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Abstract: Process-based modeling for predicting harmful cyanobacteria is affected by a variety of
factors, including the initial conditions, boundary conditions (tributary inflows and atmosphere),
and mechanisms related to cyanobacteria growth and death. While the initial conditions do not
significantly affect long-term predictions, the initial cyanobacterial distribution in water is particularly
important for short-term predictions. Point-based observation data have typically been used for
cyanobacteria prediction of initial conditions. These initial conditions are determined through the
linear interpolation of point-based observation data and may differ from the actual cyanobacteria
distribution. This study presents an optimal method of applying hyperspectral images to establish
the Environmental Fluid Dynamics Code-National Institute of Environment Research (EFDC-NIER)
model initial conditions. Utilizing hyperspectral images to determine the EFDC-NIER model initial
conditions involves four steps that are performed sequentially and automated in MATLAB. The
EFDC-NIER model is established using three grid resolution cases for the Changnyeong-Haman
weir section of the Nakdong River Basin, where Microcystis dominates during the summer (July to
September). The effects of grid resolution on (1) water quality modeling and (2) initial conditions
determined using cumulative distribution functions are evaluated. Additionally, the differences in
Microcystis values are compared when applying initial conditions using hyperspectral images and
point-based evaluation data. Hyperspectral images allow detailed initial conditions to be applied in
the EFDC-NIER model based on the plane-unit cyanobacterial information observed in grids, which
can reduce uncertainties in water quality (cyanobacteria) modeling.

Keywords: water quality modeling; hyperspectral image; cyanobacterial bloom; Phytoplankton
functional group; environmental fluid dynamics code

1. Introduction

In South Korea, four types of cyanobacteria, Microcystis, Anabaena, Oscillatoria, and
Aphanizomenon, that produce trace amounts of odorous substances and toxins (microcystin,
anatoxin, saxitoxin, etc.) have been designated harmful cyanobacteria and managed
accordingly. Algae alert systems monitor the number of harmful cyanobacterial cells in
water sources every seven days. The South Korean algae alert system divides alerts into
four stages (below 1000 cells/mL is considered “normal,” between 1000 cells/mL and
10,000 cells/mL is the “advisory” level, between 10,000 cells/mL and 1,000,000 cells/mL
indicates “caution,” and above 1,000,000 cells/mL is a “bloom”). Data acquisition on the
growth and death of algae in grid units is not conducted for an entire river section. The
location and composition of a large-scale algae bloom can alter in a short period due to
environmental conditions such as light (sunshine), water temperature, nutrients (nitrogen
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and phosphorus), and residence time. There are temporal and spatial limits for algae
management when only using algae data from water source areas. The algae concentration
measured in a target area does not necessarily represent the distribution and concentration
of algae for the entire region. Remote sensing can be used to address these problems
by identifying a wide range of algae bloom conditions at a resolution not available with
field measurements [1]. Recently, various remote sensing techniques have been studied
using unmanned aerial vehicles (UAVs) [2–5]. In addition, chlorophyll-a (Chl-a), which
corresponds to algal blooms, has also been monitored using UAVs [4,6].

Both domestic and foreign studies have utilized hyperspectral images in algae fore-
casts. Choi et al. [7] estimated the Chl-a concentration in the Nakdong River Basin in South
Korea using high-resolution satellite images. Park et al. [8] reviewed and analyzed studies
on the application of hyperspectral sensors in monitoring water quality, particularly for
phytoplankton. Kim et al. [9] used UAVs to capture aerial images of the Dodong pier in
the middle of the Nakdong River and to derive an exponential formula for detecting algae.
This exponential formula was highly correlated with the phytoplankton quantity, and it
demonstrated the potential applications of algae monitoring using UAVs. Recently, a study
monitored algae using remote sensing data from the Landsat 8 satellite. Lim et al. [10]
estimated the total nitrogen and total phosphorous concentrations in the Geumgang River
basin using image data from the Landsat 8 satellite. The study monitored the occurrence of
algae by comparing and verifying the total nitrogen and total phosphorous concentrations
using multiple linear regression formulas. Jang et al. [11] quantified the nutritional status
of Jinyang Lake by analyzing its Chl-a concentration spatial distribution using Landsat
8 images. Satellite remote sensing data have also been used to monitor water quality
items related to algae concentration or blooms. Zhang et al. [12] used satellite remote
sensing technology to monitor the Chl-a trend, and Adam [13] developed an empirical
remote sensing model to estimate Chl-a and harmful cyanobacteria. Hansen et al. [14] uti-
lized remote sensing technology to predict algal growth using Landsat data. Additionally,
Ortiz et al. [15] addressed issues related to atmospheric correction, noise reduction, and
mixed hyperspectral image pixels using composition analysis. Sawtell et al. [16] monitored
the behavior of harmful cyanobacteria in real-time based on high-resolution images by
performing noise reduction and atmospheric correction on National Aeronautics and Space
Administration hyperspectral images. Woude et al. [17] collected hyperspectral images
to monitor the propagation of harmful cyanobacteria in the United States Great Lakes.
The temporal and spatial variations of harmful cyanobacteria were then analyzed using
the collected data. Thus, the occurrence and behavior of algae have been monitored in
real-time using both point and plane units and hyperspectral images.

Most water quality-monitoring studies have used satellite data and hyperspectral im-
ages to predict the algal behavior or monitor water quality items that cause algae to bloom.
In other fields, remote sensing data are not only used for monitoring but are also integrated
into models for data analysis, including that for evapotranspiration estimation [18], atmo-
spheric wind prediction [19], and ground surface radiation and energy estimation [20] in
the meteorological field and flood risk assessment in the flood disaster field. Recently, a
study was conducted in the water quality field to predict pollution in Donghu Lake by
applying remote sensing data to the MIKE 21 and multi-source nonlinear regression fitting
models [21]. There are few studies in which remote sensing data are directly applied in
numerical models to predict harmful algae. This is because modeling living organisms,
such as algae, involves many uncertainties. Therefore, remote sensing data from ungauged
areas can be utilized to confirm and validate modeling results [22,23]. However, remote
sensing data have not yet been directly applied to model future algal blooms.

The National Institute of Environmental Research (NIER) acquires hyperspectral
images using UAVs to observe Chl-a and phycocyanin concentrations [24–28]. Recently,
the occurrence and behavior of algae have been accurately monitored in real-time using
remote sensing data. However, to identify and manage water environment problems,
such as repeated summertime algal blooms, it is necessary to predict changes in short-
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term algae concentration using water quality prediction models. The initial condition
of algae distribution in water is particularly important for the prediction of short-term
algae concentration because it affects the accuracy of the prediction result. Thus, the use
of an accurate initial condition of algae can reduce uncertainties in the prediction results.
Hyperspectral images encompassing the actual algae concentration values across the entire
section can be used to determine accurate algae initial conditions.

The purpose of this study is to generate the initial conditions for the current water
quality prediction model Environmental Fluid Dynamics Code (EFDC)-NIER using hy-
perspectral image data and evaluate its applicability in short-term algae forecasts. The
optimal method for applying hyperspectral image data in EFDC-NIER grids and the op-
timal grid resolution of the EFDC-NIER model to predict algae are presented. The study
was conducted in the following steps: (1) an EFDC-NIER model was constructed for the
Changnyeong-Haman weir section with a dominant algae presence, (2) the representa-
tive Chl-a concentration was calculated to apply hyperspectral images in determining
the EFDC-NIER initial condition, (3) the prediction sensitivity of cyanobacteria based on
the calculated Chl-a concentration and the predictive powers of three grid resolutions
(5 partitions, 10 partitions, and 20 partitions) were compared and analyzed, (4) the optimal
grid resolution for applying hyperspectral images in EFDC-NIER was presented, and
(5) the applicability of the hyperspectral image-based initial condition for the water quality
model was evaluated.

2. Materials and Methods
2.1. EFDC-NIER

The EFDC model is a three-dimensional numerical model developed by the Virginia
Institute of Marine Science in the early 1990s; it has since been managed and supplemented
by the U.S. Environmental Protection Agency. The EFDC model is widely used worldwide
to understand hydraulic and water quality behaviors in various areas, including rivers,
lakes, estuaries, and seas. Since 2010, the National Institute of Environmental Research has
improved the function of the EFDC (20100328 version) source code to suit the conditions
of major waters in South Korea and has developed the necessary modules to officially
use the model as a water quality forecast model for major sections of South Korean rivers.
The improved model was named EFDC-NIER. The EFDC-NIER model has been equipped
with new features, such as incorporating the weir function of major rivers in South Korea,
multi-species algae simulation, the vertical movement mechanism of cyanobacteria, dor-
mant spore generation and germination, wind stress, and bottom-water nutrient elution
variations due to changes in oxidation and reduction conditions (Figure 1).

Sensors 2021, 21, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 1. Environmental Fluid Dynamics Code-National Institute of Environment Research 
(EFDC-NIER) schematic. 

Since the Four Major Rivers Project, the EFDC-NIER model has been improved to 
more accurately reflect changes in flow rate and water level due to artificial hydraulic 
structures, such as multifunctional weirs, thereby improving the simulation accuracy of 
the changed river environments. In particular, the existing EFDC model simulates algae 
by classifying them into three different species (cyanobacteria, diatoms, and other algae), 
making it difficult to predict the rapid dominance and transitions of certain algae. How-
ever, the EFDC-NIER model can be utilized to quantitatively predict the occurrence of 
algae, including their rapid dominance and transitions because the algae module has been 
enhanced to allow for multi-species simulation (Figure 2). 

 
Figure 2. Multi-species algae simulation module schematic. 

2.2. Hyperspectral Image Application Method in EFDC-NIER Model  
In this study, hyperspectral images were taken of the Changnyeong-Haman weir sec-

tion of the Nakdong River Basin, and the algae monitoring data observed using this re-
mote sensing technique were applied to determine the initial condition of the EFDC-NIER 
model (Figure 3). 

Figure 1. Environmental Fluid Dynamics Code-National Institute of Environment Research (EFDC-
NIER) schematic.



Sensors 2021, 21, 530 4 of 20

Since the Four Major Rivers Project, the EFDC-NIER model has been improved to
more accurately reflect changes in flow rate and water level due to artificial hydraulic
structures, such as multifunctional weirs, thereby improving the simulation accuracy
of the changed river environments. In particular, the existing EFDC model simulates
algae by classifying them into three different species (cyanobacteria, diatoms, and other
algae), making it difficult to predict the rapid dominance and transitions of certain algae.
However, the EFDC-NIER model can be utilized to quantitatively predict the occurrence of
algae, including their rapid dominance and transitions because the algae module has been
enhanced to allow for multi-species simulation (Figure 2).
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2.2. Hyperspectral Image Application Method in EFDC-NIER Model

In this study, hyperspectral images were taken of the Changnyeong-Haman weir
section of the Nakdong River Basin, and the algae monitoring data observed using this
remote sensing technique were applied to determine the initial condition of the EFDC-NIER
model (Figure 3).
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The hyperspectral images were acquired using the AISA Eagle sensor mounted on a
UAV. The acquired images were radiometrically and geometrically corrected using Caligeo
Pro, and an atmospheric correction was performed using ATCOR-4. The spectral data of
the water measured on-site on the day of filming, phycocyanin pigment concentration, and
cyanobacteria cell count from the same location were used to obtain the cyanobacterial
information of the hyperspectral image data [27]. First, the genetic algorithm method was
used to estimate the phycocyanin pigment concentration based on the spectral data, and
the R2 value (0.85) of the learning and verification data indicated strong explanatory power.
The cyanobacterial cell count was derived from the phycocyanin concentration and linear
regression analysis. The R2 value of the regression equation was 0.71, indicating strong ex-
planatory power. In this study, the cyanobacteria cell count distribution generated through
the process described earlier was applied to the initial condition of the EFDC model.

There are various modeling input conditions, such as weather, boundary, initial, and
hydraulic structure operation conditions, for modeling Microcystis in the EFDC-NIER
model. Of these, the initial condition acts as an important element in the short-term
forecast for Microcystis. The initial condition was applied in the model based on the linear
interpolation of the observed point-to-point data. Using the Chl-a values obtained at the
observation points across the water quality monitoring network, the EFDC-NIER model
grids were interpolated using the nearest neighbor interpolation method and then applied
to the initial condition for modeling. When the distance between the monitoring network
points is large, the initial distribution of algae cannot be accurately reflected. In contrast,
as grid-format data observed through aerial imaging, hyperspectral images can provide
an initial algae distribution that is similar to that in reality. The procedure for applying
hyperspectral images in the EFDC-NIER model is displayed in Figure 4. The steps were
automated using MATLAB.

The first step is to extract the Chl-a concentration value of each grid in the hyperspec-
tral image and group the corresponding data using the EFDC-NIER model grid. Various
Chl-a concentration values from the hyperspectral image are entered into each EFDC-NIER
model grid, depending on the difference in the spatial resolution between the two datasets
(Figure 5).

The second step is to interpolate the no data that contain no hyperspectral Chl-a
concentration values due to hydraulic structures, such as bridges and weirs, using the
average concentration value of the adjacent EFDC-NIER grids. The third step is to calculate
the representative Chl-a concentration value of the hyperspectral image data grouped into
EFDC-NIER model grids. It is difficult to calculate the representative concentration value
because the concentration value distribution varies for each grid. Thus, to calculate the
representative Chl-a concentration values, the cumulative distribution function (CDF) and
mean, representing the appropriate properties of the set of values, were applied. For each
grid, the Chl-a concentration values were calculated using CDFs in the first quartile (25%),
middle quartile (50%), and third quartile (75%). Additionally, the mean Chl-a concentration
value for each grid was arithmetically determined. As the final step, the initial algae field
file (WQWCRSTX.inp) was generated by converting the representative Chl-a value of each
EFDC-NIER model grid to carbon according to the carbon ratio of each Phytoplankton
Functional Group (PFG) codon.
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To apply the generated initial condition of the hyperspectral data to the EFDC-NIER
model, nine representative PFG codons were selected based on the algal species listed by
Reynolds et al. [29] and Padisak et al. [30], and those observed in the Nakdong River Basin
(Table A1, Appendix A). Figure 6 displays the 684 algal species found 500 m upstream of
the Changnyeong-Haman weir in the Nakdong River Basin grouped by PFG codon and
the cell count by codon observed between 7 January 2019, and 23 December 2019. The
biovolume value per unit cell in Figure 6 was calculated using the average cell length,
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width, and thickness of each algal species found in the Nakdong River in 2016, as listed in
Table A2 (Appendix A) [25]. The carbon content per codon was calculated by converting
the cell count of the observed algal species based on the pgC/cell for each species provided
in Table A2 (Appendix A). For example, given a cell count of 10,000 cells/mL for Microcystis
spp., the carbon content is 10,000 × 10.95/1,000,000 = 0.1095 mg C/L. Based on the cell
counts of the 684 algal species observed in the water quality monitoring network 500 m
upstream of the Changnyeong-Haman weir, the monthly carbon ratio was calculated for
each of the nine PFG codons (Figure 6). The monthly carbon ratio defines the carbon
content of each codon in the tributary inflow as the boundary condition in the EFDC-NIER
model. The monthly carbon ratio for the initial condition was calculated using the same
method, based on the cell count for each codon observed on the same day as when the
hyperspectral image was taken 500 m upstream of the Changnyeong-Haman weir. The
carbon ratio was calculated for each PFG codon by measuring the cell count of the 684 algal
species found 500 m upstream of the Changnyeong-Haman weir on 6 July 2019. The
harmful cyanobacteria, Microcystis (Codon M), resulted in 9.5%.
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The carbon–Chl-a ratio (β) is required to convert the Chl-a value into carbon. For the
eight observation points in the Nakdong River Basin (Sangju weir, Nakdan weir, Gumi
weir, Chilgok weir, Gangjeong-Goryeong weir, Dalseong weir, Hapcheon-Changnyeong
weir, Changnyeong weir, Changnyeong weir, and Changnyeong-Haman weir), the ratio
of the carbon contents per codon to the Chl-a values observed between 2013 and 2018
was 0.12 on average. Therefore, a β of 0.12 was applied in this study. The equation for
converting the representative Chl-a value of each EFDC-NIER model grid extracted from
the hyperspectral image to the carbon content by codon is provided below:

CodonXallcarbon =
9

∑
i=1

(β× CodonXicarbon ratio × Chl − a concentration) (1)

where i represents the codon (M, H1, D, C, X2, P, G, J, and LO), and β is the carbon–Chl-a
concentration ratio (0.12).

The results of applying the calculated carbon content of Codon M in the initial condi-
tion of the EFDC-NIER model using both the hyperspectral image (grid unit) and monitor-
ing network data (point unit) are illustrated in Figure 7. The initial condition generated
with the monitoring network data simplified the initial field because the ungauged grids
were linearly interpolated using the point-to-point observation data from 500 m upstream
of each multifunctional weir. In contrast, the initial condition generated using the hy-
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perspectral image reflected the actual algae occurrences because the Chl-a concentration
values were measured for all grids (Figure 7).
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2.3. Study Area and Model Construction

In this study, the Changnyeong-Haman weir section of the Nakdong River Basin
was selected as the target area to assess the applicability of hyperspectral images in water
quality (algae) prediction (Figure 8).

Sensors 2021, 21, x FOR PEER REVIEW 8 of 20 
 

 

of the carbon contents per codon to the Chl-a values observed between 2013 and 2018 was 
0.12 on average. Therefore, a β of 0.12 was applied in this study. The equation for convert-
ing the representative Chl-a value of each EFDC-NIER model grid extracted from the hy-
perspectral image to the carbon content by codon is provided below: Codon𝑋 𝑐𝑎𝑟𝑏𝑜𝑛 =  ∑ (𝛽 𝐶𝑜𝑑𝑜𝑛𝑋 𝑐𝑎𝑟𝑏𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 𝐶ℎ𝑙 − 𝑎 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛) (1)

where i represents the codon (M, H1, D, C, X2, P, G, J, and LO), and β is the carbon–Chl-a 
concentration ratio (0.12). 

The results of applying the calculated carbon content of Codon M in the initial con-
dition of the EFDC-NIER model using both the hyperspectral image (grid unit) and mon-
itoring network data (point unit) are illustrated in Figure 7. The initial condition generated 
with the monitoring network data simplified the initial field because the ungauged grids 
were linearly interpolated using the point-to-point observation data from 500 m upstream 
of each multifunctional weir. In contrast, the initial condition generated using the hyper-
spectral image reflected the actual algae occurrences because the Chl-a concentration val-
ues were measured for all grids (Figure 7). 

 
Figure 7. Initial condition application for Microcystis using hyperspectral and monitoring point 
network data. 

2.3. Study Area and Model Construction  
In this study, the Changnyeong-Haman weir section of the Nakdong River Basin was 

selected as the target area to assess the applicability of hyperspectral images in water qual-
ity (algae) prediction (Figure 8). 

 
Figure 8. Study area (Left : Nakdong River Basin; Right : Changnyeong-Haman weir section). Figure 8. Study area (Left: Nakdong River Basin; Right: Changnyeong-Haman weir section).

The Nakdong River Basin is an area with frequent summertime algal blooms due to its
topographical features. In particular, the Changnyeong-Haman weir section, located in the
downstream area of the Nakdong River Basin, serves as a water source, making it a suitable
section for the study. Factors affecting the water supply, such as tributaries flowing into the
primary river stream, sewage plant discharges, and water intake stations, were reflected in
the model as boundary conditions. A “mask” was set on the grids where multifunctional
weirs were located, and the upstream inflows were set to be discharged downstream using
a hydraulic structure module. Municipal meteorological observation data from the Korea
Meteorological Administration open weather data portal, daily operation data provided
by K-water for Changnyeong-Haman weir water level management, daily dam discharge
data from the Water Resources Management Information System, flow rate observation
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data from the Ministry of Environment, and water quality monitoring network data from
the Ministry of Environment were used in the study.

The Chl-a values in the 2 × 2 m lattices of the hyperspectral image were matched
to the EFDC-NIER model grids and grouped to calculate the representative Chl-a values.
Depending on the grid resolution of the EFDC-NIER model, the Chl-a value varied for
each EFDC-NIER model grid. The EFDC-NIER model with the same resolution as the
2 × 2 m grid in the hyperspectral image did not require a representative Chl-a value
calculation, and more grids in the EFDC-NIER model resulted in a longer modeling time.
The optimal grid resolution for predicting water quality (algae) while achieving an efficient
calculation was evaluated in this study. There were three cases based on the number of
horizontal grids. To build the EFDC-NIER model with various study area resolutions,
different numbers of grids were set for the stream longitudinal (I-direction) and latitudinal
(J-direction) directions. In Case 3, grids were constructed within a range that ensured
orthogonality with 20 grid partitions in the J-direction (Figure 9c). Based on Case 3, the I-
and J-direction grids in Case 2 were divided in half (10 partitions, Figure 9b), and the I- and
J-direction grids were divided in half again (5 partitions) in Case 1 (Figure 9a). The total
numbers of horizontal grids were 1105 for Case 1, 4430 for Case 2, and 17,700 for Case 3.
The vertical direction (K-direction) grid was set in five partitions for all three cases.
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3. Results and Discussion
3.1. Long-Term Water Quality Sensitivity Analysis by Grid Resolution

In this study, the EFDC-NIER model was constructed with three different grid resolu-
tions. The effect of grid resolution on water quality (algae) prediction was first evaluated.
Parameter correction was performed on the water quality items and algae-related water
quality based on Case 3, which exhibited the highest grid resolution. The discharge water
from the Hapcheon-Changnyeong weir was applied as the upstream boundary, and the
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water level at the Samrangjin Water Level Monitoring Station was applied as the down-
stream boundary. Within this constructed section of the model, the Changnyeong-Haman
weir was reflected as a hydraulic structure. The evaluation period was set from 20 June
2019, to 10 August 2019, and a comparison with the observed values was conducted based
on a point located 500 m upstream of the Changnyeong-Haman weir.

Model parameter correction was conducted using the mean absolute error (MAE) and
root mean square error (RMSE). MAE is the average of the absolute error of the observed
and simulated values, and it can be used to compare the residuals between the models,
while RMSE is the average error of the observed and simulated values which indicates the
model precision. The values listed in Table 1 were used as the primary parameters of the
algae and water quality analyses. The RMSE and MAE analysis results for the simulation
period are provided in Table 2. Based on the results, the model reasonably simulated the
changing water flow characteristics (water level and water temperature) in the weir section,
which fundamentally dictates algal blooms and behavior patterns, and water quality items
(nutrients and organics) that are highly correlated to algal blooms and behavior patterns.

MAE =
∑N

i=1|Oi − Pi|
N

(2)

RMSE =

√√√√ 1
N

N

∑
i=1

(Oi − Pi)
2 (3)

where Pi is the simulated value at time i, Oi is the observed value at time i, and N is the
number of observed values for the entire period.

Table 1. Major parameters and ranges.

EFDC
Parameter * Unit Definition Nakdong River

PMx

Codon M

d Maximum Growth Rate

3.0–4.0
Codon H1 0.2–3.0
Codon P 1.3–3.0
Codon D 3.0–4.0
Codon G 0.8–1.8
Codon X2 1.5–3.5
Codon J 1.2–1.5

Codon LO 0.2–2.0
Codon C 1.0–3.5

KHNx

Codon M

mg/L Nitrogen Half-Saturation

0.03
Codon H1 0.03
Codon P 0.07
Codon D 0.07
Codon G 0.05
Codon X2 0.05
Codon J 0.05

Codon LO 0.05
Codon C 0.07

KHPx

Codon M

mg/L Phosphorus Half-Saturation

0.01
Codon H1 0.02
Codon P 0.01
Codon D 0.01
Codon G 0.01
Codon X2 0.01
Codon J 0.01

Codon LO 0.01
Codon C 0.01
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Table 1. Cont.

EFDC
Parameter * Unit Definition Nakdong River

TMX1

Codon M

◦C Lower Optimal Temperature

20.0
Codon H1 10.0
Codon P 5.0
Codon D 2.0
Codon G 20.0
Codon X2 2.0
Codon J 18.0

Codon LO 10.0
Codon C 5.0

TMX2

Codon M

◦C Upper Optimal Temperature

35.0
Codon H1 35.0
Codon P 35.0
Codon D 13.0
Codon G 35.0
Codon X2 30.0
Codon J 32.0

Codon LO 30.0
Codon C 30.0

WQRHOMN

Codon M

kg/m3 Algae Minimum Density

985
Codon H1 920
Codon G 970

Codon LO 920

WQRHOMX

Codon M

kg/ m3 Algae Maximum Density

1,005
Codon H1 1,030
Codon G 1,065
Codon Lo 1,030

WQCOEF1

Codon M

kg/ m3/min Density Increase Rate Constant

0.030
Codon H1 0.070
Codon G 0.045
Codon Lo 0.070

WQCOEF2

Codon M

kg/ m3/min Density Decrease Rate Constant

0.001
Codon H1 0.001
Codon G 0.001
Codon Lo 0.001

WQCOEF3

Codon M

kg/ m3/min Density Increase Minimum Rate

0.013
Codon H1 0.023
Codon G 0.011
Codon Lo 0.023

WQR

Codon M

m Algae Effective Radius

0.00008
Codon H1 0.000005
Codon G 0.00025
Codon Lo 0.00002

CChlx mg C/µg Chl-a Carbon–Chl-a Ratio for Algae 0.012

CIa, CIb, Clc - Weighting Factor for Solar Radiation at 0 d, 1 d, and 2 d 0.80, 0.15, and 0.05

BMRx /d Basal Metabolism Rate for Algae 0.05–0.1

PRRx /d Predation Rate for Algae 0.02
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Table 1. Cont.

EFDC
Parameter * Unit Definition Nakdong River

CPprm1 g C/g P Constant for Algae Phosphorous–Carbon Ratio 40

CPprm2 g C/g P Constant for Algae Phosphorous–Carbon Ratio 85

CPprm3 mg/L Constant for Algae Phosphorous–Carbon Ratio 200

ANCx g N/g Nitrogen–Carbon Ratio for Algae 0.18

L_Factor1 W/m2 Conver Light Unit 4.57

F_PAR Temperature and Light Average Time 0.44

* Subscript c, d, g, and x indicate cyanobacteria, diatom, green algae, and algae, respectively.

Table 2. Model performance based on parameter correction results.

Group Water Level
(m)

Water Temperature
(◦C)

BOD
(mg/L)

TN
(mg/L)

TP
(mg/L)

MAE 0.11 0.54 0.54 0.55 0.04

RMSE 0.15 0.69 0.62 0.61 0.04

Figure 10 displays a graphical representation of the analysis results and observed
values of biochemical oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP),
Chl-a, and cyanobacterial cell counts simulated 500 m upstream of the Changnyeong-
Haman weir. Under identical environmental conditions, including weather, boundary,
initial, and hydraulic structure operation conditions, changes in grid resolution did not
appear to affect the water quality model results. Thus, the sensitivity of the water quality
model to grid resolution can be considered small for a one-dimensional time series analysis.
In one-dimensional time series modeling, a multidimensional model is no more accurate
than a one-dimensional numerical model. The increased grid resolution in a multidimen-
sional model can disrupt fast decision-making because it requires a longer simulation
time. Therefore, a one-dimensional model or a low-resolution multidimensional model is
deemed sufficient when decisions must be made quickly.

3.2. Applicability of EFDC-NIER Initial Condition Based on Representative Concentration Value
and Grid Resolution

Figure 11 displays the Microcystis cell count results 500 m upstream of the Changnyeong-
Haman weir in the short-term, with three-day predictions performed by applying the
hyperspectral image data taken on 2 August 2018, to the initial condition for each case
and CDF. If the EFDC-NIER model was built with the same grid as the 2 m × 2 m grid
resolution of the hyperspectral image, the average and CDF (25%, 50%, and 75% quartiles)
achieve the same modeling results. As illustrated in Figure 11, the difference between the
CDF 75% and 25% quartile models was the smallest in Case 3. The spread between the two
values increased in the order of Case 3 < Case 2 < Case 1. The higher the grid resolution
of the EFDC-NIER model, the smaller the short-term Microcystis forecast deviation was
when applying the representative Chl-a value from the hyperspectral image, resulting in
identical CDF 50% quartile and average values. High water temperatures of 30.7 ◦C and
31.8 ◦C were observed on 30 July 2018, and 6 August 2018, respectively, providing the
optimal conditions for Microcystis to grow. A representative EFDC-NIER grid value should
represent the respective grid value. The lowest values were typically found with CDF 50%,
with no significant difference in the simulation results when the CDF 50% and average
values were used. Therefore, it was deemed appropriate to calculate the representative
Chl-a values using the median CDF 50% values from the hyperspectral images of the
Changnyeong-Haman weir section.
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Figure 12 displays the short-term prediction results of the Microcystis cell count after
applying the initial condition of 50% CDF to each grid resolution case using Chl-a data
from the hyperspectral image observed on 6 July 2019. The results correspond to a 7 days
modeling period from 6 July 2019, to 13 July 2019, which demonstrated that the higher
the grid resolution, the more accurately the algal distribution was expressed. Case 3,
which exhibited a small spread and precise distribution of algae, is considered the optimal
grid resolution because the optimal method for calculating representative concentrations
can vary depending on the environmental conditions. In particular, the maximum algae
bloom in the dead water zone on the right riverbank near a river island was predicted to
be 22,009 cells/mL in Case 2 and 21,735 cells/mL in Case 3, which were higher than the
16,164 cells/mL prediction in Case 1.
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3.3. Hyperspectral Image Applicability in Water Quality Model Initial Field

Figure 13 displays the result of modeling Microcystis cell count from 6 July 2019,
to 22 July 2019, by applying the Chl-a values from the hyperspectral image (HSI) taken
on 6 July 2019, and the carbon content by the PFG codon measured at the monitoring
network in the initial condition of the EFDC-NIER model. While the effect of the initial
condition used in the two methods varied for the first seven days, from 6 July 2019, to
13 July 2019, the Microcystis cell count modeling results were still similar, and the effect of
the initial conditions was no longer noticeable (Figure 13). Different results were observed
depending on how the initial conditions were applied. The water temperature was 24 ◦C
on 1 July 2019; 26.2 ◦C on 8 July 2019; and 25.6 ◦C on 15 July 2019, a low water temperature
compared to the average of 31.4 ◦C between 30 July 2018, and 6 August 2018. This result
indicated that the effect of the initial condition based on CDF was small. The application
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of the initial conditions calculated by linearly interpolating the algal data between the
observation points of the monitoring network in the EFDC-NIER model can either over-
or under-apply the carbon content. In contrast, the use of hyperspectral images allows
detailed initial conditions to be applied in the EFDC-NIER model based on plane-unit
algae data measured in grids, reducing uncertainties in water quality modeling (Figure 14).
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Figure 14. Comparison of initial condition monitoring results based on hyperspectral and monitoring network data:
(a) carbon concentration of hyperspectral image; (b) carbon concentration of monitoring point.

4. Conclusions

This study presented the optimal method for applying hyperspectral images as a
remote sensing technique in the initial condition for the short-term prediction of Microcystis.
(1) A sensitivity analysis of the water quality simulation for different EFDC-NIER model
grid resolutions, (2) a comparison of results at different grid resolutions and data resam-
pling between the hyperspectral image and EFDC-NIER model, and (3) a comparison of
results between the existing point-based initial conditions from the data observed at the
monitoring network and the grid-unit hyperspectral image-based initial condition were
performed in this study. The major findings of this study are as follows.
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1. The sensitivity of the water quality simulation was small for varying initial con-
ditions, boundary conditions, and parameters. In a one-dimensional time series
analysis, a multidimensional model is no more accurate than a one-dimensional nu-
merical model, even at a higher grid resolution. While a multidimensional model is
necessary when modeling a dead water zone that requires high spatial accuracy, a
low-resolution model is deemed sufficient for quick decision-making and conducting
a one-dimensional time series analysis. It is critical to select and operate a model that
is appropriate for the purpose and circumstances.

2. When resampling different grid resolutions between the hyperspectral image and
EFDC-NIER model, the dispersion of the results with different CDFs decreased as
the EFDC-NIER model grid resolution increased. Case 3 is the most optimal grid
resolution, and CDF 50% should be used to reduce the effect of various environmental
conditions on the modeling result.

3. When using linearly interpolated algae data from the observation points across the
monitoring network, the carbon content may be under- or over-applied. The use
of hyperspectral images can reduce uncertainties in the modeling results because
detailed initial conditions can be applied to the target section.

4. As various remote sensing techniques, such as satellite images, are being studied
in addition to hyperspectral images, if the Chl-a or algal cell count data can be
directly observed and provided, these data can be used in the initial condition of
hydrodynamic models using the method presented in this study.
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Appendix A

In our study, the procedure for calculating the amount of carbon using chlorophyll-a
in hyperspectral images is as follows:

<1 Step> As shown in Tables A1 and A2,
(1) We grouped 684 algae species observed in the Nakdong river as shown in Table A2,

based on the PFG presented in Table A1
(2) The result of the biomass per unit cell for each algae species are presented in

parentheses in Table A2.
As shown in Figure 6,
(3) We observed the cell number of each algae species from January to December 2019

for 684 algae species observed in the Nakdong river at 7 days intervals.
(4) The biomass for each algae species can be calculated using the biomass data per

unit cell for each algae species shown in Table A2.
(5) The occupancy ratio of biomass can be calculated for each codon of PFG.
(6) Finally, it is possible to calculate the occupancy ratio of biomass by PFG for

each month.
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<2 Step>
When modeling algae, the amount of carbon is applied to each algae group in EFDC

model. If the Chlorophyll-a value has a concentration of 100 as 100%, it is assumed that the
amount of carbon is as much as the occupancy ratio shown in Figure 6. Therefore, if there
is an observed chlorophyll-a value, the amount of carbon is calculated using the biomass
occupancy calculated in Figure 6 and Equation (1).

Table A1. PFG environmental characteristics at primary channels of four major rivers.

Codon Habitat * Tolerances * Sensitivities * Typical Representatives *

D Shallow, enriched turbid
waters, including rivers Flushing Nutrient depletion Stephanodiscus spp. and

Synedra spp.

X2 Shallow, clear mixed layers Stratification Mixing
and filter feeding

Cryptomonas spp. and
Rhodomonas spp.

P eutrophic epilimnia Mild light and
C-deficiency

Stratification,
Si depletion

Closterium spp. and
Fragilaria spp.

C Small to medium mixed,
eutrophic lakes

Light and
C-deficiency

Si exhaustion and
stratification

Cyclotella spp.,
Asterionella spp., and

Aulacoseira spp.

Lo Summer epilimnia in
mesotrophic lakes Segregated nutrients Prolonged or deep mixing Peridinium spp.

andMerismopedia spp.

G Short, nutrient-rich water
columns High light Nutrient deficiency Eudorina spp. and

Volvox spp.

J Shallow, enriched lakes, ponds,
and rivers - Settling into low light Pediastrum spp. and

Coelastrum spp.

M
Dielly mixed layers of small,

eutrophic, and
low-latitude lakes

High insolation Flushing and
low total light Microcystis spp.

H1 Dinitrogen-fixing and
nostocaleans Low N and low C Mixing, poor light, and low P Anabaena spp. and

Aphanizomenon spp.

* [29] (pp. 420–421).

Table A2. Classification by algal species codon observed in Nakdong River Basin and carbon content by cell count.

Group Species(pgC/cell)

Codon D Nitzschia spp. (56.2), Skeletonema spp. (127.8), Stephanodiscus spp. (520.5), and Synedra spp. (516.1)

Codon X2 Chroomonas spp. (407.5), Cryptomonas spp. (407.5), and Chlamydomonas spp. (446.5)

Codon P Aulacoseira spp. (201.3), Fragilaria spp. (68.9), Melosira spp. (705.1), Closteriopsis spp. (130.4), Closterium spp.
(143.5), and Staurastrum spp. (13,651.8)

Codon C Asterionella spp. (125.2) and Cyclotella spp. (301.5)

Codon LO Ceratium spp. (361.8), Gymnodinium spp. (1,303.15), Peridinium spp. (2244.5), and Merismopedia spp. (0.4)

Codon G Carteria spp. (27.1), Eudorina spp. (161.6), and Pandorina spp. (204.4)

Codon J Actinastrum spp. (9.3), Coelastrum spp. (123.4), Crucigenia spp. (12.9), Golenkinia spp. (54.7), Pediastrum spp.
(8.5), Scenedesmus spp. (10.6), Tetraedron spp. (90.4), and Tetrastrum spp. (6.4)

Codon M Microcystis spp. (10.95)

Codon H1 Anabaena spp. (164.1) and Aphanizomenon spp. (9.5)

Among the 9 PFG codons, the harmful cyanobacteria groups are codon M and codon
H1. Codon M includes microcystis spp., and CodonH1 includes Apanizomenon spp. and
Anabena spp. Table A3 is the result of listing monthly carbon occupancy ratio by codon of
PFG. Looking at the codon M, which corresponds to the cell number of microcystis, it can
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be seen that the carbon occupancy ratio is high in June to September. Figures A1 and A2
represents between the chlorophyll-a value and the number of harmful cyanobacteria
observed from June to September from 2014 to 2020.

In the case of the codon M and codon H1, which are mainly floating in the surface layer,
the correlation between the harmful cyanobacteria and the chlorophyll-a concentration
observed in the surface layer was high (Figure A1). However, the correlation was relatively
low between harmful cyanobacteria and average chlorophyll-a concentration in water
(Figure A2). In addition, Figure A3 shows the correlation between the chlorophyll-a
observed in the surface layer and the hyperspectral image index (713/688) in the study
area from June to September from 2015 to 2016. This is result of taking a hyperspectral
image and analyzing the chlorophyll-a value of the water body at the study area. The
correlation between the index (713/688) and the chlorophyll-a concentration was 0.72.

When the above two results were combined, it is believed that the chlorophyll-a
observed in the surface layer can be used as an index that can represent the degree of
harmful algal blooms at the time when microcystis spp. dominates. However, phycocyanin
is an index that can more accurately represent cyanobacteria. Therefore, it is also necessary
to predict cyanobacteria using phycocyanin in future studies.

Table A3. Monthly carbon occupancy ratio (%) by codon of PFG.

Codon Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Codon M 0.0 0.0 0.0 0.0 0.1 4.2 30.1 44.2 8.3 0.2 0.0 0.0
Codon H1 0.0 0.0 0.0 0.0 4.1 1.1 3.1 1.3 3.2 1.3 0.7 0.4
Codon P 12.1 17.4 15.4 8.6 26.7 68.5 39.6 23.2 27.0 7.7 36.0 1.8
Codon D 59.5 71.0 70.2 41.8 16.5 2.0 3.7 1.0 5.5 9.6 8.5 53.4
Codon G 0.0 0.0 0.0 0.0 0.0 1.0 8.4 2.2 1.5 1.2 0.0 0.0
Codon X2 16.0 8.8 9.5 46.8 49.0 14.7 18.6 23.8 28.6 45.3 33.6 35.8
Codon J 0.0 0.0 0.0 1.9 1.7 0.4 0.4 4.0 15.2 0.5 0.2 0.3

Codon LO 0.0 0.2 0.2 0.3 0.6 0.4 3.2 1.2 5.0 26.8 0.9 0.3
Codon C 12.4 2.6 4.7 0.6 1.3 8.7 1.3 1.3 7.2 8.6 20.1 8.0
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