
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Figure 3. IoE Taxonomy: knowledge category with dimensions and characteristics.

4.1.1. Explicitness

IoE environment architectures consist of IoT standard architecture [93], but with the
addition of the human element (which acts as a node) and intelligent services to the IoT
network [32]. knowledge discovery approaches used in developing IoT solutions [82],
which involve sharing information from smart objects, should be optimized by examining
how humans process data sources of information to form knowledge [41]. For Perera
et al. [36], this requires knowledge from different perspectives, for example, knowledge of
sensors, applications, users, and so forth. Moreover, these uncovered knowledge patterns
are analyzed and integrated for subsequent use in real time, using multiple knowledge
management approaches [76,94,95]. The intelligence of connected things varies from non-
existent to absolutely rational [24]. There are different kinds of knowledge, and it demands
distinct representations. A taxonomy is a central link between knowledge engineering
and knowledge management [96]. Regarding explicitness, this work classifies knowledge
provided by sensors in IoE applications into three distinct types:

• Tacit: This knowledge is rooted in actions, experiences, and involvement in spe-
cific contexts. Tacit knowledge consists of people’s knowledge based on intuitive
evaluations of sensory inputs and perceptions, which is sometimes hard to express
(i.e., feelings, beliefs, insights, values, and ideals) [97]. The increase of human senses
through sensor and data fusion and context awareness is the essence that supports
smarter wearable devices for relating mutually with human cognitive memories [98].

• Explicit: This knowledge is codified and articulated knowledge (i.e., the form of
knowledge that is easy to codify using formal language, procedures or principles) [97].
Explicit knowledge from hard sensing-based data acquisition results in discovering
hidden patterns in the aggregated sensor data [42,66]. The explicitness denotes aware-
ness of a fact or artifact, which means the application of knowledge [98] from efficient
scheduling of the resources in IoE applications [82,99]. Sensors continuously generate
enormous amounts of data, with the value created being conditioned to its analysis.

• Implicit: Knowledge is not explicitly represented in the knowledge base but is inferred
from it by using several assumptions [100]. Thus, implicit knowledge may be implicit
information intertwined in information systems and data sources [97]. Myriad data
analytic algorithms can be executed to extract a higher level of information from
sensed data [99]. The value created by implicit knowledge emerges from machine
learning and AI technologies, mainly in machine intelligence services [101]. It consists
of outputs to make predictions oriented toward decision support and automation in
diverse IoE application scenarios [102].
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4.1.2. Structure

The combination of data streams with background knowledge enables meaningful
analysis to derive higher levels of abstraction and deliver quality actionable information to
IoE services [71,95,99]. Sensor data are a piece of explicit knowledge with metadata charac-
terizing the body of evidence [68]. The distinctions between data, information, and knowledge
are largely irrelevant [97]. Knowledge is created by transforming the multiple data formats
collected (structured, semi-structured, and unstructured) [103] into high-level informa-
tion [36,64,94,104], and useful knowledge patterns [36]. Descriptions of these data formats
are given below:

• Structured: These data have an identified format and a relational structure, frequently
accessed using a standard SQL-type language and stored in relational database
management systems. Typical examples of structured data are string, numeral,
and date. [105].

• Semi-structured: These data cannot be managed by conventional database manage-
ment system techniques, but the interpretation and analysis of these data require com-
prehensive and intelligent rules. Typical examples of semi-structured data are extensi-
ble markup language (XML) and JavaScript object notation (JSON) data. [50,101,105].

• Unstructured: These data do not follow any specific format and are often represented
in a rather complex structure that contains hidden relationships. Examples of unstruc-
tured data are videos, text, time information, and geographic location [40]. With the
amount of data generated by sensors, devices constantly produce large volumes of
structured, unstructured, and semi-structured data, which results in ”big data” [73,74].

IoT processing of sensing data streams provides ubiquitous sensing services [42,102,106].
Data aggregation processes are vital for improving the quality of the designed system [107].
Big data technologies assist in data processing [76], the uncovering of new and valuable in-
sights and information from incorporated data sources [28,69], and in improving prediction
and decision-making [102].

4.1.3. Trust

In a hybrid human-based and device-based environment, such as IoE, data’s trustwor-
thiness can be estimated mostly by the sensor nodes’ reputation [37]. Trust management is
a decisive challenge for data access and data storage on IoE applications [49,108].

Dynamic and heterogeneous network environments and the diversity of devices
connected in the IoT generate an extensive array of potential security threats [27,60,61,109].
The network interoperability level should address concerns such as the security of the
data to be transmitted [64], and a coherent IoT architecture would provide a layer of data
security [110,111] since the IoT has no uniform architecture. Approaches and methods to
improve users’ awareness about the effects of potential IoT threats may mitigate the risk of
exposure [53,65,68,112].

Knowledge assets vary in veracity levels [97], between the extremes of truth and
untruth [52]. In some broad sense, the value of knowledge depends on the quality of
the sensors’ information. Security approaches must be made self-sufficient and auto-
nomic, with the minimal manual human intervention [53]. Sensor networks’ applications
need support regarding privacy, security accuracy, timeliness, relevance, completeness,
and provenance [46,68]. The data source’s reputation represents the source’s truthfulness
in providing quality content to handle changing external requirements and contexts [101].
Any direct or indirect connections of user information with connected objects within IoT
landscapes categorize trust in communication and security issues [108] [110]. The trust
values are considered based on the reliability of devices and the level of security and trust
engaged in implementing and operating the connectivity [113,114]. Knowledge of sensors
and sensor data in IoE applications is either trustful or untrustful:

• Trustful: Based on protecting both user and service provider privacy precedents [40].
Constituting meaningful identity, using trusted communication paths, and preserving
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contextual information is essential to guarantee the protection of users’ privacy in the
IoE environment [115]. The work in [55] addressed the security of IoT objects and
privacy issues by merging identification, authentication, and authorization into one
argument: access control. The security dimension encompasses five concepts: access
control, confidentiality, integrity, availability, and non-repudiation. Different studies
have covered concerns such as anonymity, liability, and moral, ethical, legal, cultural,
and regional parameters, among other things [39,45,47,116].

• Untrustful: False or misleading data culminates in wrong decisions and critical conse-
quences and lead to uncertainty at all knowledge transformation levels. Incomplete-
ness in data occurs at the lower layer of the sensor readings or raw data collected.
Vagueness frequently appears at a higher level of contextual information [37,69]. Pos-
sible security risks associated with IoT data are the heterogeneity of the smart devices
and the nature of sensed data or authentication among different trust domains [56],
which further complicates access control decisions.

4.1.4. Outcome

The IoE paradigm impacts human interaction with everyday objects. Considering
the type of information exchanged between humans and the system [84], the expected
outcomes from IoE applications provide multiple tiers of cognition with the fine-tuning
sensory acquisition from heterogeneous contexts [57]. Distinct levels of collaboration be-
tween IoE resources require efficient solutions. Human sensors peculiarities contemplated
by collaboration theory and technical aspects of user interaction are challenges in computer
network theory [28]. It is imperative to provide awareness of collective intelligence and
where the intelligence is [113], representing the outcomes expected in designing the IoE
solutions, based on the application domain [28,104].

The outcome dimension refers to the degree to which knowledge sources (things and
humans) contribute to knowledge creation in IoE intelligent services. Relevant knowledge
contributions from human or non-human enablers (sensors or actuators) either complement
or substitute (or both in some cases) to provide improved outcomes reached through
knowledge sharing processes, and sometimes automating or transforming traditional
tasks [55] into IoE environment disruptions:

• Complementing: Represents knowledge sharing between IoE sensors and actuators.
Complementing outcomes occurs when humans utilize mobile devices like sensors
to collect their observations and information about the environment and infrastruc-
tures [25,51,65] or when artificial intelligence complements human knowledge.

• Substituting: Provides insights and novel interpretation of reality to enhance the
quality of life (livability), regarding knowledge acquisition as the “core element” and
the realization of “intelligence” [77].

4.1.5. Action

The Action dimension refers to knowledge creation. Actionable intelligence is mean-
ingful for humans to promote automated processes [51], ranging from creating value
when used in a specific usage context [25,68,117] to transforming and changing the state
of their environment [24]. Big data analytics aims to improve the understanding of data,
thereby supporting useful and timely decision-making with the refined information gath-
ered [40,42,69].

The goals of IoT systems range between general and specific and include monitoring,
reducing costs, and improving processes [109].

For Russell et al. [117], even in the case of uncertainty, a rational agent is one that acts
to achieve the best outcome or the best-expected outcome. There is a close interrelation-
ship between intelligence and automation [55], or creating and pursuing goals through
transformation. Sensor information in IoE applications provides either automation or
transformation of the IoE environment, which are defined as follows:
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• Automation: the aptitude to make cognitive decisions related to a given situation,
which guarantees the right action is performed. The automation of tasks and de-
pendency on machines may reduce human abilities [105]. When combined with
AI and machine learning, new applications will benefit from automated decision-
making [106], with efficient usage of network resources, minimization of operational
costs, coordination of computational resources, and efficient and effective data man-
agement mechanisms [60] associated with the quality of experience [104,118].

• Transformation: an enormous number of raw observations (created by the machine
and human sensors) can be transformed into higher-level abstractions [57] that are
meaningful for human or automated decision-making processes [55]. When an IoE
solution provides transformation, smart things act independently, with minimal
or no human intervention [51]. With the support of wireless communications and
AI, humans benefit from improvements in technological advancements [42,101] by
collecting, modeling, and reasoning the context [36].

Considering how actions generate changes in the environment to achieve the desired
goal, automation and transformation processes may occur in the short or long term or may
represent a prominent solution. Some works have explored the implications of the IoE for
value creation and decision-making provided by smart things and big data [15,39]. How-
ever, our study is concerned with how humans respond and interact with the environment
in assisting the evolutions of future systems (defined in [15]), which can be:

• Reactive: having the ability to promptly react to a changing environment;
• Adaptive: having the steadier ability to adapt their behavior to changes;
• Predictive: having the ability to use computation and analytics techniques to identify

relevant patterns, in-depth knowledge of the environment, and the most appropriate
solutions or possible evolutions to each IoE system situation.

4.2. Type

The type category contains five dimensions or subcategories for the classification of
sensors and actuators: presentation, nature, use, role, and engagement. Figure 4 highlights
the type category, its dimensions, and characteristics.

Figure 4. IoE Taxonomy: type category, its dimensions, and characteristics.

4.2.1. Presentation

Presentation refers to the physical aspects of sensors and actuators that interact with
the physical world. The physical and virtual world can be merged by integrating computa-
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tion and physical processes in one of the following ways: a) physical, b) cyber or virtual,
and c) cyber-physical or logical [30,46,62,67,79,84].

Humans are content receivers and can act as a sensor collecting data for the sensory
systems or actuators performing actions, but humans are also content providers who share
diverse and relevant types of spatial-temporal data [59,63,65]. The physical dimension
characterizes the mobility of the system’s things and the dependency of the collaboration
of human and non-human devices [28,39]. Accordingly, sensors and actuators can be
classified as follows:

• Physical: Physical entities are tangible devices that generate sensor data or perform
actions changing the environment. The data retrieved from physical sensors repre-
sent a low-level context [36]. Examples of physical sensors are temperature sensors,
pressure sensors, biosensors, light sensors [6], and human sensors [35]. Examples of
the physical actuator are a door opener actuator invoked by an intelligent system and
human actuators.

• Cyber or virtual: An abstract information entity that invokes sensor or actuator
functions but does not directly interact with the physical world. Examples of cyber
or virtual entities are computer programs and systems, communication processes,
and monitoring activities with no physical body (e.g., sensing web service) [51,66,74].
Virtual entities use web services technology to send and receive data from many
sources [36].

• Cyber-physical or logical: Represents the connection of the cyber and physical worlds
as a combination of physical and virtual entities to generate meaningful informa-
tion [25,83]. Similar to virtual entities, they commonly use web services technology to
send and receive data and interact with the physical world [36]. They are autonomous
objects augmented with sensing, actuating, processing, storing capabilities [45]. Ex-
amples of cyber-physical entities are web services dedicated to providing weather
information resulted from physical sensors that sense weather information and virtual
sensors that process historic weather data.

4.2.2. Nature

This dimension is related to sensor or actuator knowledge, intertwined with its
architecture and functionality [43]. A sensor is anything that observes, and an actuator
is anything that performs defined actions [119]. People can be modeled as sensors and
actuators [117], so anything that acts individually to perform a task in the IoE context
is an individual IoE device [59]. Knowing the nature of knowledge source devices is
crucial for publication, discovery, sharing, reuse, and integration of information within
the IoE environment [72]. Human beings with dedicated roles, as well as machines,
devices, and services [35,106,110], implies system constraints when it interacts with the
physical space [46]. Humans are content receivers through the sensory systems and also
content providers—mainly through sensing and actuating abilities [63,120], and through
tacit knowledge and experiences that can affect their actuations in IoE applications and
cognitive tasks.

The level of autonomy of an IoE sensor or actuator (human or non-human) refers
to its ability to act independently [24,83,113]. Several works have identified entities—
sensors/actuators—types according to activities carried out in physical and virtual
worlds [30,37,62].

According to their built-in nature, sensors and actuators in IoE are classified [62]
as follows:

• Electronic-based: Define physical IoT devices constituted of electronic or mechanical
systems that sense or actuate physical phenomena.

• Software-based: Define virtual entities that process information from data sources or
generate analytical results.
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• Human-based: Refers to humans or virtual entities based on knowledge provided
or expressed by human perception about any phenomena arising in their physical,
virtual, or social environment.

• Non-human-based: Define biotic sensors/actuators or virtual entities based on knowl-
edge data provided by biotic perception about any phenomena arising in their physical
environment. In the constantly growing area of animal cognition, sensor networks
monitor the health and well-being of animals in livestock herds and in animal surveil-
lance applications [121].

4.2.3. Use

Refers to the physical characteristics of physical IoE sensors or actuators related to
their usage in a particular application. The devices inherit the attributes of their owners
or of the entities or places [79] to which or where they are attached [43,66,113]. A wide
variety of objects—a group of infrastructures and devices [44] such as embedded devices,
sensors, and actuators—have integrated communication and strong interactions to create
a ubiquitous environment [71,106,110]. A taxonomy for IoT sensors communicates how
distinct types of sensors are combined and used in specific application domains [72].

Smutný [29] described things according to how they are used or applied in relation
to humans:

• Embeddable: Things that are in the user or under the user’s skin, that are non-
autonomous, or embedded in carry-on devices [42]. The level of autonomy ranges
from human-companion device tasks [65] to opportunistic devices, which decide and
act independently [24,28]. For example, a mobile phone is a ubiquitous, convenient
and user-friendly device and has many sensors embedded [48], which is why it has
turned into a global mobile sensing device [67].

• Wearable: Things that rest on a person’s body or can be used, worn, or attached to
their owners and enable accurate detection of the wearers’ motions [50,63,64,75].

• Surroundable: Things that are autonomous, near or around the user, but which have
no physical contact with the user. Recently, several non-contact techniques have
been interpreted as highly valuable in dealing with highly infectious diseases such as
COVID-19. In a pandemic scenario, non-contact sensing was able to detect information
without direct contact with the patients and without devices physically touching the
body [122].

4.2.4. Role

IoT devices have sensing and actuating capability according to defined rules under
various scenarios [59,72]. They perform sensing and actuating functions [24,26,51] that
help in interacting with the physical environment [48]. An IoE device or enabler can be a
sensor, an actuator, or a sensor and actuator [44,77,106].

• Sensor: A device that observes and senses. Sensing is a read operation over a con-
text entity. The data collected by a sensor is stored and processed intelligently to
derive useful inferences and to support the decision-making process [46]. Sensors
are monitor devices and physical entities, which provide the information required to
immediately control actuators, whereas actuators act on the physical entity or control
other things [28,35,114].

• Actuator: Affects a particular domain of the physical space or a combination of both.
Actuation is a write operation over a context entity, in which the conceptual entity
represents the domain of a sensor or an actuator [44]. Actuators perform the decided
actions and effect a change in the environment [36,39,48].

• Sensor and actuator: This device is a hybrid of the two previous categories, and it can
gather data and act within its environment.

Processing and analytics (fixed process or algorithm, machine learning, or AI) do not
fit within this classification [113].
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4.2.5. Engagement

Participation is an interaction between people with existing technologies and occurs
at different engagement levels [67]. Engagement refers to sensing tasks. In data acquisition,
it can be both opportunistic and participatory, and it provides sensory information that
collectively forms knowledge.

For example, enhancing human senses is possible when machines interact with hu-
mans or provide remote operation in perceived real time in ubiquitous computing [57,63].
Cooperative smart things can interact with other entities of the IoE in order to achieve a uni-
fied objective [15]. With mobile crowdsourcing, the primary information shared voluntarily
is user knowledge and opinion, along with location as the only sensor information [65].
The engagement of a sensor node in an IoE application is one of the following:

• Participatory: The IoE enabler (sensor node or actuator) is actively involved and
actively reports observations [120]. It can provide information about the environment
or surroundings, as well as any other sensory information that could be on social groups
(social sensing) or with everyone (public sensing) or at the community level [37,67,106].

• Opportunistic: The IoE node has minimal or no involvement—it senses and monitors
tasks running in the background. Embedding sensors trigger the data automatically
(either periodically or based on events).

4.3. Observation

The observation category contains five dimensions or subcategories related to sensed
context: location, reach, mobility, time, and mode. Figure 5 emphasizes the dimensions
and their sub-dimensions or characteristics.

Figure 5. IoE taxonomy: observation category, its dimensions, and characteristics.

4.3.1. Location

Location is used to describe the spatial context (physical context) of users/devices
within a local or global network [24,113]. It represents the geophysical position of a sensor
or actuator in absolute values, identifying the coordinates (latitude and longitude) or
relative specifications through location tags [45], which is obtained manually or automat-
ically [120,123]. It represents the definition of an area covered by a particular object [79].
Sensors that are randomly deployed get the required information about the target environ-
ment [81].

Location systems can be categorized as context-aware systems [75]. The precise location
of an object is critical since location plays a critical role in context-aware computing [36,66,80].
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Moreover, aggregation of knowledge patterns facilitates reduced data transfer in distant
environments and minimizes bandwidth use [94]. Some physical measurement-based
localization schemes are classified as coarse-grained and fine-grained [80].

4.3.2. Reach

Reach classification distinguishes between individual and collective knowledge. It refers
to an environment of sensing interest [71]. Sensors are becoming more sophisticated in
technology advances, cheaper in price, and smaller in size. This evolution stimulates
large-scale deployments [36], and dense geographical distribution [60].

The domain of interest represents the applicative domain in which the device is
operative [79,81] and ensures that IoT services are accessible or reached only by authorized
access [113,124].

The prevalence of mobile devices, such as smartphones, has triggered challenges
for mobile networks worldwide [125], as well as novel classifications, such as collective
knowledge classified into individual or group, internal or external, full or partial do-
mains. For example, a conglomeration of sensor data stored on cloud infrastructure can be
designed as big data sensing, and based on the reach of its sensing requests and require-
ments [74], it can be referred to as a) private, b) public, c) community, or d) hybrid big
data sensing.

In crowdsourcing, regarding the boundaries of the individual scope in which crowds
collaborators are immersed, the reach can be classified as ranging from small to large-scale
(from a person to a group, community, city, and so forth) [28,65].

4.3.3. Mobility

Mobility, which is also called monitoring continuity [36], is one of the main character-
istics that enables identification of the state of sensors and actuators and their capability
of movement [26,36,39,43,44,80], with significant implications on device operation, con-
nectivity, and location management [30,48,80]. Devices are classified into two categories:
static/immobile/fixed and mobile [26,77,82,113].

• Fixed/static/immobile: Objects that remain static to a specific location or cannot move.
Their observations are restricted to a specific location, in a static or very constrained
(in terms of mobility) environment that is not designed to move (relative to their point
of installation) without being uninstalled.

• Mobile: The objects move [44], and their location may be calculated in absolute
coordinates or relative to reference nodes in the network [81], requiring wireless
communications to transmit data and allow configuration and control [113]. Their
movement and mobility capability are controlled independently (or autonomously) or
dependently through device users [43].

A self-moving device moves autonomously and relative to its setup/installation point,
without being uninstalled (e.g., smart car), whereas a non-self-moving device does not
move autonomously but can still move relative to its original location without being
uninstalled [26,77].

Mobility of the things in the system is dependent on the collaboration of the items
physically coupled with the humans in the system [28], as in crowdsensing applications,
in which geographically dispersed users actively (participatory) or passively (opportunistic)
collect data with their smartphones [51,75]. Classifications between mobility-agnostic and
mobility-aware [82] highlight an approach that ignores knowledge about mobility and the
ones that consider and exploit it for optimization [12].

Challenges related to mobility include frequent disconnections and handoffs, which
affect perfect connectivity [126]. Mobility techniques in the cloud, fog, and edge archi-
tectures [60] support mobility, and other protocols apply routing and resource discovery
mechanisms [39].
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4.3.4. Time

Time represents the instant of observation (i.e., timestamp) [79]. Information about
time and location are critical features of some applications (called spatial-temporal-aware
applications) that require tasks to make observations at a specific location during a defined
period [120]. In [24], latency relates to the time an IoE system needs to answer to a stimulus.
Interaction between IoE smart devices can influence the service’s response time to end-
users. The time interval between the initiation and the conclusion of the task is the response
time [49,107,109].

The time dimension depends on how sensors are requested or provide data to the
system in specific periods or on an ad-hoc basis (as software system makes a request),
which is characterized as the following two distinct methods that were proposed in [107]:

• Pull method: The software component in the control of obtaining sensor data from
sensors makes a requisition periodically (after specific intervals) or instantly obtains
sensed data [107].

• Push method: The physical or virtual sensor pushes data to the software component
in the control of obtaining sensor data periodically [36,107]. In many cases, a sensor
observation can be the result of a local sensor data fusion [68].

Real-time applications monitor the state of the environment and react to changes
accordingly and in a timely manner.

The deployment of IoE applications in real-world scenarios creates a massive amount
of data from real-time interactions, usually at high data rates. It faces challenges as temporal
data consistency related to the coherency between the value of the data in the system and its
environment state [107]; and high latency during interactions [39], when inferred contexts
evolve with time [91,94], and the exchanged data may not be accurate.

Hard real-time data cannot accept any delay; in contrast, soft real-time data can
accept various bounded delays. Delay-tolerant applications can be categorized as nonreal
time [60,107]. In offline circumstances, the delayed transmission may be crucial to address
quality and security constraints [37,65].

In real-time situations, timeliness [69,107] describes data processing in a specific
deadline, which is real time, near real time, or batch processing [113].

• Real time: refers to the immediate data processing to provide instant results for a
time-sensitive application.

• Near real time: refers to situations when the delay time is still relevant for the applica-
tion, but the computation process is not as immediate as real time.

• Batch-processing: refers to situations when data are first collected and processed at a
predetermined interval or when a specified volume of data is available [37].

4.3.5. Mode

The combination of sensors serving different purposes and data generated in IoE
applications implies the need to classify data sources and information in the IoT con-
text [72]. During real-time data harvesting, it can be challenging to determine the possible
relationships among heterogeneous knowledge sources [69]. Smart device sensors are
either active or passive sensors, depending on their usage and functionalities. If the sensor
data collected are reflected in the same way as designed, this is called active functionality.
However, sensors operate passively when collected data are interpreted or processed in
new ways [17,65].

Eris et al. [28] defined how much interaction is required within the network in three
levels of collaboration interdependence [28]:

• Pooled interdependence: The lowest level of collaboration, in which each collaborator
barely contributes to the collaboration environment and benefits from the contribu-
tions of others. The collaborators neither synchronize nor negotiate the nature of each
other’s contributions.
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• Sequential interdependence: The middle level, in which the contributions of one
collaborator become the inputs to another collaborator contributions. In this case,
there is a temporal ordering of the collaboration efforts.

• Reciprocal interdependence: The highest interdependence level, in which one collabo-
rator’s contributions are the next collaborator’s inputs, and collaborators must also
negotiate the nature of each other’s contributions to the collaboration environment.

The Mode dimension refers to the way of linking the physical and digital world in
order to acquire context [127], and it can be either sensed, derived, or manually provided:

• Sensed: Data gathered through sensors.
• Derived: Includes the sensed data stored in databases or the information generated by

performing computational operations on sensor data. Data aggregation is the ground
for the application’s workflow and unconditionally impacts the application’s quality.
Distinct aggregations may have specific requirements to be supported by design [107].

• Manually provided: Human sensors provide the context information [36].

4.4. Capabilities

The capabilities category contains three dimensions or subcategories (communication,
processing, and storage) and refers to the processing power and storage capacity of the
underlying technologies and communication protocols. Each dimension has its specific
sub-dimensions or characteristics, as represented in Figure 6.

Figure 6. IoE Taxonomy: capability category, its dimensions, and characteristics.

4.4.1. Communication

The communication capability refers to the sensors’ ability to communicate and change
information locally. This ability may vary at different levels of interoperability between
IoE sensors and systems and be classified as no connection (no connectivity between
enablers), technical (basic network connectivity), syntactical (basic interoperability and data
exchange), semantic (understanding about the semantics of the data), pragmatic or dynamic
(applicability of the information), conceptual (shared view of the pervasive world) [27],
or organizational (coordination and alignment of business processes across organizational
boundaries) [128]. Additionally, based on communication capabilities, IoT devices are
classified into two categories: gateway devices and constrained devices [43,45]. Moreover,
according to their abilities to interact with other objects, IoT objects can be classified into
four levels (Level 0–Level 3). Level 0 objects only receive, and Level 1 objects only send
information. Level 2 objects can perform both operations with one object, while Level 3
extends the interaction to any other object [50].



Sensors 2021, 21, 568 20 of 35

Different networking protocols and technologies provide networking interoperabil-
ity in IoT [27,48,114]. IoT systems can exploit several types of networks with different
characteristics in terms of size, data transfer, coverage, latency requirements, capacity,
and supported reachability [69,74,75,83,110]. The central networking and communica-
tion technologies are local area networks, wireless local area networks, wireless personal
area networks, wide area networks, metropolitan area networks, wireless regional area
networks, body area networks, mobile communication networks, wireless metropolitan
area networks, satellite networks (e.g., GPS) [24,118,129], Neul, IPv6 over low-power
personal area networks (6LowPAN), low-range wireless area networks, cellular Sigfox,
narrowband-IoT, and thread or mesh technologies such as Zigbee and SDNs [25,30,113].

There are three types of communication protocol that enable IoT to interconnect and
communicate: (1) device-to-device, which is applied to communication between mobile
phones within reach and is the next-generation of mobile networks; (2) device to the server,
in which the sensed data are sent to the servers, nearby or away from devices (applies to
cloud processing); and (3) server-to-server, in which servers transmit data between each
other—mainly used for mobile networks [99].

4.4.2. Processing

The sensors and devices used for data collection also vary in their processing ca-
pabilities [130]. The study of Mon et al. [127] classifies sensors as high-end or low-end
devices, depending on resources and computational capabilities. Low-end devices are
resource-constrained with regard to energy, processing power, and communication capac-
ities. The processing capability refers to the sensors’ ability to process aggregated data
locally [55].

For IoE systems, data are automatically processed to deduce knowledge and gen-
erate actionable insights. In general, data processing techniques are either historical or
proactive. Historical data processing is related to knowledge discovery, whereas proactive
data processing provides predictive and actionable insights [24]. A broad category of
applications participates in the continuous generation and analysis of high-volume hetero-
geneous stream data. Next-generation applications will be developed to handle the data in
streaming mode and on-the-fly as the value of data resides in its real-time processing [131].

Analytics technology refers to the systematic computational analysis of transforming
a variety of data from different sources into information [105] and applying data fusion and
mining techniques [94] to make intelligent decisions at the following distribution levels:
(1) the device level, where devices are responsible for storage and computing process;
(2) the network level, which demands remote communication to fog computing nodes
(hubs, base stations, gateways, routers, and servers); and (3) cloud level, which demands
remote communication within a group of interconnected servers [24,38,73,114,118].

Cloud, edge and fog computing are critical aspects of the centralized and decentralized
IoE environment, considering that devices that have restricted compute and memory
capacity need to delegate these functions [25,26,29]. Integrated with cloud computing,
edge computing can efficiently address the processing problems related to edge big data.
Since in the edge computing paradigm, the data are at the edge of the network [28,56].

A variety of cloud computing and edge computing paradigms are mobile cloud
computing, mobile edge computing, and fog computing [32,60,126]. Cloudlets, mobile edge
computing, and fog computing are edge computing technologies and rely on virtualization,
while mobile cloud computing processes the data of mobile applications at a remote cloud
data center.

4.4.3. Storage

This capability refers to an IoE system’s storage function, based on the paradigm
where its storage function resides: cloud, fog, or edge [73]. A storage platform (public,
virtual, or private) offers the flexibility and scalability that an IoE application needs,
from development to deployment [29]. Storage refers to storing data internally, and it varies
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intensively from one object to another [55]. Storage interactions between IoE enablers may
be distinguished significantly depending on the object’s storage capabilities. Some objects
may have restricted capabilities and store minimum information [132]. Most mobile devices
at the edge of the network are resource-constrained in terms of storage, computation
capability and battery life [56]. Although almost all of the objects have the capacity to store
embedded codes to function internally, they differ in storing aggregated and processed
data [104]. An object’s storage should also be based on the sensitivity of the information
stored [55].

Analytics processing requires real-time data stream processing for supporting the rate
of data arrival, data management, and data storage [105] at diverse distribution levels.

Depending on the storage and compute capabilities, the storage capability of an IoE
node or application is [114]:

1. Device-level: devices are participants in the storage and compute process;
2. Network-level: the storage process uses remote connections to fog computing nodes;
3. Cluster level: storage function is provided between a set of interconnected servers [114].

5. Discussion and Comparison with Previous Work

In this section, we discuss theoretical and practical implications and limitations.
We present a brief comparison of the scope of the proposed IoE taxonomy and 76 IoE and
IoT taxonomy previous works selected in the literature review (presented in Section 3).
We examined their diverse approaches in order to enhance understanding of the contextual
aspects of IoE/IoT addressed and their relationships in identifying knowledge in IoE/IoT
applications.

Table 2 shows the adherence of the analyzed studies to our proposed IoE taxonomy
across the proposed categories and dimensions. In relation to dimensions of the IoE
taxonomy, capabilities is the category most frequently addressed and studied, followed by
observation and type of sensor, respectively. The summaries show that most taxonomies
support at least two dimensions, but knowledge support is limited.

The proposed IoE taxonomy (in bold) covered all (100%) of the 18 dimensions.
It should be noted that, on average, the remaining 76 studies covered 25,5% of the dimen-
sions. The framework proposed by Boyes and Hallaq [113] obtained the second-highest
coverage (72,2%), with 13 dimensions; however, it did not include aspects related to the
type of knowledge in IoE applications. On average, the knowledge category obtained 24,7%
coverage, while the type of sensor, observation, and capabilities categories appeared in 20.5,
20, and 44.3% of the studies, respectively.

The results indicated a lack of interest (only 15.8%) in identifying knowledge sources
in terms of explicitness (tacit, explicit, or implicit). Moreover, only 13.1% of the studies
addressed how the outcome of the IoE application was achieved and benefited by comple-
mentation (accompaniment) or substitution (replacement) of knowledge in IoE processes
(between things, data, and humans). Thus, further research should consider this gap and
attempt to examine the impact of knowledge identification on the design of IoE applications
and how knowledge should be synthesized and combined to drive knowledge creation
and intelligent services that create value. In conclusion, the findings of this present study
provided an insight into the current trend of IoE research.
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Table 2. Comparison of the scope of the proposed IoE taxonomy with previous works.

Category Knowledge Type Observation Capabilities Score
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Ref. Year
This study 2020 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 100%

[24] 2019 4 4 4 4 4 4 4 38.8%
[26] 2019 4 4 4 4 4 27.7%
[27] 2019 4 4 4 16.6%
[30] 2019 4 4 4 4 4 4 33.3%
[57] 2019 4 4 4 4 4 27.7%
[61] 2019 4 4 11.1%
[39] 2019 4 4 4 4 4 4 4 4 4 50%
[64] 2019 4 4 4 16.6%
[65] 2019 4 4 4 4 4 4 4 4 4 50%
[69] 2019 4 4 4 4 4 4 33.3%
[84] 2019 4 4 11.1%
[95] 2019 4 4 4 16.6%

[105] 2019 4 4 4 4 22.2%
[107] 2019 4 4 4 16.6%
[109] 2019 4 4 4 16.6%
[112] 2019 4 4 4 4 22.2%
[126] 2019 4 4 4 16.6%
[62] 2018 4 4 11.1%
[37] 2018 4 4 4 4 22.2%
[55] 2018 4 4 4 4 4 27.7%
[56] 2018 4 4 4 16.6%
[59] 2018 4 4 4 4 4 27.7%
[60] 2018 4 4 4 4 4 4 4 4 4 50%
[49] 2018 4 4 4 16.6%
[50] 2018 4 4 4 16.6%
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[51] 2018 4 4 4 4 4 4 33.3%
[76] 2018 4 4 11.1%
[80] 2018 4 4 4 4 22.2%
[81] 2018 4 4 4 16.6%
[83] 2018 4 4 4 16.6%
[99] 2018 4 4 4 4 4 27.7%

[102] 2018 4 4 11.1%
[104] 2018 4 4 4 4 4 4 4 4 44.4%
[106] 2018 4 4 4 4 4 4 4 4 4 4 55.5%
[113] 2018 4 4 4 4 4 4 4 4 4 4 4 4 4 72.2%
[114] 2018 4 4 4 4 4 4 33.3%
[116] 2018 4 4 4 4 22.2%
[77] 2018 4 4 4 4 22.2%

[120] 2018 4 4 4 4 4 27.7%
[124] 2018 4 4 4 4 4 27.7%
[127] 2018 4 4 11.1%
[25] 2017 4 4 4 4 22.2%
[41] 2017 4 4 4 4 22.2%
[42] 2017 4 4 4 4 4 27.7%
[43] 2017 4 4 4 4 22.2%
[47] 2017 4 4 4 16.6%
[63] 2017 4 4 4 4 4 4 33.3%
[48] 2017 4 4 4 4 4 4 33.3%
[40] 2017 4 4 4 4 4 27.7%
[75] 2017 4 4 4 4 4 27.7%
[79] 2017 4 4 4 4 4 4 33.3%
[94] 2017 4 4 4 4 4 4 4 4 4 50%
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[101] 2017 4 4 4 4 22.2%
[133] 2017 4 5.5%
[29] 2016 4 4 4 16.6%
[44] 2016 4 4 4 4 22.2%
[66] 2016 4 4 4 4 22.2%
[72] 2016 4 4 4 4 22.2%
[73] 2016 4 4 4 16.6%

[111] 2016 4 4 4 4 22.2%
[115] 2016 4 4 4 4 22.2%
[118] 2016 4 4 11.1%
[28] 2015 4 4 4 4 4 4 4 4 44.4%
[53] 2015 4 4 4 16.6%
[67] 2015 4 4 4 16.6%
[71] 2015 4 4 4 16.6%
[74] 2015 4 4 4 4 4 4 4 38.8%
[82] 2015 4 4 4 4 4 27.7%
[45] 2014 4 4 4 4 22.2%
[36] 2014 4 4 4 4 4 4 4 4 4 4 55.5%

[108] 2014 4 4 11.1%
[110] 2014 4 4 4 4 4 27.7%
[35] 2013 4 4 4 16.6%
[68] 2013 4 4 4 4 4 4 33.3%
[46] 2011 4 4 4 4 22.2%
[38] 2011 4 4 4 16.6%
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6. Results

This section presents the application of the proposed taxonomy in diverse IoE domains.
We intended to validate the IoE taxonomy’s practical applicability for classifying knowledge
in the IoE applications in relation to the following proposed categories: knowledge, type,
observation, and capabilities. We conducted conceptual and pragmatical validations aimed
to show that the proposed taxonomy involves the qualitative attributes of robustness
and comprehensiveness. It contains enough dimensions and characteristics to clearly
differentiate the objects of interest into distinct domains and to classify all known objects
within the field under consideration [88].

6.1. Validation of Proposed IoE Taxonomy in Distinct Domains

We illustrate the validation of the proposed taxonomy over 50 distinct IoE applications
in the following three domains: crowdsourcing applications [134], IoT/IoE applications
with analytics [114], and cyber-physical systems [135]. We selected crowdsourcing appli-
cations due to the integration of crowd knowledge and participatory sensing, IoT/IoE
applications with analytics to validate the applications with an implicit knowledge and big
data sensing and cyber-physical systems due to the pervasive environment of thing-to-thing
collaborations.

Table 3 presents a sample of analyses of the 50 applications. Our analyses will provide
the roadmap for future research on IoE sensors and applications. To assist with future
studies, the full results and details are available in a dataset within a technical report [136]
(https://www.cos.ufrj.br/uploadfile/publicacao/2963.pdf).

Table 3. Validation of proposed IoE taxonomy in distinct domains.

Category/Dimension
Applications Classified According to IoE Proposed Taxonomy Characteristics:
Cyber-Physical Systems (CPS) [136], Crowdsourcing Applications [137–147],
Applications with Analytics: [148–152]

Knowledge

Explicitness Tacit [114,137–140,144–147,151,152] Explicit [136,138–140,142–144,146,147,150–152]
Implicit [136,141,145,146,149–152]

Structure Structured [135,137–152] Semi-structured [135,146,147,152] Unstructured [135,145]
Trust Trustful [135,148–152] Untrustful [137–145,147]

Outcome Complements [135,137–150] Substitutes [135,151,152]
Action Automation [135,137,150–152] Transformation [135,138–144,146–149]

Type

Presentation Cyber [135] Physical [135,137–139,142–152] Cyber-physical [135,140,142,144–152]

Nature Electronic-based [135,137,148–152] Software-based [135,147,150]
Human-based [135,137–147,151,152]

Use Wearables [135,137–142,152] Surroundable [135,148–151] Embeddable [140,142,150]
Role Sensor [137–147,149,152] Actuator [152] Sensor and actuator [135,148,150,151]

Engagement Opportunistic [135,140,144,146,149,151] Participatory [141–143,145,147,148,150,152]

Observation

Location Coarse-grained [137–139,141–144,147–151] Fine-grained [135,140,145,146,152]
Reach Full [137–139,141–145,147,148] Partial [135,140,146,150,151]

Mobility Fixed [152] Mobile [137–151]
Time Pull [140,145,147–150,152] Push [135,137–144,146,151,152]
Mode Sense [135,137–152] Derive [135,140,145,146,149,151,152] Manually provided [142,143,148]

Capabilities
Communication Semantic [135,137–147] Pragmatic [135,148–151] Conceptual [152]

Processing Cloud [135,137–152] Fog mobile edge: [139,140,144,145,147]
Storage Device level [150] Network level [149,152] Cluster level [135,137–152]

Using different perspectives and approaches, most IoE applications demand knowl-
edge, such as knowledge provided by sensors, knowledge about system’s domains, knowl-
edge about users and activities, as well as knowledge for automated configuration of
sensors and data annotation, reasoning, and event detection to the IoE system [93].

Regarding the crowdsourcing application domain and using the proposed taxon-
omy, we analyzed 11 applications observed by Melo et al. [134] in a Crowd Application

https://www.cos.ufrj.br/uploadfile/publicacao/2963.pdf
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Database (http://cadb.demoro.net). According to the authors of this study, there is a
need to create mechanisms to warn users about using their data. It is essential to evaluate
the boundaries between people and things and their collaboration processes to create
collective intelligence. This should benefit from our IoE taxonomy in terms of knowledge
identification and awareness. The 11 knowledge-intensive applications selected from
the crowd application database were: Noisetube [137], CenceMe [138], MicroBlog [139],
Ubifit Garden [140], GarbageWatch [141], Galaxy Zoo [142], eBird [143], SenSay [144],
Jog Falls [145], MobAsthma [146], and Transafe [147]. These applications are intrinsically
composed of knowledge-intensive tasks for the expected purpose and value creation.
The transformations or automation provided by these applications consist of conversions
of tacit-explicit-implicit knowledge when people, things, and data are connected in the IoE
environment to provide relevant services and collective intelligence. Table 3 classifies these
11 applications using the proposed IoE taxonomy. The full results and details are available
in [136].

Regarding IoE applications that benefit from data analytics, we selected 30 applications
in Siow et al. [114], which analyzed (for the 2011–2017 period) the top five application
domains: health, living, environment, industry, and transport. We categorized the selected
applications (from distinct domains and with diverse analytical capabilities) in order to
validate the IoE taxonomy, as presented in [136].

As a sample for application of the proposed IoE taxonomy, Table 3 shows the cat-
egorization of 5 applications that were selected from Siow et al. [114] (smart clothing
monitoring [148], travel routing [149], chemical process monitoring [150], smart farm-
ing [151], and on-shelf availability [152]). We prioritized applications with descriptive
capabilities, which are the primary source of knowledge creation. The five applications
consist of knowledge sharing between sensors’ explicit knowledge, tacit human knowledge,
and implicit knowledge in systems.

Smart clothing monitoring [148] is a monitoring system improved with a machine-
learning algorithm for diagnostic and predictive analytics of patients’ health conditions.
Travel routing [149] suggests the best travel routes, using analytical techniques for traffic
flow prediction in order to predict future traffic flow. Chemical process monitoring [150]
uses predictions to provide quality monitoring and enhanced control systems in plants to
automatically react and prescribe process improvements “to prevent off-grade products”.
Smart farming [151] applications discover relevant events on semantically enriched data
streams from sensors related to two smart farming scenarios. Moreover, on-shelf availabil-
ity [152] is a system that improves shoppers’ experiences, forecasts demand and provides
insights on buyers’ behavior.

Siow et al. [114] emphasized similarities between knowledge hierarchy, which trans-
forms data to wisdom with analytical capabilities of IoE applications. Their study formed
a comprehensive hierarchical classification of analytic capabilities (descriptive, diagnos-
tic, discovery, predictive, and prescriptive), where each level of the hierarchy lies in the
previous tier and relates to a corresponding level of data-to-knowledge-wisdom hierar-
chy approach. However, the study neglected the characteristics of knowledge processes
and combination of tacit (from humans), explicit (sensed data), and implicit (analytics)
knowledge, which we consider to be the great impact for knowledge created from analytics
capabilities and value creation from intelligent services. We addressed this understanding
in the proposed knowledge-based IoE taxonomy, which characterizes knowledge sources
in terms of the smart services they provide, their characteristics, and how they interact to
provide foresight: real-time data (explicit knowledge) combines with models from learning
systems (implicit knowledge) to recommend action (integrating tacit knowledge from
human sensors).

Additionally, we used the proposed IoE taxonomy to understand nine domains of
cyber-physical systems (CPS) [135]; the full results and details are available in a dataset
within a technical report [136]. In Table 3, we validated the IoE taxonomy in terms of
the main characteristics of CPS applications [135]. CPS applications incorporate physical

http://cadb.demoro.net
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processes, highly networked computers, machines, and robots to interact with the physical
world in an extremely integrated and technical environment. They have a vital impact
on older people’s daily lives, as well as on healthcare, agriculture, manufacturing, en-
ergy and critical infrastructures, logistics, transport, security, and safety. In applications
that support older people’s daily lives, patient care services will improve their quality.
They will benefit from the combination of real-time data collected from wearable sensors
with tacit knowledge from medical professionals and AI from specialized task-oriented
robots. In healthcare application domains, robots and humans will work together in a
smart medical environment, and diagnostic processes based on evidence-supported results
and treatments will be automated and optimized. In agriculture, information mining and
decision-making patterns will cause job losses as technologies replace human workers.
Even though industries will develop autonomous agricultural machines, this will create a
niche for high-skilled jobs.

The proposed knowledge-based taxonomy in the classification of CPS enablers,
in many ways, will support a foundation to build integration of tacit knowledge from
human sensors in knowledge-intense applications applied to cyber-physical environments
such as in CPS.

The recognized value of tacit knowledge from humans will emerge in highly trained
skilled engineers who will manage robots. In manufacturing, there will be an increasing
incentive for those who acquire digital skills to deal with a vast volume of real-time data
collected through sensors.

6.2. Example of Classification of One Application with the Proposed Taxonomy

Table 4 describes the classification of a specific application selected from Siow et al. [114]
in accordance with the previously defined taxonomy. We selected the on-shelf availability
application [152] application due to the diversity of its sensor types and knowledge sources.

Table 4. Classification of IoE enablers of a specific industry domain application [114], according to IoE proposed taxonomy
characteristics.

Category/Dimension Characteristics of an industry domain application (on-shelf availability application [152])

Knowledge

Explicitness
Tacit: shoppers’ experience, staff experience | Explicit: enterprise point of sale (POS) systems and

inventory systems |
Implicit: algorithm and models from learning systems

Structure Structured: enterprise data| Semi-structured: weather data, local events, and promotion details |
Unstructured: real-time sensor data

Trust Trustful: data from enterprise systems | Untrustful: real-time data from shoppers’ sensors
Outcome Complements: Recommended action plans | Substitutes: predictive analytics to provide insights

Action Automation: stock business processes | Transformation: insights into buyers’ behavior

Type

Presentation Cyber: predictive analytics algorithm | Physical: cameras, shoppers, staff of the store, light, infra-red,
and RFID sensors | Cyber-Physical: point of sale (POS) systems

Nature Electronic-based: video cameras, light, infra-red, and RFID sensors | Software-based: point of sale (POS)
systems | Human-based: shoppers, the staff of the store | Non-human-based: shoppers’ pets

Use Wearables: shoppers’ mobile devices | Surroundables: video cameras, infra-red sensors | Embeddable:
light, RFID sensors

Role
Sensor: video cameras, light, infra-red, and RFID sensors, shoppers, the staff of the store | Actuator: staff
of the store who restock products or actuators to rectify problems | sensor, and actuator: staff of the store

who senses and executes recommended actions
Engagement Opportunistic: shoppers | Participatory: shoppers/staff of the store

Observation

Location Coarse-grained: supply chain context | Fine-grained: store environment
Reach Full: supply chain context Partial: physical store environment

Mobility Fixed: inside the store supply chain context | Mobile: shoppers’ mobile devices
Time Pull: meta-data produced and sent to the cloud | Push: forecast demands provided by systems

Mode Sense: store sensor devices | Derive: information derived from sensors |Manually provided: data
provides from shoppers’ demand

Capabilities

Communication Conceptual communication: supports the execution of recommended actions and provides a novel
shopping experience

Processing Cloud: metadata produced | Fog/Edge: Edge: video streams processed locally | Mobile cloud: mobile
devices from shoppers

Storage Device-level: processing video streams locally | Network level | Cluster level: metadata produced is
sent to the cloud
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The on-shelf availability application [152] is an industry domain application [114] and
relates to a system that benefits customers’ experience by enhancing the on-shelf availability
of products. The system also seeks to forecast demand and provide insights into buyers’
behavior, with predictive analytics employed in business processes. It is composed of an
effective algorithm that benefits from sensor data and provides a wide scope for discovering
patterns and trends. Real-time data from sensors provides the relevant information to
actuators (staff of the store) to immediately solve problems like products being out of stock
on the shelves.

Other sensors like video cameras process video streams locally to provide the analysis
of product availability on the shelves. The information is confirmed by other sensors (light
sensors, infra-red, and RFID sensors), and the data and metadata are sent to the cloud to be
processed. Other relevant information, such as weather data, local events and commemo-
rative dates, and promotion details, are analyzed and combined with the current on-shelf
availability of products to provide demand forecasting and model buyer behavior [114].
In the cloud servers, real-time data are processed and combined with models from learning
systems, data obtained from enterprise Point of Sale systems, and inventory systems to
recommend action plans to maintain the on-shelf availability of products. The store staff is
informed, and action is taken to restock products and rectify business processes for quality
improvement. While shopping, customers can take their pets to the pet store for bathing
and grooming, and they can use their mobile devices to monitor their pets via a sensor on
the animal’s collar.

The classification of the on-shelf availability application using the proposed IoE tax-
onomy highlighted the interdependencies between knowledge characteristics, sensors,
and observations, considering the capabilities of available resources and expected out-
comes for a new buying experience, such as insights for customers and business process
improvement for suppliers.

With these elements, we defined a common vocabulary that can uncover existing and
forthcoming application characteristics. The taxonomy has the quality attribute of being
concise and having a limited number of dimensions, restricted to what is relevant and
understandable. Moreover, it is explanatory enough to provide useful explanations and
valuable descriptions of the nature of the exemplified application selected.

7. Conclusions

This work contributes to the development of a knowledge-based taxonomy related
to IoE applications, which will guide both interested researchers in this field, as well as
application developers, in the design of knowledge-intensive IoE services.

The proposed taxonomy is extendable: it allows for the inclusion of additional di-
mensions and new characteristics within the IoE paradigm and other emerging paradigms
under the IoE umbrella or concerned with intelligent network connections.

The novel knowledge-based IoE taxonomy was revealed considering diverse ap-
proaches and main findings in 76 relevant works selected from the literature review of IoT
and IoE taxonomies, which provided guidelines and a comprehensive overview of the topic.
In Table 2, we presented the analyzed studies’ adherence to our proposed IoE taxonomy,
which is proved to be the most comprehensive taxonomy taking into consideration the
other taxonomies compared.

The conceptual and pragmatical validations aimed to show that the proposed taxon-
omy involves the qualitative attributes of robustness and comprehensiveness and contain
enough dimensions and characteristics to differentiate the objects of interest from dis-
tinct application domains clearly: cyber-physical systems (CPS) [135], crowdsourcing
applications [137–147], applications with analytics: [148–152], as presented in Table 3.

To exemplify the orchestration of intelligence in network connections concerning
knowledge processes, type of IoE enablers, observation characteristics, and technological
capabilities in IoE applications, Table 4 presents the IoE enablers’ classification and specific
industry domain application [114], according to IoE proposed taxonomy characteristics.
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With this study, we aimed to better understand the potential in reshaping interactions
among people and things in the IoE context, considering a knowledge management per-
spective. In future work, we will extend the research and apply a quantitative assessment
for ranking knowledge of IoE enablers, based on the hierarchical structure of the proposed
IoE taxonomy.

Nevertheless, in order to entirely understand the transformative potential of collab-
oration between people and things in IoE applications, there is a research gap that must
be overcome regarding insights into the characteristics of knowledge creation, actions,
and transformations provided by using IoE applications and the value created from people
and things in this context. Thus, we believe there is still significant room for future research
and work on this topic.
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