
sensors

Article

Walking Secure: Safe Routing Planning Algorithm and
Pedestrian’s Crossing Intention Detector Based on Fuzzy
Logic App

José Manuel Lozano Domínguez and Tomás de J. Mateo Sanguino *

����������
�������

Citation: Lozano Domínguez, J.M.;

Mateo Sanguino, T.d.J. Walking

Secure: Safe Routing Planning

Algorithm and Pedestrian’s Crossing

Intention Detector Based on Fuzzy

Logic App. Sensors 2021, 21, 529.

https://doi.org/10.3390/s21020529

Received: 18 December 2020

Accepted: 10 January 2021

Published: 13 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electronic Engineering, Computer Systems and Automatics, University of Huelva,
Av. de las Artes s/n, 21007 Huelva, Spain; jose.lozano@diesia.uhu.es
* Correspondence: tomas.mateo@diesia.uhu.es; Tel.: +34-959-217-719

Abstract: Improving road safety through artificial intelligence is now crucial to achieving more
secure smart cities. With this objective, a mobile app based on the integration of the smartphone
sensors and a fuzzy logic strategy to determine the pedestrian’s crossing intention around crosswalks
is presented. The app developed also allows the calculation, tracing and guidance of safe routes
thanks to an optimization algorithm that includes pedestrian areas on the paths generated over the
whole city through a cloud database (i.e., zebra crossings, pedestrian streets and walkways). The
experimentation carried out consisted in testing the fuzzy logic strategy with a total of 31 volunteers
crossing and walking around a crosswalk. For that, the fuzzy logic approach was subjected to a
total of 3120 samples generated by the volunteers. It has been proven that a smartphone can be
successfully used as a crossing intention detector system with an accuracy of 98.63%, obtaining a true
positive rate of 98.27% and a specificity of 99.39% according to a receiver operating characteristic
analysis. Finally, a total of 30 routes were calculated by the proposed algorithm and compared with
Google Maps considering the values of time, distance and safety along the routes. As a result, the
routes generated by the proposed algorithm were safer than the routes obtained with Google Maps,
achieving an increase in the use of safe pedestrian areas of at least 183%.

Keywords: crossing intention detector; Android application; road safety; smart cities; safe routes;
pedestrians

1. Introduction

Currently, smart cities are becoming a reality thanks to the use of information and
communication technologies (ICTs), which allow to improve the services offered to their
inhabitants [1]. Wireless communications together with data analysis and processing
techniques such as big data, machine learning and artificial intelligence (AI) are promoting
the development of technologies applied to smart cities, among other approaches [2–4].

An important area of smart cities is intelligent transport systems (ITS). These are
made up of a set of technological solutions designed to coordinate, improve and increase
transport safety on public roads [5,6]. At present, road safety of pedestrians represents a
weak point of smart cities as stated in a study carried out by the General Administration
of Traffic (DGT), in Spain. This study describes that there was a total of 13,545 accidents
in urban areas involving pedestrians and vehicles in 2018, of which 5483 (40.48%) were
pedestrians run over while crossing the street in the right place [7]. This number of outrages
is not a unique concern of Spain. For example, a total of 71,000 run-overs occurred in the
U.S. during 2017, of which 8.42% ended in death according to the annual report of the
National Highway Traffic Safety Administration (NHTSA) [8]. These values are significant,
not only because of the high number of accidents but also because of their upward trend as
demonstrated by the Fatality and Injury Reporting System Tool (FIRST) [9].

Sensors 2021, 21, 529. https://doi.org/10.3390/s21020529 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2542-0517
https://orcid.org/0000-0002-9387-3892
https://doi.org/10.3390/s21020529
https://doi.org/10.3390/s21020529
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020529
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/529?type=check_update&version=2

Sensors 2021, 21, 529 2 of 22

As a result of this data, there is a growing concern about pedestrian road safety. In
this field, there are several solutions in the state of the art based on the use of mobile
applications aimed at improving road safety through different approaches. An example
is the use of mobile devices to send information between vehicles and alert drivers on
traffic jam situations in cities. For example, there is a solution that indicates the presence of
road incidents using an algorithm that makes decisions based on a list of incidents. This
method does not make use of context information, which could facilitate the calculation
and detection of incidents [10]. A similar proposal to the previous ones is presented in [11].
It uses Google Maps and Google Directions to determine the best routes; it also uses
contextual and historical information to estimate the probability that a route has incidents
or not. Another example is the application developed to determine the risk of a driver,
cyclist or pedestrian having an accident [12]. To this end, the app uses sensory fusion
combined with a history of data and information entered by the users (e.g., age, weight
and quantity of alcoholic beverages consumed). The use of apps on mobile devices also
includes route customization within cities according to the specific needs of users (e.g.,
avoiding slopes up or down, reducing the distance traveled, etc.). In this way, this app
avoids exposing the user to certain health risks. Besides, this app generates routes that
require travelling a shorter distance than those offered by Google Maps thanks to the
use of Open Street Maps (OSM) and the A * algorithm [13]. In addition to the previous
application, there is another proposal called UniBS4All based on Google Directions, which
allows generating routes adapted to the needs of people with physical disabilities. To
do this, the points of the routes are modified to avoid architectural barriers stored in a
database. Nevertheless, it does not remove all barriers to visually impaired people [14].
Another approach developed for people with visual difficulties is found in [15]. This app
uses a Dijkstra algorithm to calculate the best possible route based on people’s preferences
and limitations, as well as the traffic congestion and dynamic obstacles on the route. The
main limitation of this application resides in its algorithm, since Dijkstra consumes a lot
of resources to calculate a route. The route optimization has also been focused from a
personal point of view, allowing routes to be customized considering the user preferences.
To do this, the eligible preferences are the number of green areas, number of social places,
noise of the streets and total length of the journey. Later, routes are calculated thanks to an
algorithm based on weights and OMS [16]. This application does not consider the hours
of the day when the query occurs, which could modify the routes to avoid dark places at
night or very crowded places during the day.

Other studies focus on road safety around crosswalks, especially on pedestrian de-
tection. An approach in line with this paper is the detection of the person’s intention to
cross using a camera-based system and machine learning algorithms that monitor zebra
crossings [17]. This study shows that the “you-only-look-once” (YOLO) scheme offers
higher performance than the traditional histogram of oriented gradients (HOG) and Haar-
cascade schemes. Despite this, when pedestrians are partially hidden, there is a drop in
performance. With the same approach, several systems capable of detecting pedestrians
while crossing a zebra crossing have been proposed [18,19]. They combine cameras and
machine learning techniques such as region-based convolutional neural networks (CNN),
vector support machines (SVM) or multilayer perceptron neural networks (MLP). These
studies show that machine learning based on support vector machines (SVM) and the use
of cameras are adequate to detect the presence of pedestrians in zebra crossings. Another
solution also supported by cameras consists in analyzing the body movements and orien-
tation of the person’s head to determine whether a pedestrian intends to cross the public
road or not [20]. The best performance was obtained by a combination of CNN and SVM.
This suggests that the contextual information is very useful to determine the intention
to cross of a pedestrian. In this sense, long short-term memory (LSTM) neural networks
using images and characteristics (i.e., gender, walking direction and group behavior) has
been proposed to estimate the crossing intention with great accuracy. Nonetheless, this
results in a slightly high false positive rate when trying to classify the type of pedestrian

Sensors 2021, 21, 529 3 of 22

movement [21]. Another approach is a crossing intention detector based on the use of
cameras onboard vehicles, which can determine—in addition to the intention to cross—if a
pedestrian is crossing or standing, as well as if he/she is turning or beginning to cross. This
is achieved thanks to the use of random forest (RF) and SVM, resulting in faster detection
than traditional methods [22]. Another study used laser imaging detection and ranging
(LIDAR) sensors along with dense neural networks (DNNs), CNN or recurrent neural
networks (RNNs) to detect the pedestrian’s crossing intention [23]. The best model is
DNN, which offers a significant improvement over SVM. Another solution is based on the
joint use of cameras and laser sensors. The implemented techniques are long short-term
memory with an attention mechanism (AT-LSTM) and SVM, corresponding the best results
to AT-LSTM even in small intervals of time [24]. A complete list of features on the several
state-of-the-art approaches described above is given for comparison purposes (Table A1,
Appendix A).

With the aim of contributing to improve road safety, this work presents an AI-based
application developed on Android that detects the intention of pedestrians to cross zebra
crossings and creates safe routes throughout the city. Among the advantages, the solution
allows to detect the people’s crossing intention at all points of a city, unlike camera-based
or LIDAR sensor systems that operate at fixed specific points of the road. Besides, the
proposed solution offers robustness against adverse weather or low visibility conditions,
as it only uses the internal sensors of a smartphone. Moreover, the proposed solution
is based on fuzzy logic, which generates a low computational cost compared to those
approaches described in the state of the art to detect the intention of a pedestrian to cross
streets. In contrast, solutions based on cameras or LIDAR sensors can suffer under these
conditions (e.g., snow or rain). Moreover, the deployment of the solution proposed has a
zero cost for the municipalities or private entities that manage the cities because the system
is implemented in the own citizens’ mobile devices.

To sum up, the novelties proposed in this manuscript regarding the state of the art
are (i) the development of a fuzzy logic approach with low computational cost to detect
the pedestrian’s crossing intention through the own smartphones’ built-in sensors; (ii) the
development of an optimization algorithm for calculating, tracing and guiding people
through safe routes within a city considering pedestrian areas such as crossings, streets
and walkways; (iii) in case of detecting the pedestrian’s intention to cross, the app has the
additional capability to communicate with a luminous intelligent crosswalk previously
developed by this research team [25]. As a result, such an intelligent crosswalk creates
a light barrier to alert drivers so they can safely stop their vehicles. According to the
contributions, this manuscript has been structured as follows. Section 2 describes the
fuzzy-based crossing intention detector and its implementation. Section 3 shows the
experimentation performed and the main results obtained. Finally, Section 4 presents the
conclusions and future works.

2. Mobile Application Description

The mobile app has been developed through the Android Studio Integrated Develop-
ment Environment (IDE). This programming environment allows developing smartphone
applications in Java, C/C++ or Kotlin language. The app developed includes the follow-
ing features: (i) calculation and tracing of safe routes for pedestrians through a city; (ii)
safe guidance of people with hearing and visual impairments using haptic, visual and
acoustic signals; (iii) detection of the pedestrian’s intention to cross zebra crossings; (iv)
visualization aid system for pedestrians at zebra crossings through the use of Bluetooth
communications. The app’s functionalities are summarized through the use case diagram
shown in Figure 1a.

Sensors 2021, 21, 529 4 of 22

Sensors 2021, 21, x FOR PEER REVIEW 4 of 23

to query an external database hosted on Microsoft SQL Server (i.e., pedestrian points of
interest). The use of APIs requires the use of a network, and the app itself uses a database
hosted in the cloud, so a constant connection to the Internet is needed. The app architec-
ture and interaction with the APIs is shown in Figure 1b.

(a)

(b)

Figure 1. (a) Application functionalities. (b) Application architecture.

The installation file of the mobile app takes 3345 KB of disk space, and requires 9.37 MB
in the phone memory. It has been determined through the Android Profiler tool of An-
droid Studio that the main thread of the app consumes 20.03% of the app’s runtime pro-
cess, and 20.94% of RAM is used by the application. The app was monitored for 60 s, and
it used the CPU for 25.95 s (44.46%) during this time. The highest CPU usage belongs to
the graphical environment with 16.79% of the total CPU usage, followed by the main
thread of the application with 8.91% of usage. During monitoring, it was determined that

Figure 1. (a) Application functionalities. (b) Application architecture.

The app developed makes use of the application programming interfaces (APIs) of
the Android operating system. At least, version 5 of the Android operating system is
required for the execution of the app on a mobile device. This limitation is imposed by the
APIs used in the app development, these being the following: Android maps, Directions,
TextToSpeech and Sensors. In addition to these APIs, the application makes use of the
SQLite API to manage a local database (i.e., destination points) and the jTDS library [26]
to query an external database hosted on Microsoft SQL Server (i.e., pedestrian points of
interest). The use of APIs requires the use of a network, and the app itself uses a database
hosted in the cloud, so a constant connection to the Internet is needed. The app architecture
and interaction with the APIs is shown in Figure 1b.

Sensors 2021, 21, 529 5 of 22

The installation file of the mobile app takes 3345 KB of disk space, and requires
9.37 MB in the phone memory. It has been determined through the Android Profiler tool
of Android Studio that the main thread of the app consumes 20.03% of the app’s runtime
process, and 20.94% of RAM is used by the application. The app was monitored for 60 s,
and it used the CPU for 25.95 s (44.46%) during this time. The highest CPU usage belongs
to the graphical environment with 16.79% of the total CPU usage, followed by the main
thread of the application with 8.91% of usage. During monitoring, it was determined
that the total use of the RAM was 106.5 MB, of which 44.1 MB belongs to the graphical
environment and 22.3 MB to the application code.

2.1. Calculation, Tracing and Guiding of Safe Routes

Among the main features of the application is the ability to calculate and plot safe
maps in cities. The calculation and tracing of these maps are based on the Directions APIs
and Android Maps, both from Google. The process for calculating a route begins with the
detection of the user’s location through the Global Positioning System (GPS). Once the
current position has been obtained, the user can indicate the destination to which he/she
wants to go using two options. The first one is to select the destination location by clicking
on the map and then activating the start of the route. The second option is obtained by
pressing the route start button that will prompt the user to enter the address and city of the
destination point by text. Once the origin and destination points of the route are known,
an algorithm responsible for calculating, optimizing, and plotting safe routes is invoked
(Algorithm 1); this process is done in the background to avoid congesting the main process
thread. The optimization algorithm starts with getting the default route provided by the
Directions API from the origin and destination points. Once the default route is known, a
query is made to an external database located in the cloud, which stores pedestrian points
of interest (e.g., zebra crossings, walkways and/or pedestrian areas). The jTDS library is
used to carry out these queries. Subsequently, the algorithm calculates possible pedestrian
points of interest near the default route that would increase the safety of the route. To
do this, the points should not be more than 30 m away from the route in order to not to
increase the distance excessively. Similarly, the total distance of the route to be traveled will
never be more than 300 m from the original route. Once the points of interest have been
determined in the first query, a second query is made to the Directions API to get a new
route including the origin and destination points along with the points of interest obtained
from the previous step. This route optimization is iteratively calculated to reach the safest
possible route without an excessive increase of the distance to be traveled by the user.

Algorithm 1

Purpose: obtaining a safe route to go from an origin point to a destination point
Inputs: origin and destination points
Output: representation of the route on a city map and guidance of the user’s safe route
1: routePoints← get the default route (origin, destination)
2: pedestrianPoints← pedestrian areas near to the route (routePoints)
3: if size (pedestrianPoints) 6= 0
4: optimizedRoute = false
5: repeat
6: routePoints← route optimization (origin, destination, pedestrianPoints)

7:
pedestrianPoints← calculation of new pedestrian points near to the route
(routePoints)

8: if size(pedestrianPoints) = 0
9: optimizedRoute = true
10: end if
11: until (!optimizedRoute)
12: end if
13: trace safe route on city map
14: highlight the safe pedestrian points included in the route by means of a special icon

Sensors 2021, 21, 529 6 of 22

Once the final route is calculated, it is traced onto the map using Android Maps and
the corresponding guidance instructions are stored. These instructions include both the
waypoints of the default route (e.g., “go straight on”, “turn right”, “turn left”) and the
specific points introduced by the application (e.g., “you are approaching a pedestrian
zone”). These instructions are dictated by the app with verbal language as users move
along the path generated, as well as indicated by haptic signals through the smartphone
(i.e., vibrations). These methods have been implemented to enhance the user experience
and facilitate notice to people with visual and/or hearing impairments, as well as to elderly
people. To generate the indication correctly, the application waits until the user is near the
waypoint while moving along the route. Once the user is in the zone, the directions are
dictated using the TextToSpeech API. This API allows to convert text into a human voice, a
function that has been specially designed for people with visual impairments. In addition
to this option, guidance by vibration has also been implemented for people with hearing
impairments to alert on areas where the route direction should be changed (e.g., taking a
zebra crossing, walking down a street or pedestrian walkway). This functionality is based
on the use of the basic vibration functions implemented on Android and can be configured
in the options menu of the application to set how often the instructions should be dictated.
The setting of each warning mode (i.e., voice-guided or vibration-driven) is independent,
as is the volume at which the application transmits instructions.

2.2. Sensory Fusion

Unlike the different approaches described in the state of the art, the solution proposed
herein determines the pedestrian’s crossing intention using sensory fusion. To do this,
the flow diagram depicted in Figure 2 has been followed. The strategy addressed to
detect the pedestrian’s crossing intention is based on: (i) the distance at which the user is
located from a point of interest collected in the safe route (e.g., zebra crossing); (ii) walking
mode established by the user in the app’s options menu; and (iii) a fuzzy rotation detector
responsible for tracking the user movements. The main contribution of this work lies in
the combination of these blocks to detect a pedestrian’s crossing intention around a point
of interest. Each detail of the sensory fusion is explained in the following subsections.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 23

specific points introduced by the application (e.g., “you are approaching a pedestrian
zone”). These instructions are dictated by the app with verbal language as users move
along the path generated, as well as indicated by haptic signals through the smartphone
(i.e., vibrations). These methods have been implemented to enhance the user experience
and facilitate notice to people with visual and/or hearing impairments, as well as to el-
derly people. To generate the indication correctly, the application waits until the user is
near the waypoint while moving along the route. Once the user is in the zone, the direc-
tions are dictated using the TextToSpeech API. This API allows to convert text into a hu-
man voice, a function that has been specially designed for people with visual impair-
ments. In addition to this option, guidance by vibration has also been implemented for
people with hearing impairments to alert on areas where the route direction should be
changed (e.g., taking a zebra crossing, walking down a street or pedestrian walkway).
This functionality is based on the use of the basic vibration functions implemented on
Android and can be configured in the options menu of the application to set how often
the instructions should be dictated. The setting of each warning mode (i.e., voice-guided
or vibration-driven) is independent, as is the volume at which the application transmits
instructions.

2.2. Sensory Fusion
Unlike the different approaches described in the state of the art, the solution pro-

posed herein determines the pedestrian’s crossing intention using sensory fusion. To do
this, the flow diagram depicted in Figure 2 has been followed. The strategy addressed to
detect the pedestrian’s crossing intention is based on: (i) the distance at which the user is
located from a point of interest collected in the safe route (e.g., zebra crossing); (ii) walking
mode established by the user in the app’s options menu; and (iii) a fuzzy rotation detector
responsible for tracking the user movements. The main contribution of this work lies in
the combination of these blocks to detect a pedestrian’s crossing intention around a point
of interest. Each detail of the sensory fusion is explained in the following subsections.

Figure 2. Sensory fusion scheme.

2.2.1. Fuzzy Rotation Detector
The block named “fuzzy rotation detector” has been constructed over the Android

Sensors API. Specifically, this API asks the operating system for the sensor data related to
the rotation vector; this can be hardware or software. The sensor is commonly used to
measure movements and rotations, so it has been selected because the movements that
pedestrians usually perform when approaching a crosswalk are rotational. In other
words, pedestrians make turns as they approach a zebra crossing, being captured by this
type of sensor.

Figure 2. Sensory fusion scheme.

2.2.1. Fuzzy Rotation Detector

The block named “fuzzy rotation detector” has been constructed over the Android
Sensors API. Specifically, this API asks the operating system for the sensor data related to the
rotation vector; this can be hardware or software. The sensor is commonly used to measure
movements and rotations, so it has been selected because the movements that pedestrians

Sensors 2021, 21, 529 7 of 22

usually perform when approaching a crosswalk are rotational. In other words, pedestrians
make turns as they approach a zebra crossing, being captured by this type of sensor.

To use it, it is necessary to enable the sensor in the main thread of the app, as well
as to set the sample rate of the sensor. The frequency used for this application was 5 Hz
(i.e., periods of 200 ms). To avoid saturating the main thread of the app due to the sample
rate and the subsequent processing of the values, this task has been moved to an Android
service. This represents a separate execution thread responsible only for processing the
data generated by the sensor.

The data generated by the rotation sensor stands for the device’s angle variation—and
therefore that of a pedestrian—at a specific time. To obtain a more accurate measurement
of the pedestrian movement, the average value of a sliding window with 10 values was
used. In this way, a total of 2 s of pedestrian movement is kept in memory. By averaging
2 s of movement, it is possible to determine if a pedestrian makes changes in his/her path
or if he/she continues to walk straight.

The rotation is determined by using the “fuzzy rotation detector” block depicted
in Figure 2, which considers the average variation of the rotation on the XYZ axes. The
detector is based on fuzzy logic of Mamdani type with linguistic rules such as “If X1 is
A1 and . . . Xn is Xn, then Y is B”, where the predictor and resulting variables have been
established by an expert system [27]. The membership functions of the fuzzy set have
been defined in a trapezoidal way—since its suitability to the data model is correct and not
computationally complex—where the conjunction and implication operators utilize the
minimum T-norm [28]. In addition, the First Infer, Then Add (FITA) method has been used
for the defuzzification process because it is more consistent than the First Add, Then Infer
(FATI) method [29]. Also, the voting method [30] has been used to produce a singleton (i.e.,
a single value), which results in a label that can be “go straight” or “rotation detected”. The
set of fuzzy rules used for the rotation detector is included in Table 1. It can be seen in the
rule set that, to determine that a user is rotating, at least a rotation on the Z-axis must occur.
The user’s rotation is never determined if the Z-axis does not detect a rotation. This has
been determined experimentally because, regardless of the position of the smartphone, the
Z-axis always determines the rotation that the user performs on the ground. It is important
to note that a rotation never exists on a single axis regardless of the other axes when a
pedestrian walks.

One advantage of the developed strategy is that the fuzzy labels used as inputs of
the rotation detector are automatically established from the calibration of the sensors
performed by the user. This process is necessary since, as shown in Figure 3, two different
individuals have different gaits (i.e., walking styles) and generate different rotations. The
graphs in Figure 3 show the rotation on the XYZ axes produced by two users as they take a
straight line for 10 s. As seen in all cases, the first user produces more complex oscillations
than the second user. As a result, it is found from this test that user 2 causes more obvious
movements when walking than that generated by user 1. Complementarily, Table 2 lists
the average, standard deviation, maximum and minimum values of each user for each axis
of the graphs represented. These values comprehensively demonstrate that it is necessary
to calibrate the fuzzy detector due to such high differences that exist between the two users
when walking.

Sensors 2021, 21, 529 8 of 22

Table 1. Rule set for the fuzzy rotation vector.

Rule Number X-axis Y-axis Z-axis Output

1 X-negative diff. Y-negative diff. Z-negative diff. Rotation detected
2 X-negative diff. Y-negative diff. Z-stable diff. Go straight
3 X-negative diff. Y-negative diff. Z-positive diff. Rotation detected
4 X-negative diff. Y-stable diff. Z-negative diff. Rotation detected
5 X-negative diff. Y-stable diff. Z-stable diff. Go straight
6 X-negative diff. Y-stable diff. Z-positive diff. Rotation detected
7 X-negative diff. Y-positive diff. Z-negative diff. Rotation detected
8 X-negative diff. Y-positive diff. Z-stable diff. Go straight
9 X-negative diff. Y-positive diff. Z-positive diff. Rotation detected
10 X-stable diff. Y-negative diff. Z-negative diff. Rotation detected
11 X-stable diff. Y-negative diff. Z-stable diff. Go straight
12 X-stable diff. Y-negative diff. Z-positive diff. Rotation detected
13 X-stable diff. Y-stable diff. Z-negative diff. Rotation detected
14 X-stable diff. Y-stable diff. Z-stable diff. Go straight
15 X-stable diff. Y-stable diff. Z-positive diff. Rotation detected
16 X-stable diff. Y-positive diff. Z-negative diff. Rotation detected
17 X-stable diff. Y-positive diff. Z-stable diff. Go straight
18 X-stable diff. Y-positive diff. Z-positive diff. Rotation detected
19 X-positive diff. Y-negative diff. Z-negative diff. Rotation detected
20 X-positive diff. Y-negative diff. Z-stable diff. Go straight
21 X-positive diff. Y-negative diff. Z-positive diff. Rotation detected
22 X-positive diff. Y-stable diff. Z-negative diff. Rotation detected
23 X-positive diff. Y-stable diff. Z-stable diff. Go straight
24 X-positive diff. Y-stable diff. Z-positive diff. Rotation detected
25 X-positive diff. Y-positive diff. Z-negative diff. Rotation detected
26 X-positive diff. Y-positive diff. Z-stable diff. Go straight
27 X-positive diff. Y-positive diff. Z-positive diff. Rotation detectedSensors 2021, 21, x FOR PEER REVIEW 9 of 23

(a) (b)

(c)

Figure 3. Graphical comparison of two pedestrian gaits over a straight line for 10 s. (a) X-axis com-
parison. (b) Y-axis comparison. (c) Z-axis comparison.

Table 2. Comparison of the rotation values expressed in degrees (°) for each user while walking in
a straight line for 10 s.

User 1 User 2
Axis Avg. Std. Dev. Max. Min. Avg. Std. Dev. Max Min

X-axis 0.079 0.278 1.080 −0.520 −0.089 0.772 1.670 −2.030
Y-axis 0.018 0.380 0.860 −0.830 0.046 1.010 2.680 −2.390
Z-axis 0.059 1.397 2.710 −2.280 0.222 1.702 4.630 −2.690

As a result of the previous comparison, the application has included a functionality
that allows the automatic calibration of the smartphone sensors. The calibration task can
be performed by the user through the options menu located in the upper left area of the
app. Once the option is selected, the application indicates the user how to get a correct
calibration. This consists in standing still for 5 s to avoid generating incorrect oscillations
and then walking for 12 s in a straight line. At the end of the calibration, the maximum
and minimum rotation values generated by a pedestrian for each of the XYZ axes are de-
termined. From these values, the membership set of the input variables for each axis is
determined as set out in Equation (1) and Table 3. The value “axisDifference” in Table 3
corresponds to the top plateau of the trapezoid in Figure 4 labeled as “Stable difference”.
V1, V2, V3 and V4 values are calculated according to the form expressed in Table 3.

axisDifference = |minimum axis value| + |maximum axis value| (1)

Table 3. Definition of the membership sets for each axis.

Label V1 V2 V3 V4
Negative dif-

ference
−90° −90°

Min. axis value − ax-
isDifference

Min. axis value

Stable differ-
ence

Min. axis value − ax-
isDifference

Min. axis value Max. axis value
Max. axis value + ax-

isDifference
Positive dif-

ference
Max. axis value

Max. axis value + ax-
isDifference

90° 90°

Figure 3. Graphical comparison of two pedestrian gaits over a straight line for 10 s. (a) X-axis
comparison. (b) Y-axis comparison. (c) Z-axis comparison.

Table 2. Comparison of the rotation values expressed in degrees (◦) for each user while walking in a
straight line for 10 s.

User 1 User 2

Axis Avg. Std. Dev. Max. Min. Avg. Std. Dev. Max Min

X-axis 0.079 0.278 1.080 −0.520 −0.089 0.772 1.670 −2.030
Y-axis 0.018 0.380 0.860 −0.830 0.046 1.010 2.680 −2.390
Z-axis 0.059 1.397 2.710 −2.280 0.222 1.702 4.630 −2.690

Sensors 2021, 21, 529 9 of 22

As a result of the previous comparison, the application has included a functionality
that allows the automatic calibration of the smartphone sensors. The calibration task can
be performed by the user through the options menu located in the upper left area of the
app. Once the option is selected, the application indicates the user how to get a correct
calibration. This consists in standing still for 5 s to avoid generating incorrect oscillations
and then walking for 12 s in a straight line. At the end of the calibration, the maximum
and minimum rotation values generated by a pedestrian for each of the XYZ axes are
determined. From these values, the membership set of the input variables for each axis is
determined as set out in Equation (1) and Table 3. The value “axisDifference” in Table 3
corresponds to the top plateau of the trapezoid in Figure 4 labeled as “Stable difference”.
V1, V2, V3 and V4 values are calculated according to the form expressed in Table 3.

axisDifference = |minimum axis value| + |maximum axis value| (1)

Table 3. Definition of the membership sets for each axis.

Label V1 V2 V3 V4

Negative
difference −90◦ −90◦ Min. axis value

− axisDifference Min. axis value

Stable difference Min. axis value
− axisDifference Min. axis value Max. axis value Max. axis value

+ axisDifference
Positive

difference Max. axis value Max. axis value
+ axisDifference 90◦ 90◦

1

.

(a) (b)

Figure 4. Example of fuzzy labels used for rotation detection inputs.

2.2.2. Fuzzy Crossing Intention Detector

The output of the “fuzzy rotation detector” is used as the input for the block called
“fuzzy crossing intention detector” that performs the system sensory fusion (Figure 2).
Besides this, the sensory fusion requires—as input—the distance between the pedestrian
areas and the optimal route calculated. The distance to the pedestrian zone with respect to
the calculated route is computed from the current pedestrian position to the next pedestrian
zone collected on the route. To this end, the user can select the walking mode from the
following options: “running”, “walking” or “sightseeing”. This sets a greater or lesser
distance to fix the time of detection around a zebra crossing (i.e., 15, 10 or 5 s). The
membership functions used to calculate whether a pedestrian is near or far from the point
of interest are shown in Figure 5, which are based on trapezoidal membership sets. The set
of values of the membership functions is determined by selecting the walking mode that
the user does. These fuzzy sets have been built considering a GPS sensor position error
around one meter. In the worst case, the crossing intention can be safely determined with
at least a distance of 5 m to the point of interest, although it could be determined from
7.5 m with enough certainty as shown in Figure 5a. Finally, as in the case of the rotation
detector, the output is also a singleton that allows to indicate whether the intention to cross
a crosswalk has been detected or not. The set of fuzzy rules used in this case is listed in
Table 4. This sets that the pedestrian crossing intention will only be detected when he/she
is near the next pedestrian point of interest on the safe route and he/she is also performing
a rotation.

Sensors 2021, 21, 529 10 of 22

Sensors 2021, 21, x FOR PEER REVIEW 11 of 23

(a)

(b)

(c)

Figure 5. Fuzzy sets used to determine how far the pedestrian is from the next pedestrian point of
interest base on its options. (a) Sightseeing; (b) walking; (c) running.

2.3. Pedestrian Visualization Aid System
Additional functionality has been included to add value to the app. This can com-

municate with a smart crosswalk as the one described in [25] to alert drivers about the
presence of pedestrians with the intention to cross a zebra crossing. The interaction be-
tween the app and the intelligent crosswalk is managed by a gateway that can communi-
cate with the app via Bluetooth and with the nodes of the intelligent crosswalk via Wi-Fi
(Figure 6). To this end, a Raspberry Pi 3 device has been selected to implement the func-
tions of that gateway.

The app makes use of the Bluetooth Low Energy (BLE) service implemented in Blue-
tooth 4.0. For this purpose, a BLE server has been created in the mobile application to
provide information about the pedestrian’s crossing intention. The service can send the
values “intent to cross detected” or “intent to cross not detected” from the fuzzy detector
described above. To do this, the app makes use of the basic BLE profile called Alert Noti-
fication Profile, a communication profile that implements the New Alert feature. The goal
is to allow any BLE client to read the current state of the pedestrian phones regarding their
crossing intention or subscribe to the service to receive any change of state.

Figure 6. Communication scheme used between the application and the smart crosswalk.

In the gateway, a script that allows converting the Raspberry Pi 3 into a BLE client of
the app has been implemented in NodeJS. The client relies on the Noble library [31] to
make use of the BLE services, and on the dgram library [32] to make use of the Wi-Fi
communication with the intelligent crosswalk network. The client running on Raspberry
Pi 3 connects to the smartphones once they enter the Bluetooth range and subscribes to
the New Alert feature offered by the app. In case the app issues a notification, it is pro-
cessed by the client; if it indicates that the person intends to cross the intelligent crosswalk,
the client sends an activation message to the smart nodes of the crosswalk to generate a

Figure 5. Fuzzy sets used to determine how far the pedestrian is from the next pedestrian point of
interest base on its options. (a) Sightseeing; (b) walking; (c) running.

Table 4. Definition of the membership sets for each axis.

Rule Number Fuzzy Rotation
Detector Pedestrian Point of Interest Crossing Intention (Output)

1 Go straight Near Not detected
2 Go straight Far Not detected
3 Rotation detected Near Detected
4 Rotation detected Far Not detected

2.3. Pedestrian Visualization Aid System

Additional functionality has been included to add value to the app. This can commu-
nicate with a smart crosswalk as the one described in [25] to alert drivers about the presence
of pedestrians with the intention to cross a zebra crossing. The interaction between the app
and the intelligent crosswalk is managed by a gateway that can communicate with the app
via Bluetooth and with the nodes of the intelligent crosswalk via Wi-Fi (Figure 6). To this
end, a Raspberry Pi 3 device has been selected to implement the functions of that gateway.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 23

(a)

(b)

(c)

Figure 5. Fuzzy sets used to determine how far the pedestrian is from the next pedestrian point of
interest base on its options. (a) Sightseeing; (b) walking; (c) running.

2.3. Pedestrian Visualization Aid System
Additional functionality has been included to add value to the app. This can com-

municate with a smart crosswalk as the one described in [25] to alert drivers about the
presence of pedestrians with the intention to cross a zebra crossing. The interaction be-
tween the app and the intelligent crosswalk is managed by a gateway that can communi-
cate with the app via Bluetooth and with the nodes of the intelligent crosswalk via Wi-Fi
(Figure 6). To this end, a Raspberry Pi 3 device has been selected to implement the func-
tions of that gateway.

The app makes use of the Bluetooth Low Energy (BLE) service implemented in Blue-
tooth 4.0. For this purpose, a BLE server has been created in the mobile application to
provide information about the pedestrian’s crossing intention. The service can send the
values “intent to cross detected” or “intent to cross not detected” from the fuzzy detector
described above. To do this, the app makes use of the basic BLE profile called Alert Noti-
fication Profile, a communication profile that implements the New Alert feature. The goal
is to allow any BLE client to read the current state of the pedestrian phones regarding their
crossing intention or subscribe to the service to receive any change of state.

Figure 6. Communication scheme used between the application and the smart crosswalk.

In the gateway, a script that allows converting the Raspberry Pi 3 into a BLE client of
the app has been implemented in NodeJS. The client relies on the Noble library [31] to
make use of the BLE services, and on the dgram library [32] to make use of the Wi-Fi
communication with the intelligent crosswalk network. The client running on Raspberry
Pi 3 connects to the smartphones once they enter the Bluetooth range and subscribes to
the New Alert feature offered by the app. In case the app issues a notification, it is pro-
cessed by the client; if it indicates that the person intends to cross the intelligent crosswalk,
the client sends an activation message to the smart nodes of the crosswalk to generate a

Figure 6. Communication scheme used between the application and the smart crosswalk.

The app makes use of the Bluetooth Low Energy (BLE) service implemented in
Bluetooth 4.0. For this purpose, a BLE server has been created in the mobile application to
provide information about the pedestrian’s crossing intention. The service can send the
values “intent to cross detected” or “intent to cross not detected” from the fuzzy detector
described above. To do this, the app makes use of the basic BLE profile called Alert
Notification Profile, a communication profile that implements the New Alert feature. The

Sensors 2021, 21, 529 11 of 22

goal is to allow any BLE client to read the current state of the pedestrian phones regarding
their crossing intention or subscribe to the service to receive any change of state.

In the gateway, a script that allows converting the Raspberry Pi 3 into a BLE client
of the app has been implemented in NodeJS. The client relies on the Noble library [31]
to make use of the BLE services, and on the dgram library [32] to make use of the Wi-Fi
communication with the intelligent crosswalk network. The client running on Raspberry
Pi 3 connects to the smartphones once they enter the Bluetooth range and subscribes to the
New Alert feature offered by the app. In case the app issues a notification, it is processed
by the client; if it indicates that the person intends to cross the intelligent crosswalk, the
client sends an activation message to the smart nodes of the crosswalk to generate a visual
barrier on the roadway that allows vehicles to stop safely, further increasing the safety of
the smartphone’s users.

It is important to note that the application allows to indicate optionally how often the
Bluetooth communication is activated. The options allow to keep Bluetooth always on or
to activate it automatically when the smartphone is 30 m away from a crosswalk. This way,
it is possible to reduce the energy consumption of the resources.

3. Experimentation

This section describes the experimentation performed with the application and its main
results, which consisted of: (i) evaluating the fuzzy rotation detector; (ii) evaluating the
sensory fusion strategy developed for the crossing intention detector; and (iii) comparing
the performance of the safe route planning algorithm against the same routes generated by
default with Google Maps. To carry out the experimentation, a BQ Aquaris V smartphone
with an eight-core Qualcomm Snapdragon 435 processor (1.4 GHz), Adreno 505 graphics
processing unit, 4 GB RAM and 64 GB storage capacity over Android 8.1.0 was used. This
smartphone was distributed to all volunteers to carry out all the tests listed below.

3.1. Description of the Volunteers Set

The tests corresponding to the evaluation of the fuzzy rotation detector and the sensory
fusion developed for the crossing intention detector have been carried out with a total
of 31 volunteers, of whom 51.61% were men and 48.39% were women. The average age
of the subjects is 39.74 years with a standard deviation of 13.85 years. The set of users
has an average height of 168.74 cm and a standard deviation of 11.47 cm. If the subjects
are analyzed according to gender, the group of men has an average height of 176.47 cm
and a standard deviation of 8.59 cm, while the group of women has an average height of
160.47 cm in height and a standard deviation of 7.79 cm. The average age of the male group
is 37.19 years and a standard deviation of 12.74 years, while the average age of the female
group is 42.47 years and a standard deviation of 14.90 years.

3.2. Evaluation of the Fuzzy Rotation Detector

To evaluate the fuzzy approach of the rotation detector, a series of tests have been
designed to determine how far the pedestrian’s rotation is detected from the crosswalk
considering a reference system (Figure 7a). The goal is to reproduce the conditions under
which pedestrians typically cross a zebra crossing using different angles of attack. To do
this, the rotations used have been 22.5◦, 45◦, 67.5◦ and 90◦. As an example, the reference
system used for the angle of attack of 22.5◦ has been represented in Figure 7a. Besides,
the tests have been performed to compare the performance of the fuzzy detector both
calibrated and uncalibrated.

Sensors 2021, 21, 529 12 of 22

1

(a) (b)

Figure 7. (a) Description of the test scenario. (b) Average results of the calibrated and uncalibrated rotation detector, where
vertical lines represent the standard deviation for each average value.

The results show that the calibrated rotation detector offers a better response than
the uncalibrated detector (Figure 7b). The main improvement is seen at 22.5◦, where
a reduction of 17.78 cm (26.51%) in the distance of detection of the calibrated detector
versus the uncalibrated detector was obtained. Similarly, the calibration improved the
detection distance in 12.04 cm (21.99%) for an angle of 45◦, 10.90 cm (26.56%) for an angle
of 67.5◦, and 13.06 cm (49.84%) for a rotation of 90◦. As a result, it can be asserted that the
automatically calibration of the fuzzy labels established in the fuzzy detector improves
the detection of angles of the app. In addition, it can be affirmed that the percentage of
improvement is greater the less perceptible is the angle of attack used by the pedestrian to
cross. However, the detection distance is generally better the greater the angle of rotation
used by a pedestrian (i.e., less error). This suggests that abrupt angles of rotation (e.g., 90◦)
are easier to detect than more subtle angles of rotation (e.g., 22.5◦).

3.3. Evaluation of the Sensory Fusion of the Crossing Intention Detector

The performance of the crossing intention detector has been evaluated using a receiver
operating characteristic (ROC) analysis as described in [33]. The experimentation was
carried out in a real environment under controlled conditions similar to that of Figure 7a to
obtain sensitivity against specificity of the detector. The performance has been measured
by means of a confusion matrix of 2 × 2 elements that relates positive (p) and negative (n)
values (Table 5). To do this, the detection of the intention to cross of a pedestrian is
considered positive while the nondetection of the turn intention is considered negative.

Table 5. Confusion matrix for the receiver operating characteristic (ROC) analysis.

Real Value
Total

P N

Prediction
p′ True positives (TP) False positive (FP) P′

n′ False negatives (FN) True negatives (TN) N′

Total P N

The experimentation carried out has obtained a total of eight confusion matrices,
which provide the performance of the sensory fusion for each of the angles shown in
Figure 7a, both calibrated and uncalibrated. To this end, 390 samples were used for

Sensors 2021, 21, 529 13 of 22

each confusion matrix, totaling 3120 samples. The distribution of individuals who have
undergone the tests is as described in Section 3.1. To carry out the collection of the samples,
each subject was provided with a mobile device with the Android operating system, the
application installed and containing the route with the test crosswalk. First, each volunteer
performed the tests with the uncalibrated device; subsequently, the fuzzy labels of the
fuzzy rotation detector were calibrated, and the same tests were repeated with the turn
detector calibrated.

The series of tests consisted of (i) walking straight without intending to cross a
pedestrian crossing; (ii) walking straight and then crossing the crosswalk according to the
rotation angle set in each confusion matrix (i.e., 22.5◦, 45◦, 67.5◦ and 90◦). It was established
that, to consider a sample as true positive, the intention to cross had to be detected before
entering the crosswalk; it was considered a false negative if the intention to cross was not
detected or if the intention to cross was detected once a pedestrian entered the crosswalk;
it was considered a false positive if a pedestrian was walking straight (i.e., no intention to
cross the zebra crossing); and finally, it was considered a true negative when a pedestrian
was walking straight and no intention to cross was detected.

After the experimentation, the average accuracy for the uncalibrated crossing intention
detector was 84.74% with an F1-Score of 87.77%, whilst the calibrated crossing intention
detector obtained an average accuracy of 98.63% with an F1-Score of 98.97%. As seen,
the sensory fusion of the calibrated crossing intention detector offers better performance
than the uncalibrated detector in all case studies and improves all the metrics in Table 6.
Specifically, the average rate of true positives is 98.27% for the calibrated crossing intention
detector. This is an excellent and fairly accurate value given a precision rate of 99.7%.
Moreover, we found that the specificity is quite high reaching a level of 99.39%. Due to
this, it can be affirmed that the sensory fusion of the calibrated crossing intention detector
has high sensitivity and specificity, which makes the app very suitable for real use in cities.

Table 6. Results of the crossing intention fuzzy detector.

Fuzzy Crossing Intention
Detector

Rotation
Degree (◦)

TPR
(%)

FPR
(%)

SPC
(%)

ACC
(%)

P
(%)

F1-Score
(%)

Non-calibrated

22.5 86.92 22.31 77.69 83.85 88.63 87.77
45 98.83 18.05 81.95 71.28 91.37 94.95

67.5 99.61 23.66 76.34 91.77 89.24 94.14
90 100 23.85 76.15 92.05 89.35 94.37

Average 96.34 21.97 78.03 84.74 89.64 92.81
Std. Dev. 6.30 2.70 2.70 9.74 1.19 3.38

Calibrated

22.5 94.64 1.68 98.32 95.79 99.2 96.86
45 98.85 0.77 99.23 98.97 99.61 99.23

67.5 99.62 0.00 100 99.74 100.00 99.81
90 100.00 0.00 100 100.00 100.00 100.00

Average 98.27 0.61 99.39 98.63 99.7 98.97
Std. Dev. 2.47 0.80 0.80 1.94 0.38 1.45

TPR: true positive rate; FPR: false positive rate; SPC: specificity; ACC: accuracy; P: precision.

It can be said—looking into the results obtained by the sensory fusion of the calibrated
crossing intention detector—that the best results are found when detecting the crossing
intention with 90◦ rotation. On the contrary, less relevant metrics are observed when the
sensory fusion of the crossing intention detector is related to 22.5◦ rotation. This confirms,
as in the case studied in Section 3.2, that the detection of rotation at smaller angles is more
difficult to identify and because of this, the performance is reduced. Despite this, the
sensory fusion of the calibrated crossing intention detector offers a better metric in the
worst case than the best case for the uncalibrated detector. The best results obtained with
the crossing intention detector are those achieved at angles of 90◦, where it is observed
that a value of 100% is always obtained in all the metrics except in the false positive rate
(FPR), which is 0%, as expected. The following better metrics are obtained with angles
around 67.5◦. In this case, it is observed how the true positive rate (TPR) is reduced a

Sensors 2021, 21, 529 14 of 22

little—although it is still very good like the rest of the rates—indicating that there have
been some turns that have not been correctly detected by the calibrated crossing intention
detector. The metrics corresponding to the rotations with an angle of 45◦ are found as
the following better results for which a decrease in the TPR is observed. However, the
biggest concern could be considered that the FPR is no longer 0%. Therefore, it suggests
that the classifier detected the crossing intention at the wrong time. The same occurs for
angles close to 22.5◦; since the FPR rate increased to 1.68, the rest of the metrics are also
reduced. This way, the calibrated crossing intention detector achieves the least robust set of
metrics around an angle of 22.5◦ (TPR of 94.64%, accuracy (ACC) of 95.67% and F1-Score
96.86%). This is due to, in these cases, the rotation produced by the user is very slight and
difficult to detect by the sensors currently used. In the same way, a limitation could be that
all volunteers reside in the province of Huelva (Spain). This could have a bias due to the
way they walk or cross the pedestrian crossing because they belong to the same specific
geographical area. Another limitation can also be the calibration of the fuzzy labels at a
specific moment. This calibration could become invalid if the user changes their gait for
reasons such as it starts to rain, or he/she receives a phone notification (e.g., call, SMS
or WhatsApp). It is important to highlight that the limitations on precision generated
by a GPS sensor have been eliminated with the use of the fuzzy logic as mentioned in
Section 2.2.2. For all the above, it can be confirmed that the fuzzy logic strategy using a
mobile phone as a crossing intention detector on public roads offers good results, being
demonstrated by the data generated by the experimentation carried out.

3.4. Comparison of Routes Generated

To evaluate the contribution made with the routing algorithm developed in the mobile
application, a cloud-hosted database was created with a total of 79 pedestrian points of
interest. These test points represent zebra crossings, walkways and pedestrian streets
in different cities of Spain and Portugal (i.e., Huelva, Seville, Bollullos Par del Condado,
Almonte, Camas, Tavira and Faro). In order to determine the safety improvement achieved
by the routes traced with the application, these have been compared to the routes generated
by Google Maps. The points of interest proposed have been used to demonstrate the errors
made by Google Maps and how the proposed application improves the routes it generates.

The comparison makes it possible to study how Google Maps falls into various
conflicting routes. For instance, it indicates pedestrians to circulate as if they were vehicles
(e.g., using roundabouts), it does not direct people to take available pedestrian streets and
it does not use walkways to cross three- or four-lane tracks. Table 7 shows a comparison
of the routes generated by Google Maps versus the routes generated by the proposed
algorithm. It shows the number of cases per route typology, average time difference,
average distance difference, and average improvement achieved regarding safe zones. In
summary, Table 7 shows that the routes calculated by the algorithm are safer than those
generated by Google Maps by making use of a greater number of pedestrian zones. In
contrast, the routes generated by the algorithm generally increase the time and distance
of the path. The percent difference in each of these cases has been calculated as shown in
Equation (2):

difference = (app route value ∗ 100)/(Google Maps route value) − 100 (2)

Table 7. Comparison of routes generated by the algorithm proposed and Google Maps.

Typology of Route Tested Cases Tested Diff. in Time Diff. in Distance Increase in Safe
Areas App CPM Google Maps CPM

Avoid roundabouts 8 48.80% 23.65% 243.75% 0.65 0.62
Avoid circulating as a vehicle 5 23.41% 35.24% 183.00% 0.58 0.56

Use pedestrian street 14 10.71% −0.66% 215.48% 0.66 0.62
Use pedestrian walkways 3 147.62% 129.26% 266.67% 0.61 0.61

Total 30 36.68% 24.80% 222.72% 0.64 0.61

CPM: Composed performance metric.

Sensors 2021, 21, 529 15 of 22

In addition to these values, a composed metric has been proposed to evaluate the
performance of the routes generated by the application against the routes generated by
Google Maps. This metric has been called Composed Performance Metric (CPM) and
it expresses the quality of the route—through a single value—as a function of the time,
distance and number of safe pedestrian areas of the route. To make use of this metric, it
is necessary for the values to be normalized from 0 to 1. For this, the min-max method
described in [34] has been used. Once the values have been normalized, it is important
to highlight that the values referring to the time and distance used in the route are better
the closer to zero they are, while the values referring to the number of pedestrian areas
are better the closer to one they are. Therefore, they will be represented by subtracting the
normalized time and distance values from 1. Moreover, the number of pedestrian areas is
represented according to the value obtained in the normalization. The metric is expressed
mathematically by Equation (3):

CPM = (1 − normalized value of time) ∗ K1 + (1 − normalized value of dis
tance) ∗ K2 + (normalized value of pedestrian areas) ∗ K3

(3)

where K1, K2 and K3 represent the weight for each of the values in the compound metric.
The sum of K1, K2 and K3 must add up to 1. For the current case, an equitable weight has
been used (i.e., K1, K2 and K3 have been set to 0.333). This compound metric supports
modifying these weights to give greater importance to the factor to be highlighted (i.e.,
time, distance or safety). This metric has been used to evaluate each of the 30 routes studied,
being better the closer its value is to 1. To this end, an average result for each type of route
has been included in Table 7.

Table 7 presents a comparison of the routes generated by the app developed and
Google Maps. The first case shown in the table prevents a pedestrian from taking round-
abouts as a vehicle, which is what happens with the routes generated by Google Maps.
The routes generated by the app to avoid this scenario offer an improved safety of 243.75%
compared to Google Maps, although this entails an increase in time and distance of 48.80%
and 23.65%, respectively. In the same way, the app achieves a better CPM than Google
Maps (0.65 and 0.62, respectively). The main improvement of this type of routes lies in
indicating to pedestrians that they must move to the nearest zebra crossing instead of
taking a roundabout as a vehicle (an example is shown in Figure 8a). On the contrary,
Google Maps generates an unsafe route for the same origin and destination points. These
route types are unsafe because pedestrians circulate through roundabouts regardless of
whether they are walking in the opposite direction to the vehicles or if they are crossing the
roundabout through the center, thereby generating a road safety problem for pedestrians
and drivers, as it is shown in Figure 8e.

The second case aims to prevent a pedestrian from crossing public roads regardless
of where the crossing is made. In other words, the application can generate routes that
allow a pedestrian to avoid dangerous crossings by guiding pedestrians to zebra crossings
so that they can safely cross the road. This type of route generated by the app obtains an
average improvement in road safety of 183.00%, and in CPM (0.58 and 0.56, respectively).
This also leads to an increase in time and distance required to complete the route (23.41%
and 35.24%, respectively). An example of this route type is found in Seville (Spain), where,
to cross a four-lane road, the developed app indicates the pedestrian to move to the
closest crosswalk to avoid a possible run-over when crossing the street in the wrong place
(Figure 8b). For this same crossing, Google Maps indicates the pedestrian to cross in a
straight line regardless of his/her physical integrity. This poses a risk to the life and road
safety of persons, which increases if they do not know the city, suffer from a visual problem,
or have reduced mobility. The calculated route by Google Maps can be seen in Figure 8f.

Sensors 2021, 21, 529 16 of 22

Sensors 2021, 21, x FOR PEER REVIEW 17 of 23

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 8. (a) Route calculated by the app where it is observed how to avoid the incorrect use of a roundabout. (b) Route
calculated by the app where it is depicted how to avoid circulating like a vehicle. (c) Route calculated by the app where
pedestrian areas are used. (d) Route calculated by the app where the pedestrian walkway is used. (e) Route calculated by
Google Maps where a pedestrian is introduced into a roundabout. (f) Route calculated by Google Maps where a pedestrian
is introduced into an intersection without respecting the signals. (g) Route calculated by Google Maps where pedestrians
are not introduced through pedestrian areas. (h) Route calculated by Google Maps where the pedestrian walkway is not
used.

The third case shows that Google Maps does not make efficient use of pedestrian
streets in the cities, these being the ones that provide the most road safety to pedestrian
because vehicles cannot circulate through them. In the proposed comparison, it is ob-
served that the app manages to increase road safety by 215.48% on average compared to
Google Maps, as well as reducing the distance to travel by 0.66%. Additionally, the CPM
of the app is better than the CPM achieved with Google Maps (0.66 and 0.62, respectively).
In this case, despite reducing the distance to travel, the Google Directions API does not
show a reduction in time but an increase of 10.71%. An example of the aforementioned
improvement is described in Figure 8c, where the app makes use of pedestrian areas such
as the one that persons pass through. In this way, the road safety of pedestrians increases
when walking through areas where there should not be cars circulating or parking. For
the same route, Google Maps offers a trajectory where the use of pedestrian areas is not
prioritized. In this case, Google Maps prefers to give the pedestrian a less safe route to
travel a total of 20 m less than the route generated by the app, as it can be seen in Figure 8g.

Last but not least, the best results from the point of view of road safety comes from
the routes that make use of pedestrian walkways to cross a road with three or four lanes.

Figure 8. (a) Route calculated by the app where it is observed how to avoid the incorrect use of a roundabout. (b) Route
calculated by the app where it is depicted how to avoid circulating like a vehicle. (c) Route calculated by the app where
pedestrian areas are used. (d) Route calculated by the app where the pedestrian walkway is used. (e) Route calculated by
Google Maps where a pedestrian is introduced into a roundabout. (f) Route calculated by Google Maps where a pedestrian is
introduced into an intersection without respecting the signals. (g) Route calculated by Google Maps where pedestrians are not
introduced through pedestrian areas. (h) Route calculated by Google Maps where the pedestrian walkway is not used.

The third case shows that Google Maps does not make efficient use of pedestrian
streets in the cities, these being the ones that provide the most road safety to pedestrian
because vehicles cannot circulate through them. In the proposed comparison, it is observed
that the app manages to increase road safety by 215.48% on average compared to Google
Maps, as well as reducing the distance to travel by 0.66%. Additionally, the CPM of the
app is better than the CPM achieved with Google Maps (0.66 and 0.62, respectively). In
this case, despite reducing the distance to travel, the Google Directions API does not
show a reduction in time but an increase of 10.71%. An example of the aforementioned
improvement is described in Figure 8c, where the app makes use of pedestrian areas such
as the one that persons pass through. In this way, the road safety of pedestrians increases
when walking through areas where there should not be cars circulating or parking. For
the same route, Google Maps offers a trajectory where the use of pedestrian areas is not
prioritized. In this case, Google Maps prefers to give the pedestrian a less safe route to
travel a total of 20 m less than the route generated by the app, as it can be seen in Figure 8g.

Sensors 2021, 21, 529 17 of 22

Last but not least, the best results from the point of view of road safety comes from the
routes that make use of pedestrian walkways to cross a road with three or four lanes. These
routes improve safety by 266.67% on average. It is necessary to indicate that this increase in
safety also increases the times and distance of the routes on average (147.62% and 129.26%,
respectively). This is due to the need to move the user to the pedestrian walkways instead
of crossing roads where the user’s integrity is in danger. These highly dangerous roads
can be especially problematic for people with reduced mobility or with severe auditory or
visual problems. In these cases, the route generated by the developed app provides even
more significant safety than the route generated by Google Maps, despite the increased
time and distance included. For these reasons, the CPM shows a tie between the routes
generated by the app and Google Maps. An example of these routes is shown in Figure 8a,
where it is observed how the pedestrian is indicated to move to the beginning of the
pedestrian walkway used to cross a four-lane road that separates the origin and destination
points. This way, the pedestrian needs to walk more time and a larger distance, improving
at the same time its road safety. Moreover, when the pedestrian is in the most dangerous
point of the route—near the access to a highway—he/she is at the safest point of the route
since he/she is walking by a walkway only used for people. On the contrary, Google
Maps provides a shorter distance and time, but it does not consider the road safety of the
pedestrian. Thus, it tells the pedestrian to walk in the opposite direction of the vehicles on
a road that does not have sidewalks. Google Maps also tells the pedestrian to walk along
a road called “Av. Costa de la luz”, which is an access to join a highway. So, at the most
dangerous point of the route, the pedestrian is more vulnerable to being run over because
drivers do not expect to find a pedestrian on the access to a highway.

The limitations observed in this experimentation refer to the number of sites collected
in an external database, since the ideal would be to have all the locations of pedestrian
zones in the different cities studied and not just a sample of some dangerous locations.
Another limitation refers to the drawing of the routes based on the Google Maps engine,
which does not allow modifying the routes to make them pass on the sidewalk and always
represents the routes on the road. Finally, based on the results obtained, it can be said that
the routes generated by the app are safer than those generated by Google Maps. It has been
achieved by guiding pedestrians for a longer time through reserved areas or by guiding
them to a crossing where pedestrians have priority. Moreover, the total CPM shows that
the routes generated by the app (0.64) are better in general than those obtained by Google
Maps (0.61), since the increase in road safety provided by the application is greater than
the increase in time and distance caused.

To finish, it is important to highlight that—to use the app—the smartphone always
needs to be connected to the Internet because it uses several APIs and an external database
that requires cloud connectivity. For this reason, we recorded the times taken by the app
to calculate several routes based on the number of pedestrian points of interest and a
4G connection. The experimentation consisted in grouping the routes by the number of
points of interest and averaging a series of 20 times. Accordingly, the results obtained were
1.9 ± 0.22 s to calculate the routes with one point of interest; 2.13 ± 0.37 s for routes with
two points of interest; 2.13 ± 0.32 s for routes with three points of interest; 2.29 ± 0.28 s for
routes with four points of interest; and 2.25 ± 0.41 s for routes with six points of interest.
As a rule of thumb, the more points of interest added, the more time the algorithm takes to
calculate the route. In this sense, the need for the Internet can be considered as a limitation
in itself because, if the smartphone does not have connectivity to the cloud, the app cannot
calculate the requested routes.

4. Conclusions

Smart cities are becoming a reality thanks to the support of wireless communications,
along with the use of analysis techniques and data processing. Transport and road safety
are an important pillar within smart cities. Currently, road safety is a weak point as

Sensors 2021, 21, 529 18 of 22

demonstrated by several studies, which indicate that 40% of accidents involving pedestrians
occur when people cross roads in the right place.

To help reduce accidents, this study presents a mobile application developed on
Android that makes two contributions. On the one hand, the app can determine the
intention of a pedestrian to cross through the public road using rotation sensors and sensory
fusion based on fuzzy logic. This approach is integrated into the people’s smartphones.
Therefore, the crossing intent detection system offers the advantage of being able to be used
throughout the city instead of fixed specific points like other camera-based or LIDAR-based
solutions. It should also be noted that the proposed solution—unlike other state-of-the-art
systems—is robust against adverse weather conditions with low visibility, as it only makes
use of simple sensors built into smartphones and requires no cameras. On the other hand,
this work presented an algorithm for the calculation, tracing and guidance of pedestrians
through safe routes. This includes the use of more zebra crossings, streets and pedestrian
areas than other routing applications such as Google Maps. As an added value, the app has
Bluetooth communication to interact with intelligent crosswalks and create a light warning
barrier that allows drivers to safely stop their vehicles in case of detecting the crossing
intention of pedestrians.

The experimentation carried out consisted in crossing a test zebra crossing with a
set of 31 pedestrians using different entry angles, totaling of 3120 samples. From the
tests, the fuzzy logic-based crossing intention detector has proven that it improves the
crossing pedestrian intention detection after the automatically calibration of the fuzzy
labels. Specifically, the accuracy rate of the calibrated fuzzy crossing intention detector
was 98.63%, with an F1-Score of 98.97%, a true positive rate of 98.27%, a false positive
rate of 0.61%, and a specificity of 99.7%. This suggests that the proposed solution has
the capability to determine the intention of pedestrians to cross with high sensitivity and
specificity.

Regarding the second contribution of this work, the experimentation carried out
proved that the set of 30 routes computed by the proposed algorithm increased the safety
of pedestrians against Google Maps between 183.00–266.67% by using a greater number of
pedestrian areas (i.e., pedestrian crossings, streets and walkways). As a consideration, it
should be mentioned that—in most cases—it entails an increase in the distance and time of
the trips.

Future work focuses on improving the current functionalities of the app or include
new ones. Among the possible improvements would be to implement an infrastructure-
to-person (I2P) communication to alert on the presence of vehicles at high speed to avoid
possible fatalities for pedestrians (i.e., communication with smart crosswalks). It also
includes a person-to-vehicle (P2V) communication to notify the drivers’ smartphones
about the existence of pedestrians intending to cross a crosswalk. In addition to this,
another functionality to investigate is the possibility of changing the route calculation and
map engines to OSM, which could offer more complete information about pedestrian areas
in cities than Google Maps. Also, the possibility of using machine learning techniques to
detect the crossing pedestrian intention with the mobile sensors will be studied, which
could offer better performance than the current strategy. In this sense, one-class SVM
techniques to detect anomalies, RNNs such as the long short-term memory (LSTM) to
analyze time series or MLPs are candidates to be used as a crossing intention detector.
In the second stage, the objective would be to increase the number of pedestrian interest
points of the cities stored in the external database to increase the road safety provided by
the app. In this task, the use of OSM can be very useful because it allows the community to
update the maps of its city. In the third stage, the app would be uploaded to application
stores such as Android’s Play Store or Apple’s App Store, among others. This would
allow the massive download of the app by the users. In the fourth stage, the task would
be to disseminate the app through traditional media (e.g., press or television) and social
networks, as well as to attend entrepreneur fairs and exhibitions to publicize the product
and its advantages for decision-makers. Finally, the results obtained from the research and

Sensors 2021, 21, 529 19 of 22

the app itself would be transferred to third parties to continue with the maintenance of the
project, either publicly or privately.

Author Contributions: Conceptualization, T.d.J.M.S.; methodology, J.M.L.D.; software, J.M.L.D.;
validation, J.M.L.D. and T.d.J.M.S.; formal analysis, J.M.L.D.; investigation, T.d.J.M.S. and J.M.L.D.;
resources, J.M.L.D.; writing—original draft preparation, J.M.L.D.; writing—review and editing,
T.d.J.M.S.; visualization, J.M.L.D.; supervision, T.d.J.M.S.; project administration, T.d.J.M.S.; funding
acquisition, T.d.J.M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Economy and Knowledge of the Andalusian
Government, Spain through the project entitled “Industrialization of a Road Signaling Autonomous
System for Smart Pedestrian Crosswalks” (ref. 5947) and through the project entitled “Improvement
of Road Safety through an Intelligent Service Platform for Pedestrians, Sensors and Environment”
(ref. UHU-1260596).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to express our very great appreciation to M.A. Rodríguez Román
for his valuable and constructive work that helped to conceptualize this research.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 529 20 of 22

Appendix A

Table A1. Comparison of the proposals described in the state of the art.

Ref. Type Application Information Extracted From AI Implemented Year

[10] App Traffic jams Smartphone sensors Decision algorithm in function of the via status 2018
[11] App Traffic jams and incidents Smartphone sensors and third parties - 2019
[12] App Accident risk Personal information and historical data Fuzzy harmonic systems and fuzzy patterns 2017
[13] App Improve pedestrian routes Open Street Maps and Google APIs A * algorithm 2018
[14] App Improve pedestrian routes Data base with architectural barriers and Google APIs Optimizing iterative algorithm 2020
[15] App Improve pedestrian routes Maps stored in Google Drive and Sensors Dijkstra algorithm 2020
[16] App Improve pedestrian routes Open Street Maps Optimizing algorithm 2018

[17] Camera on the road Detect crossing intention Cameras
Haarcascade based on OpenCV library; HOG

based on SVM; SSD based on MobileNet; YOLO
based on DNN

2019

[18] Camera on the road Detect crossing intention Cameras Region-based CNN; SVM; MLP 2019
[19] Camera on the road Detect crossing intention Cameras HOG based on SVM 2017
[20] Camera on the road Detect crossing intention Cameras KNN; SVM; ANN; DT; CNN 2018
[21] Camera on the road Detect crossing intention Cameras LSTM 2020
[22] Camera on board vehicles Detect crossing intention Cameras RF; SVM 2017
[23] LIDAR sensor on the road Detect crossing intention LIDAR DNN; LSTM; CNN 2016

[24] Cameras and laser sensor
on the road Detect crossing intention Cameras and laser sensors AT-LSTM; SVM 2020

Proposed App Detect crossing intention and
improve pedestrian routes Google APIs, external data base and rotation vector Fuzzy logic and optimizing algorithm 2020

ANN: artificial neural network; AT-LSTM: long short-term memory network with attention mechanism; A* algorithm: A-Star search algorithm; CNN: convolutional neural network; DNN: dense neural network;
DT: decision tree; HOG: histogram of oriented gradients; KNN: k-nearest neighbors; LSTM: long short-term memory; MLP: multilayer perceptron; RF: random forest; SSD: single shot detector; SVM: support
vector machine; YOLO: you-only-look-once.

Sensors 2021, 21, 529 21 of 22

References
1. Cohen, B. What Exactly Is a Smart City? Technical Report. 2012. Available online: https://www.fastcompany.com/ (accessed on

26 November 2020).
2. Lozano Domínguez, J.M.; Mateo Sanguino, T.J. Review on V2X, I2X and P2X communications and their applications: A

comprehensive analysis over time. Sensors 2020, 19, 2756. [CrossRef] [PubMed]
3. Soomro, K.; Bhutta, M.N.M.; Khan, Z.; Tahir, M.A. Smart City big data analytics: An advanced review. Wiley Interdiscip. Rev. Data

Min. Knowl. Discov. 2019, 9, 1–25. [CrossRef]
4. Navarathna, P.J.; Malagi, V.P. Artificial intelligence in smart city analysis. In Proceedings of the 2018 International Conference on

Smart Systems and Inventive Technology, Tirunelveli, India, 13–14 December 2018; pp. 44–47.
5. Lewicki, W.; Stankiewicz, B.; Olejarz-Wahba, A.A. The role of intelligent transport system in the development of the idea of smart

city. In Proceedings of the 16th Scientific and Technical Conference on Transport Systems Theory and Practice, Katowice, Poland,
16–18 September 2019; pp. 26–36.

6. Lozano Domínguez, J.M.; Al-Tam, F.; Mateo Sanguino, T.J.; Correia, N. Analysis of machine learning techniques Applied to
sensory detection of vehicles on intelligent crosswalks. Sensors 2020, 20, 6019. [CrossRef] [PubMed]

7. Dirección General de Tráfico (DGT), Ministerio del Interior de España. Tablas Estádisticas año 2018, Techinical Report. 2018.
Available online: http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/accidentes-30dias/tablas-estadisticas/
(accessed on 26 November 2020).

8. National Highway Traffic Safety Administration (NHTSA). Traffic Safety Facts 2017, A compilation of Motor Vehicle Crash
Data (Annual Technical Report). 2019. Available online: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812806
(accessed on 26 November 2020).

9. National Highway Traffic Safety Administration (NHTSA). Fatality and Injury Reporting System Tool (FIRST) Technical Report.
2020. Available online: https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/p19429226_first_anders_longthorne_
tag.pdf (accessed on 26 November 2020).

10. Sánchez, J.A.; Melendi, D.; Pañeda, X.G.; Garcia, R. Towards smart mobility in urban areas using vehicular communications and
smartphones. IEEE Lat. Am. Trans. 2018, 16, 1380–1387. [CrossRef]

11. Rambrun, T.; Badoreea, D.; Cheerkoo-Jalim, S. DriveMu: A real-time road-traffic monitoring android application for mauritius. In
Proceedings of the 2019 Conference on Next Generation Computing Applications (NextComp), Mauritius, 19–21 September 2019;
pp. 1–8.

12. Bel, W.; López de Luise, D.; Ledesma, E. Fuzzy harmonic systems: Ability for traffic risk measurement in android. In Proceedings
of the IEEE URUCON, Montevideo, Uruguay, 23–25 October 2017; pp. 1–4.

13. Torres, M.; Pelta, D.A.; Verdegay, J.L. PRoA: An intelligent multicriteria personalized route asistant. Eng. Appl. Artif. Intell. 2018,
2018, 162–169. [CrossRef]

14. Fogli, D.; Arenghi, A.; Gentilin, F. A universal design approach to wayfinding and navigation. Multimed. Tools Appl. 2020, 79,
33577–33601. [CrossRef]

15. Khedo, K.K.; Ghugul, K.Y.; Ten, D.Y. A context-aware voice operated mobile guidance system for visually impaired persons.
In Technological Trends in Improved Mobility of the Visually Impaired, 1st ed.; Paiva, S., Ed.; Springer: Cham, Switzerland, 2020;
pp. 335–354.

16. Novack, T.; Wang, Z.; Zipf, A. A system for generating customized pleasant pedestrian routes based on open street map data.
Sensors 2018, 18, 3794. [CrossRef] [PubMed]

17. Dow, C.-R.; Ngo, H.-H.; Lee, L.-H.; Lai, P.-Y.; Wang, K.-C.; Bui, V.-T. A crosswalk pedestrian recognition system by using deep
learning and zebra-crossing recognition techniques. J. Softw. Pract. Exp. 2019, 50, 630–644. [CrossRef]

18. Ka, D.; Lee, K.; Kim, S.; Yeo, H. Study on the framework of intersection pedestrian collision warning system considering
pedestrian characteristics. Transp. Res. Record 2019, 2673, 747–758. [CrossRef]

19. Sumi, A.; Santha, T. An intelligent prediction system for pedestrian crossing detection. ARPN J. Eng. Appl. Sci. 2017, 12,
5370–5378.

20. Varytimidis, D.; Alonso-Fernandez, F.; Duran, B.; Englund, C. Action and intention recognition of pedestrian in urban traffic. In
Proceedings of the 14th International Conference on Signal Image Technology and Internet Based Systems, Las Palmas de Gran
Canaria, Spain, 26–28 November 2018; pp. 676–682.

21. Zhan, S.; Abdel-Aty, M.; Yuan, J.; Li, P. Prediction of pedestrian crossing intentions at intersections based on long short-term
memory recurrent neural network. Transp. Res. Rec. 2020, 2674, 57–65. [CrossRef]

22. Fang, Z.; Vázquez, D.; López, A.M. On-board detection of pedestrian intentions. Sensors 2017, 17, 2193. [CrossRef] [PubMed]
23. Völz, B.; Behrendt, K.; Mielenz, H.; Gilitschenski, I.; Siegwart, R.; Nieto, J. A data-driven approach for pedestrian intention

estimation. In Proceedings of the 19th International Conference on Intelligent Transportation System (ITSC), Rio de Janeiro,
Brazil, 1–4 November 2016; pp. 2607–2612.

24. Zhang, H.; Liu, Y.; Wang, C.; Fu, R.; Sun, Q.; Li, Z. Research on a pedestrian crossing intention recognition model based on natural
observation data. Sensors 2020, 20, 1776. [CrossRef] [PubMed]

25. Lozano Domínguez, J.M.; Mateo Sanguino, T.J. Design, modelling and implementation of a fuzzy controller for an intelligent
road signalling system. Complexity 2018, 2018, 1849527. [CrossRef]

26. The jTDS Project. Available online: http://jtds.sourceforge.net/ (accessed on 30 December 2020).

https://www.fastcompany.com/
http://doi.org/10.3390/s19122756
http://www.ncbi.nlm.nih.gov/pubmed/31248189
http://doi.org/10.1002/widm.1319
http://doi.org/10.3390/s20216019
http://www.ncbi.nlm.nih.gov/pubmed/33114001
http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/accidentes-30dias/tablas-estadisticas/
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812806
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/p19429226_first_anders_longthorne_tag.pdf
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/p19429226_first_anders_longthorne_tag.pdf
http://doi.org/10.1109/TLA.2018.8408431
http://doi.org/10.1016/j.engappai.2018.03.016
http://doi.org/10.1007/s11042-019-08492-2
http://doi.org/10.3390/s18113794
http://www.ncbi.nlm.nih.gov/pubmed/30404175
http://doi.org/10.1002/spe.2742
http://doi.org/10.1177/0361198119838519
http://doi.org/10.1177/0361198120912422
http://doi.org/10.3390/s17102193
http://www.ncbi.nlm.nih.gov/pubmed/28946632
http://doi.org/10.3390/s20061776
http://www.ncbi.nlm.nih.gov/pubmed/32210116
http://doi.org/10.1155/2018/1849527
http://jtds.sourceforge.net/

Sensors 2021, 21, 529 22 of 22

27. Mamdani, E.H. Applications of fuzzy set theory to control systems: A survey. Autom. Decis. Process. 1977, 10, 247–259.
28. Aliev, R.A. (Ed.) Fuzzy Sets and Fuzzy Logic. In Fundamentals of the Fuzzy Logic-Based Generalized Theory of Decisions, 1st ed.;

Springer: Berlin/Heidelberg, Germany, 2013; Volume 293, pp. 1–58.
29. Ibrahim, A.M. (Ed.) Embedded fuzzy applications. In Fuzzy Logic for Embedded System Applications, 1st ed.; Elsevier: Amsterdam,

The Netherlands, 2004; pp. 69–98.
30. Lawry, J. A voting mechanism for fuzzy logic. Int. J. Approx. Reason. 1998, 19, 315–333. [CrossRef]
31. Noble, A. Node.js BLE (Bluetooth Low Energy) Central Module. Available online: https://www.npmjs.com/package/noble

(accessed on 30 December 2020).
32. Node.js v0.6.19 Manual & Documentation. UDP/Datagram Sockets. Available online: https://nodejs-es.github.io/api/en/

dgram.html (accessed on 30 December 2020).
33. Fawcett, F. An Introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
34. Shalabi, L.A.; Shaaban, Z.; Kasasbeh, B. Data mining: A preprocessing engine. J. Comp. Sci. 2006, 2, 735–739. [CrossRef]

http://doi.org/10.1016/S0888-613X(98)10013-0
https://www.npmjs.com/package/noble
https://nodejs-es.github.io/api/en/dgram.html
https://nodejs-es.github.io/api/en/dgram.html
http://doi.org/10.1016/j.patrec.2005.10.010
http://doi.org/10.3844/jcssp.2006.735.739

	Introduction
	Mobile Application Description
	Calculation, Tracing and Guiding of Safe Routes
	Sensory Fusion
	Fuzzy Rotation Detector
	Fuzzy Crossing Intention Detector

	Pedestrian Visualization Aid System

	Experimentation
	Description of the Volunteers Set
	Evaluation of the Fuzzy Rotation Detector
	Evaluation of the Sensory Fusion of the Crossing Intention Detector
	Comparison of Routes Generated

	Conclusions
	
	References

