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Abstract: IoT-based systems, when interacting with the physical environment through actuators,
are complex systems difficult to model. Formal verification techniques carried out at design-time
being often ineffective in this context, these systems have to be quantitatively evaluated for ef-
fectiveness at run-time, i.e., for the extent to which they behave as expected. This evaluation is
achieved by confronting a model of the effects they should legitimately produce in different contexts
to those observed in the field. However, this quantitative evaluation is not informative on the drifts
in effectiveness, it does not help designers investigate their possible causes, increasing the time
needed to resolve them. To address this problem, and assuming that models of legitimate behavior
can be described by means of Input-Output Hidden Markov Models (IOHMMs), a novel generic
unsupervised clustering-based IOHMM structure and parameters learning algorithm is developed.
This algorithm is first used to learn a model of legitimate behavior. Then, a model of the observed
behavior is learned from observations gathered in the field. A second algorithm builds a dissimilarity
graph that makes clear structural and parametric differences between both models, thus providing
guidance to designers to help them investigate possible causes of drift in effectiveness. The approach
is validated on a real world dataset collected in a smart home.

Keywords: actuation; internet of things; ambient intelligence; cyber–physical systems; effectiveness;
drift; input-output hidden markov models

1. Introduction

Systems based on the Internet of Things (IoT-based systems) such as ambient assisted
living systems (AAL) [1] and smart cyber–physical systems (CPS) [2], by interacting with
the physical environment through actuators, face many challenges, pertaining to reliability,
safety and resilience requirements. These challenges are difficult to meet because the physical
environment is complex and difficult to model [3]. Designers are thus limited in their
ability to predict the effects of their interactions at design-time and to formally verify their
conformity to logical properties, whether functional or temporal. It is then necessary to
quantitatively assess the effectiveness of these systems at run-time [4], i.e., the extent to
which these systems behave as expected. This assessment is carried out by confronting a
model of the effects legitimately expected to be produced in particular contexts to those
observed in the field [5]. This model of legitimate behavior is generally built from the
experience of experts, documents describing standards and safety, users’ preferences, etc.,
which are formulated by If-Then rules for their interpretation [6].

The quantitative effectiveness assessment, as quality (e.g., quality of service (QoS) [7,8],
quality of experience (QoE) [9]), performance and reliability assessment metrics (e.g., time-to-
failure (TTF), remaining useful life (RUL), etc.), can be used to highlight any deterioration
of an IoT-based system and trigger analyses leading to corrective actions. However,
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these assessments do not provide guidance to designers that would help them direct
their research and identify the possible causes of drifts in effectiveness, increasing the
time needed to resolve them. More specifically, drifts in effectiveness, from the model of
the legitimate behavior perspective, can be threefold: (1) the system does not behave as
expected (2), the model is incomplete, the observed behavior, although legitimate, has not
been foreseen and (3), there is an incipient drift in parameters, i.e., the observed behavior,
although legitimate, is slightly outside the expectations (also known as concept drift).
Whether it is due to unforeseen anomalous or legitimate behaviors or to parameters drifting
over time, designers must be provided with tools to support them in investigating drifts
in effectiveness by correlating various events and consulting system experts to possibly
determine their corresponding root causes as well as their relevant data, thereby reducing
the time needed to resolve them.

In this paper, we consider IoT-based systems whose model of the legitimate behavior
can be described with Input-Output Hidden Markov Models (IOHMMs) [10]. This frame-
work is widely used for behavioral modeling [11,12] and brings numerous advantages
herein [13]; (1) it is an explainable graphical model [14] part of the Dynamic Bayesian
Networks (DBN) family; (2) it formalizes conditional dependencies between the effects
and their stimuli (i.e., contextual input, events); (3) it incorporates tolerances on expectations.
On the basis of this assumption, the contribution of this paper is two-fold:

1. With the assumption that observations are stochastically correlated with the IoT-based
system conditions (i.e., there exists a bijection between states and observations [15]),
we develop a novel generic clustering-based algorithm for learning both the IOHMM
structure Φ (states and state-transitions) and the parameters λ (distribution parame-
ters) from continuous observations. The algorithm is proposed to be implemented
with the Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDB-
SCAN*) [16] clustering algorithm and a recent incremental extension denoted by
Flexible, Incremental, Scalable, Hierarchical Density-Based Clustering for Arbitrary Data and
Distance (FISHDBC) [17].

2. On the basis of this algorithm, we propose a framework for investigating drifts
in effectiveness of IoT-based systems. This framework takes place in two steps as
depicted in Figure 1:

(a) The learning algorithm is fed with observations corresponding to the effects
expected to be produced by an IoT-based system, leading to the learning of a
model of the legitimate behavior. This model can further be used to quantitatively
assess the effectiveness of the system at run-time as done in [5].

(b) This model is incremented with observations of the effects produced by the
system in operation within its environment, leading to the learning of a model
of the observed behavior. Then, on the basis of these models, an algorithm is
proposed and used to build a directed dissimilarity graph that highlights differences
between both models, thereby helping designers direct their research and identify
the possible causes of drifts in effectiveness.
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Figure 1. Steps to implement the proposed approach.

2. Related Works

The problems addressed in this paper have connections with the fields of model-based
fault diagnosis as well as fault detection and identification and system health monitoring, just to
name a few.

In [18], authors apply IOHMM to failure diagnosis, prognosis and health monitoring
of a diesel generator. The model is used to classify observations so as to determine the
degradation state of the system. The model contains three states, a first one characterizing
the legitimate behavior, a second one characterizing the presence of a degradation and a
third one characterizing a severe degradation. This approach is commonly used in the
literature [19,20] where Markovian models formalize legitimate and anomalous behaviors,
often grouped into abstract states whose semantics result from an analysis carried out
upfront. Faults identification and detection is then similar to a classification problem (i.e.,
estimation of the current state, be it legitimate or anomalous).

One of the advantages of these approaches is that HMMs (and IOHMMs) are ex-
plainable models [14]. However, while these approaches are relevant when the state
space of the considered systems is limited, they are not (at best hardly) applicable to
complex systems whose set of anomalous (and legitimate) states cannot be completely
known upfront [21].

In order to detect unknown emerging behaviors, whether legitimate or anomalous,
some authors envisage models with variable state spaces on the basis of unsupervised
online learning schemes. For instance, in [22], authors developed an incremental online
model learning approach that extends the BIRCH clustering algorithm [23]. While the model
grows continuously as new data arrive, it has also the capability to forget obsolete obser-
vations. In [24], authors investigated the Typicality and Eccentricity Data Analytics (TEDA)
clustering approach [25], based on density estimates. In addition to these approaches, some
authors use adaptive HMMs to assess the health condition of mechanical systems. In [26],
a method in the Statistical Process Control (SPC) is combined with an adaptive HMM for
unknown wear states detection and diagnosis of a turning process. The structure of the
model is changed to represent degradation processes in the presence of unknown faults.
In [27], an adaptive HMM is used for online learning of dynamic changes in the health
of machines. New health states are described online by adding new hidden states in the
HMM. Health degradations are quantified online by a Health Index (HI) that measures
the similarity between two density distributions that respectively describe the historic and
current health states.

While the aforementioned approaches allow to increment models with unforeseen
legitimate or anomalous behaviors, they do not provide guidance to designers to help
them investigate possible causes of the anomalous behaviors. For instance, in [22],
anomalous behaviors trigger alarms, incremental learning being justified for reducing
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the false alarm rate. In [24], designers are provided with a quantitative evaluation, not in-
formative on the symptoms and the causes of the anomalous behaviors.

Interesting approaches have been implemented as part of the QoE. For instance, in [28],
the authors use the Pseudo Subjective Quality Assessment (PSQA) approach to automatically
assess the QoE in the field of video streaming. The PSQA (also known as Quantitative
Quality Assessment, QQA) approach consists of learning, by performing a set of subjective
tests, how humans react to quality. The learning tool used is a specific class of neural
network (Random Neural Network, RNN). The QoE assessment is then based on an
estimation function Q defined during the learning phase and specific features in video
streams (e.g., the frame loss rate or the effective bandwidth of the connection). In [29],
a systematic online health assessment approach is proposed on the basis of a Growing
Hierarchical Self-Organizing Map (GHSOM) algorithm, a variant of Self-Organizing Map
(SOM), a type of Artificial Neural Network (ANN), with adaptive self-learning techniques.
The method enables the identification of novel working condition states, such as new
rotating speed or processing recipe, and the recognition of new degradation extent in the
arriving monitoring data, and includes them into the prior learning models.

RNNs can model a wide range of dynamical systems [30]. However, they have a
large number of parameters making them hardly interpretable and explainable [31] and
impractical for providing guidance to designers to help them investigate drifts. In [29],
although SOM produce low-dimensional, discretized representation of the observation
space, authors do not explicitly describe in what form engineers and operators are kept
informed of any significant change in the model.

Specific to IoT, in [32], a systematic literature review has been conducted on the devel-
oped statistical and machine learning methods for anomaly detection, analysis and predic-
tion in smart environments, transportation networks, health care systems, smart objects
and industrial systems. In this study, a gap was found in the visualization of anomalies
for the analysis. The authors recognize that new methods and approaches are needed
in order to analyze anomalies. The approach proposed in this document aims at filling
this gap. It is based on the IOHMM modeling framework, which makes it possible to
define explainable behavioral models. Like some of the aforementioned approaches, we en-
visage models with variable state spaces on the basis of unsupervised online learning
schemes for learning the behavior of a system from observations. However, unlike these
approaches, we propose an algorithm that, beyond metrics, makes clear the differences
between the model of the legitimate behavior and the one learned from observations,
providing guidance to designers to help them investigate anomalous behaviors.

3. Background on Input-Output Hidden Markov Model

In this paper, we consider IoT-based systems whose model of the legitimate behavior
can be described with the IOHMM modeling framework [10]. IOHMMs model a pair of
stochastic input-output processes (U ,Y) as a result of an underlying stochastic Markovian
process X that cannot be observed (it is said hidden). From a generative point of view,
a sequence of input-output continuous observations (~u(k),~y(k))K

k=1, K ∈ N? (N? is the set
of positive natural numbers greater than 0), ~u(k) ∈ Rn (Rn is an n-dimensional vector of
real numbers), ~y(k) ∈ Rm, is the outcome of a path along the states of X ; ~y(k) and ~u(k)
are instances of the random variables (U(k),Y(k)) whose distributions are respectively
governed by density functions determined by the states and the state transitions along
the path. Formally, a continuous density discrete state space (discrete time) Input-Output
Hidden Markov Model (IOHMM), whose graphical representation is depicted in Figure 2,
is defined by the tuple < Q, ~π, A,~B > where:

• Q = {x1, x2, . . . , xN} is the finite set of hidden states; x(k) denotes the hidden state at
time k,

• ~π = (π1, π2, . . . , πN)
T is the initial state distribution vector. πi denotes the likelihood

of the state i to be the first state of a state sequence. In this paper, we assume that the
elements πi of ~π are equally probable, i.e., equal to 1

N ,
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• A is the N × N state transition matrix, where each element aij of the matrix is a n-
dimensional contextual input distribution (1 ≤ i, j ≤ N). Thus,
aij(~u) = p

(
x(k+1) = j|x(k) = i,~u(k) = ~u

)
denotes the likelihood of transitioning to

state x(k+1) = j at time k + 1, given the current state x(k) = i and the contextual input
vector ~u(k) = ~u ∈ Rn at time k,

• ~B = (b1, b2, . . . , bN)
T is the state emission vector, where each element bi (1 ≤ i ≤ N)

is a m-dimensional output distribution. bi(~y) = p(~y(k) = ~y|x(k) = i) denotes the
likelihood of observing the output vector ~y(k) = ~y ∈ Rm at time k while being in the
state x(k) = i. The output observation ~y(k) at time k only depends on the state x(k) at
time k.

~u(k−1) ~u(k) ~u(k+1)

x(k−1) x(k) x(k+1)

~y(k−1) ~y(k) ~y(k+1)

p(x(k)|x(k−1),~u(k−1)) p(x(k+1)|x(k),~u(k))

p(~y(k−1)|x(k−1)) p(~y(k)|x(k)) p(~y(k+1)|x(k+1))

Figure 2. Bayesian network expressing conditional dependencies of an Input-Output Hidden
Markov Model (IOHMM). The model is said ”hidden” because the states of the processes they model
are not directly observable but inferred from contextual input ~u output ~y.

The structure Φ of an IOHMM is defined by the number of states N and the elements
aij of the state transition matrix A such that there exists an input ~u that leads a transition
from the state i to the state j (i.e., ∃ ~u s.t. aij(~u) > 0, ∀ 1 ≤ i, j < N). The parameters λ of an
IOHMM correspond to the input and output distribution parameters.

This model serves as a basis for efficient solutions to several inference problems [33]:

1. The problem of inferring the likelihood of an observation sequence (i.e., p
(
(~u(k),~y(k))K

k=1

)
),

as well as inferring the distribution over hidden states at the end of the observation
sequence (i.e., p

(
x(K)|(~u(1),~y(1)), . . . , (~u(K),~y(K))

)
) can be solved by the Forward al-

gorithm (filtering).
2. The problem of inferring the distribution over hidden states anywhere in the obser-

vation sequence (i.e., p
(

x(k)|(~u(1),~y(1)), . . . , (~u(K),~y(K))
)

, k < K) can be solved by the
Forward-Backward algorithm (smoothing).

3. The problem of inferring the most likely sequence of hidden states that led to the
generation of the observation sequence can be solved by the Viterbi algorithm.

This modeling framework brings numerous advantages [13]; (1) it is an explainable
graphical model, there is a 1:1 correspondence between observations and states; (2) it
formalizes conditional dependencies between the effects (outputs) and their context (in-
puts), making them suitable to model dynamical systems; (3) it incorporates tolerances on
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expectations related to uncertainties inherent in the natural variability of physical processes
and disturbances possibly resulting from adaptation mechanisms [34] (randomness [35])
and/or uncertainties related to prior knowledge on the system and/or users’ expectations
(epistemic uncertainties [5,36]).

4. IOHMM Structure and Parameters Learning

The approach proposed in this paper considers the modeling of the legitimate behavior
of an IoT-based system as an IOHMM and compares this model with that learned from field
observations. The objective was to highlight the differences in behavior that may appear
during the operation of the system. To achieve this, the proposed approach thus requires
an IOHMM model to be learned from observations prior considering comparing both
models and highlighting their differences, i.e., it requires to learn the IOHMM structure
and parameters from field observations. While structure and parameters learning problem
has been intensively studied in the case of HMMs, no solution has been proposed to date
within the IOHMM framework apart from learning the parameters [11,37,38]. The algo-
rithm proposed in the sequel is then a novel algorithm. As part of the solutions proposed
within the HMM framework, local search algorithms [39] start from an initial guess of the
structure Φ and iterate, by adding, removing states and transitions and by reversing state
transitions, until reaching the structure that maximizes the Bayes Information Criterion
(BIC). State merging algorithms [40] (conceptually, very similar to agglomerative clustering al-
gorithms) first build a maximum likelihood structure Φ where a different state is associated
to each of the observations and where transitions relative to consecutive states (i.e., consecu-
tive observations) are assigned a probability of 1 while the others are assigned a probability
of 0. Then, at each iteration, the structure Φ is modified by merging the states on the basis
of the maximization of the posterior Bayesian probability criterion. Other approaches have
been studied in the literature. For instance, in [41], authors propose an algorithm using
both state splitting and state merging operations. In [42], authors incrementally construct
the structure Φ using an Instantaneous Topological Map (ITM) algorithm [43]. Here, the
hidden state space is continuous and supposed to be discretizable into a finite number of
observable regions, every region being represented by a discrete state in the HMM.

Structure learning, whether through local search or state merging, consists in empir-
ically estimating the best state space segmentation from data. In all the aforementioned
approaches, parameters λ are learned by using an Incremental Expectation-Maximization
(EM) clustering algorithm (e.g., Baum-Welch [44]). Underlying this algorithm is the as-
sumption that observations can be modeled by Gaussian mixture models (GMMs) [45] where
parameters λ are described by the mean and the covariance matrix. In the case of multi-
modal likelihood functions, however, there is no guarantee that the algorithm will avoid
becoming trapped at a local maximum, resulting in an inferior clustering solution [46].

In the sequel, we propose a novel unsupervised generic algorithm for learning
IOHMM structure Φ and parameters λ. It is generic in the sense that it can accommodate
any continuous space clustering algorithm and is not limited to GMMs.

4.1. A Generic Unsupervised Clustering-Based IOHMM Learning Algorithm

What characterizes discrete state space IOHMMs and derivatives is that they model
stochastic processes whose states are hidden, i.e., they can only be inferred from continuous
observation sequences. Learning the structure Φ and parameters λ (i.e., identifying the
model) is first and foremost about segmenting the observation space into a finite number
of relevant regions such that each region represents a discrete state, i.e., it is assumed
that observations are stochastically correlated with the system conditions, thereby taking
advantage of understanding its structure [47]. A region, in this context, refers to "a state of
nature that governs the observation generation process. It can be viewed as a source of observations
whose distribution is governed by a density function specific to the region" [48].

Observation space segmentation into regions can be achieved using unsupervised
clustering algorithms. “These algorithms try to group observations so that the regions thereby
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obtained reflect the different generation processes they are governed by” [48]. On this basis,
we consider a two steps generic algorithm for learning the structure Φ and parameters λ of
first order IOHMMs from continuous observation sequences (~u(k),~y(k))K

k=1. The proposed
algorithm is described hereafter (Algorithm 1).

Algorithm 1: Learning of IOHMM structure Φ and parameters λ.
Input : Instances fi and fo of the clustering algorithm
Input : An observation sequence (~u(p),~y(p))

P
p=1

Output : The IOHMM tupleM =< Q, A,~B >
Output : The sequence SI of input clusters
Output : The sequence SO of output clusters
Output : The set CI of input clusters
Output : The set CO of output clusters

1 K ← fi.GetNbElements()+ P // In case of incremental learning

// 1st step : get Q and ~B from output space clustering
2 co(i) ← {~y ∈ (~y(k))

K
k=1|∃i ∈ [0, K− 1], fo.GetCluster(~y) = i}

3 CO← {co(i)|i ∈ [0, K− 1]} // Set of output clusters

4 Q← {x ∈ N | 0 ≤ x ≤ |CO| − 1} // Hidden state space Q

5 ~B : (bi)0≤i≤|Q|−1

6 for i in range(|Q|) do

7 ~Bi ←BestFit(COi) // Set elements of the emission vector ~B

// 2nd step : get A from input space clustering
8 ci(i) ← {~u ∈ (~u(k))

K
k=1|∃i ∈ [0, K− 1], fi.GetCluster(~u) = i}

9 CI← {ci(i)|i ∈ [0, K− 1]} // set of input clusters

10 SI←
(

fi(~u(k))(k)

)K

k=1
// sequence of input clusters

11 SO=
(

fo(~y(k))(k)
)K

k=1
// sequence of output clusters

12 A : (ai,j,k)0≤i,j≤|Q|−1,0≤k≤|CI|−1 // Where elements are set to null

13 for i← 2 to K do

14 λ←BestFit(CISI(i−1)
)

15 if aSO(i−1) ,SO(i) ,CISI(i−1)
is null then

16 aSO(i−1) ,SO(i) ,CISI(i−1)
← λ // Set elements of the transition matrix A

17 Return(Q,A,~B,SI,CI,SO,CO)

The first step consists of segmenting the output observation space (~y(k))K
k=1 into

regions (corresponding discrete states in the model) using a clustering algorithm defined
by the function fo : Rm 7→ N?. Each region is associated with all output observations
belonging to it (co(i), line 2). The set of output regions CO (line 3) provides us with Q
(line 4) and the elements bi of the vector ~B (i.e., the output distribution parameters) are
computed by fitting the set co(i) of output observations associated with the region i into
the most appropriate (multivariate) distribution (line 7) (With the number of states given
by Q, one can alternatively compute the parameters λ using an Expectation-Maximization
algorithm, though it assumes observations whose distributions are Gaussian).

The second step consists of segmenting the input observation space (~u(k))
K
k=1 into

regions using a clustering algorithm defined by the function fi : Rn 7→ N?. Here again,
each input observation is associated with the region it belongs to (ci(i), line 8). The set
of input regions is defined by CI (line 9). Then, input and output observation spaces
are classified according to the identified regions, i.e., each observation in the sequences
(~u(k))

K
k=1 and (~y(k))K

k=1 is associated to its corresponding region. One obtains the sequence
of input regions (SI line 10) and the sequence of states (SO line 11) from which is built
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the state transition matrix A. The sequence of states SO determines elements aij to be
populated (lines 15 and 16) with input distribution parameters (line 14). Here, each state
transition is allowed to handle multiple distributions. Although not allowed in the standard
(probabilistic) IOHMM model, this will be useful in investigating the differences between
legitimate and observed behaviors (see Section 5).

Let us consider the example depicted in the table below:

k 1 2 3 4 5 6 7 8 9 . . .

SI 1 1 1 2 2 2 2 0 0 . . .
SO . . . 0 0 0 1 1 1 1 2 2

Output observations first belong to the state 0 (as defined for k = 2 in SO), then
there are state transitions from the state 0 to the state 0 (k : 2 → 3 and k : 3 → 4), then
a state transition from the state 0 to the state 1 (k : 4 → 5), then from the state 1 to the
state 1 (k : 5 → 6, k : 6 → 7 and k : 7 → 8), etc. Following this sequence of states,
elements a00, a01, a11, a12 and a22 have to be populated with input distribution parameters.
Recall from the IOHMM model that the state at time k depends on the input at time k− 1.
Thus, ak−1,k , CISI(k−1)

, i.e., ak−1,k contains the distribution parameters obtained by fitting
the set of input observations associated with the input region SI(k−1) at time k − 1 into
most appropriate (multivariate) distribution. Thus, considering k : 2 → 3, a00 contains
distribution parameters associated with input observations of the input region 1 (as defined
in SI at time k = 2), a01 and a11 contain those associated with input observations of the
input region 2, etc.

As such, the proposed algorithm accommodates any unsupervised (possibly incre-
mental) clustering algorithm where incremental has to be understood here as the ability to
process continuous observation sequences as they arrive [49]. In this paper, we assume the
following hypotheses:

1. The number of states |Q| is not known a priori.
2. The processes underlying the observations are unknown, so neither their distribution,

their density, nor their law of generation (shape) are known.
3. Observations could be noisy and, considering incremental learning, incomplete.

So as to address these hypotheses, we consider the HDBSCAN* hierarchical density-
based clustering algorithm [16].

4.2. Implementation with HDBSCAN*

The HDBSCAN? algorithm [16], and its incremental extension (FISHDBC [17]), is a
clustering algorithm for exploratory data analysis that extends the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm [50]. It can operate correctly up
to 100 dimensional data (https://hdbscan.readthedocs.io/en/latest/faq.html).

In the context of this paper, the main advantages of the algorithm lie in the fact that:

1. It does not require to specify upfront the number of clusters in the data.
2. It can find non-linearly separable clusters of varying shapes and densities.
3. The ordering of the data does not matter.
4. It supports outlier (or noise) assignments as being observations isolated in

sparse regions.

Among the aforementioned advantages, the notion of outliers is particularly relevant
when considering model learning. Let us consider two types of outliers:

1. Intrinsic outliers depend on how conservative one wants to be in learning the model, gov-
erned by the HDBSCAN* min_samples parameter. The larger the value of min_samples,
the more conservative the clustering, i.e., clusters will be restricted to progressively
more dense regions with, as a consequence, a higher number of outliers
(https://hdbscan.readthedocs.io/en/latest/parameter_selection.html) (Figure 3).
The notion of conservatism can be related to that of distinguishability, i.e., the struc-

https://hdbscan.readthedocs.io/en/latest/faq.html
https://hdbscan.readthedocs.io/en/latest/parameter_selection.html
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ture of an IOHMM is distinguishable when all the distributions (elements of the
transition matrix A and the emission vector ~B) are pairwise distinct, supporting a
bijection between states and observations [15]. On the contrary, the structure of an
IOHMM is completely hidden when all observation distributions are equal thereby,
it is clearly impossible to distinguish between states and inference of the structure is
impossible. In between these two extrema, increasing the min_samples parameter thus
helps making observation distributions pairwise distinct (see Figure 3),

2. Extrinsic outliers depend on the observations (noise) and are particularly interesting
in the context of incremental learning. Indeed, while observation sequences arrive
progressively, some might reinforce the density of an existing region while some others
might form a sparse region not yet dense enough to be considered as a cluster (i.e.,
there is a lack of knowledge leading these observations to be temporarily considered as
outliers and discounted from the clustering process).

Figure 3. Example of clustering results for different values of min_samples (total obs = 2624). The larger the value of
min_samples, the more conservative the clustering, i.e., clusters will be restricted to progressively more dense regions
(outliers are depicted in red).

Whether intrinsic or extrinsic, outliers have to be discounted from the clustering
process. Assuming that they are associated to a dummy cluster c(i), i < 0, Algorithm 1 is
modified as described in Algorithm 2.

Algorithm 2: Outliers removal (extension of Algorithm 1).

1 . . .
12 A : (ai,j,k)0≤i,j≤|Q|−1,0≤k≤|CI|−1
13 for i← 2 to K do
14 if (i− 1) ≥ 0 and (i) ≥ 0 and SI(i−1) ≥ 0 then
15 λ←BestFit(CISI(i−1)

)

16 if a(i−1),(i),CISI(i−1)
is null then

17 a(i−1),(i),CISI(i−1)
← λ

4.3. Experimental Evaluation

The experimentation is carried out on a real world dataset gathered in a smart-
home equipped with 54 IoT devices offering up to 228 sensors and actuators (Figure 4).
The associated infrastructure is depicted in the Figure 5. Several IoT protocols are used
to communicate with all devices (ZWave, Wifi, etc.). Computational resources (Arduino
Uno/Nano, Raspberry Pi) are made available at the edge of the infrastructure where soft-
ware components are deployed through docker containers. These software components
define the control logic for actuators (e.g., roller shutters) or extract features from sensor
observations (e.g., the sound characteristics of the microphone signal). Observations are
recorded into a database (InfluxDB) on a regular basis. For instance, ZWave devices provide
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one observation per minute, Netatmo devices provide observations each 10 min, the status
of the Neato smart vacuum cleaner is updated each minute, etc.

Figure 4. Experimentation setup.

Figure 5. IoT infrastructure.
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On the basis of this setup, the objective is to learn a model of the legitimate behavior of
a set of devices in different contexts on the basis of sound features. The devices considered
for this experiment are the TV and the Amazon Echo smart speaker.

From a modeling perspective, output observations (legitimate effects) are character-
ized by Mel-Frequency Cepstral Coeffs (MFCCs) and Zero Crossing Rate (ZCR) sound
features, extracted from a microphone signal and processed at the edge of the IoT infras-
tructure by a Raspberry Pi. Input observations (contexts) are characterized by the operating
status of the TV and the Amazon Echo smart speaker. MFCC and ZCR features have been
selected for their capacity at producing a good segmentation of the observation space.

While both devices can produce sound into the environment, users expect that they
do not produce it simultaneously. The dataset used for the experiment reproduces this
legitimate behavior as depicted in Figure 6.

Figure 6. Real dataset representing the sound effects legitimately produced by two devices (TV and Amazon Echo smart
speaker) in different contexts. Observations are colored according to the clusters identified by the HDBSCAN* algorithm
with min_samples = 40.

Observations are colored according to the contexts identified by the HDBSCAN*
algorithm with min_samples = 40. Input observations (i.e., TV_Status and Echo_Status) are
segmented into three clusters. Observations are colored in cyan when both devices are
switched OFF. Observations are colored in yellow when the TV is ON and the Amazon
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Echo smart speaker is OFF. Finally, observations are colored in magenta when the TV
is OFF and the Amazon Echo smart speaker is OFF. Output observations (i.e., ZCR and
MFCC sound features) are also segmented into three clusters. The blue one corresponds to
the silence; the orange one characterizes the sound emitted by the TV and the green one
characterizes the sound emitted by the Amazon Echo smart player (here, playing music).
As expected, none of the devices operate simultaneously.

The dataset is applied to the Algorithm 1 implemented with HDBSCAN* with
min_samples parameter set to 40. The IOHMM model of the legitimate behavior learned
from the dataset is depicted in Figure 7 where distributions are fitted into Gaussian Mixture
Models (GMMs), characterized by the mean and the standard deviation of each feature
(i.e., <feature>->[<mean>,<stdev>]).

TV->[’0.000’,’0.004’]
Echo->[’1.000’,’0.004’]

TV->[’-0.000’,’0.004’]
Echo->[’0.000’,’0.004’]

TV->[’1.000’,’0.004’]
Echo->[’0.000’,’0.004’]

TV->[’0.000’,’0.004’]
Echo->[’1.000’,’0.004’]

TV->[’1.000’,’0.004’]
Echo->[’0.000’,’0.004’]

TV->[’0.000’,’0.004’]
Echo->[’1.000’,’0.004’]

TV->[’1.000’,’0.004’]
Echo->[’0.000’,’0.004’]

TV->[’0.000’,’0.004’]
Echo->[’1.000’,’0.004’]

TV->[’1.000’,’0.004’]
Echo->[’0.000’,’0.004’]

TV->[’0.000’,’0.004’]
Echo->[’1.000’,’0.004’]

State#1
ZCR->[’0.102’,’0.003’]

MFCC->[’407.014’,’5.420’]

State#0
ZCR->[’0.070’,’0.011’]

MFCC->[’589.586’,’17.467’]

State#2
ZCR->[’0.102’,’0.016’]

MFCC->[’474.472’,’11.626’]

Figure 7. IOHMM model of the legitimate behavior learned from the input/output observations depicted in Figure 6
applied to Algorithm 1 (min_samples = 40).

The completeness of the IOHMM model learned here depends, however, on the input-
output observations the algorithm has been fed with during the learning process. There
is no certainty that the model is complete, a legitimate behavior may occur in the long
run that was not part of the initial set of observations. For instance, what if a new device
producing sound is added into the environment? A new state should appear, whether
legitimate or not, characterizing the sound emitted by this new device. Generally speaking,
the behavior observed in the field in the long run may no longer correspond to that which
is supposed to be legitimate, defined at a certain point in time. Whether this is due to the
fact that the model of the legitimate behavior is incomplete (e.g., not enough observations),
that its parameter values do not fit the concrete legitimate behavior anymore (e.g., due to
the drift in the system parameters) or that new legitimate or illegitimate states and/or state
transitions have appeared, it is necessary to provide designers with tools that allow them
to investigate and understand changes that have potentially occurred.

5. Investigating Drifts in Effectiveness

In this paper, the study of drifts in effectiveness is carried out by identifying the
structural and parametric dissimilarities between the model of the legitimate behavior of an
IoT-based system and a model learned from field observations. In the literature, dissimilar-
ities between two HMMs are mainly characterized by a measure. In [51], authors present a
method that computes a variant of the Hellinger distance between two HMMs representing
legitimate and observed behaviors. In [52], authors use the Wasserstein distance. While
these quantitative assessments might be useful as performance indicators, they do not
explain, however, the structural and parametric differences between the models. More-
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over, the aforementioned measures provide a global distance between the distributions of
probability thereby, are limited to only provide dissimilarities on the parameters.

In the sequel, we propose an algorithm that builds a dissimilarity graph between
legitimate and observed behaviors, making clear both structural and parametric differences
and providing guidance to designers to help them investigate possible causes of drift in
effectiveness, reducing the time needed to resolve them.

5.1. An Algorithm for Identifying IOHMMs Structural and Parametric Dissimilarities

The approach proposed for identifying IOHMMs structural and parametric dissim-
ilarities is based on the learning Algorithm 1, implemented with the FISHDBC algo-
rithm [17], a recent incremental extension of the HDBSCAN* clustering algorithm. The
main idea (Algorithm A2) is first to learn, using the learning Algorithm 1 implemented
with FISHDBC, a model of the legitimate behavior of the IoT-based system from input-
output observations, either generated from simulations or gathered from the field. Then, at
some point in time, field observations, gathered on the long run, are incrementally fed into
the algorithm. The following scenarios, denoting dissimilarities between legitimate and
observed behaviors, may occur:

1. (Structure related) Output observations gathered from the field lead new clusters
to occur. These new clusters define new states (either legitimate or anomalous) not
anticipated/foreseen in the model of the legitimate behavior.

2. (Structure related) Input observations gathered from the field lead new state transi-
tions to occur (either legitimate or anomalous) not anticipated/foreseen in the model
of the legitimate behavior.

3. (Parameters related) Input and output observations gathered from the field lead
distribution parameters (e.g., mean and standard deviation) to be slightly modified,
denoting a drift in the initial parameter values.

4. (Structure and Parameters related) Input-output observations gathered from the field
do not cover the states and state transitions defined in the model of the legitimate
behavior. This situation implies that either not enough observations have been
gathered from the field (e.g., rare events) or that the model is somehow wrong, i.e., it
expects a different behavior than the one concretely implemented.

IOHMMs being graphical models one can highlight the aforementioned dissimilari-
ties, thereby helping designers to identify changes that may have occurred. To this end,
the algorithm described in Appendix A builds a dissimilarity graph as follows:

1. (lines 3 and 4) First, using the Algorithm 1 implemented with FISHDBC cluster-
ing algorithm, a model of the legitimate behavior is learned from observations
(~u(v),~y(v))V

v=1. Then, this model is incremented with observations (~u(w),~y(w))
W
w=1

gathered from the field in the long run.
2. (line 5) On the basis of the sets of clusters CI and CO and the sequences of clusters SI

and SO obtained from the previous step, one can compute, using the Algorithm A1,
the vector ~Bw and the matrix Aw of the frequency of occurrence of each state and state
transition, respectively.

3. (lines 6 to 16) The first V elements of SO correspond to the expected states computed
from (~y(v))V

v=1. The remaining V + W + 1 elements correspond to the states obtained
from output observations (~y(w))

W
w=1 gathered from the field. The idea is to parse states

associated to the latter and verify if they are present or not in the former. A node
is created in the dissimilarity graph for each state whose color depends on whether
the state is present (blue, meaning the state is expected) or not (red, the state is not
expected). The reverse process is done (lines 13 to 16) to detect states that are present
in the former but not present in the latter (orange, an expected state is not covered).
The width of the states depends on their frequency of occurrence given by ~Bw.
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4. (lines 17 to 21) This part of the algorithm is devoted to compute the transition matrix
A′ corresponding to the first V elements of SI and SO corresponding to the legitimate
behavior.

5. (lines 22 to 30) Transition matrices A and A′ are compared for dissimilarities. Edges
are added into the dissimilarity graph for each state transition whose color depends
on whether a legitimate (blue) or illegitimate (red) state transition occurred. Legit-
imate state transitions not covered are associated to edges colored in orange in the
dissimilarity graph. The width of the state transitions depends on their frequency of
occurrence given by Aw.

5.2. Experimental Evaluation

The dataset used in the Section 4.3, corresponding to the legitimate behavior of an
IoT-based system is complemented with longer run observations gathered from the same
physical environment (Figure 8).

Figure 8. Observations from the field colored according to the clusters identified by the FISHDBC algorithm with min_samples
= 40. Observations colored in magenta denote behaviors not anticipated/foreseen in the model of the legitimate behavior
depicted in Figure 7, learned on the basis of the dataset depicted in Figure 6.
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This dataset highlights two unforeseen behaviors (denoted in magenta in
Figure 8) that will have to be highlighted by the dissimilarity graph algorithm described
in the previous section. A first behavior concerns a configuration on the TV and the
Amazon Echo smart speaker, both operating simultaneously (Figure 8, input features
from observation#80 to #230). This behavior is illegitimate, both devices must not operate
simultaneously. The second behavior is related to a new device that has appeared in
the environment. This device is an autonomous smart vacuum cleaner the inhabitants
have recently acquired (Figure 8, output features from observation#280 to #430, then from
observation#520 to #610 and, finally, from observation#800 to #1000). This behavior is
legitimate, the model of the legitimate behavior has to be updated according to this
new device.

The dataset representing the legitimate behavior (Figure 6) and the dataset repre-
senting the behavior observed from the field (Figure 8) are applied to the Algorithm A2.
The resulting dissimilarity graph is depicted in Figure 9.
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TV->[’-0.000’,’0.004’]
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Echo->[’0.000’,’0.004’]
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Figure 9. Dissimilarity graph between the legitimate behavior whose model is depicted in Figure 7 and the behavior
observed from field observations, depicted in Figure 8. States and state transitions colored in red denote differences between
both models (min_samples = 40).

Observations from the field whose behavior corresponds to the legitimate behavior
lead blue states and state transitions to appear, while those whose behavior is not legitimate
or legitimate but unforeseen in the model, lead red states and state transitions to appear.
For instance, the state 0 in Figure 9 corresponds to the smart vacuum cleaner emitting noise
while being in operation. This state is not part of the model of the legitimate behavior, i.e.,
ZCR/MFCC observations characterizing this state do not correspond to any state defined
in the model of the legitimate behavior. Thus, according to the model of the legitimate
behavior, this device is not supposed to exist. Thus, a drift in effectiveness occurs as soon as
the smart vacuum cleaner enters the environment. In this case, the model of the legitimate
behavior must be updated with this legitimate state as well as with the operating status
of the vacuum cleaner as a condition for entering/exiting this new state. As such, the
dissimilarity graph provides the symptoms of drifts in effectiveness, not their root cause.
From the designers’ point of view, investigations must be carried out, leading to correlate,
in this case, the ZCR/MFCC observation values with the smart vacuum cleaner.

In addition to this new state, additional state transitions occur, denoting unforeseen
legitimate and illegitimate behaviors. For instance, state transitions occur where both the
TV and the Amazon Echo smart speaker operate simultaneously (denoted in magenta in
Figure 8, TV_Status and Echo_Status are set to one). This behavior is not legitimate (users
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expect that these devices do not produce sound simultaneously) and, from a designer
perspective, the root cause analysis is straightforward. It should be noted that such a
configuration does not lead to the emergence of a new state. Actually, from the selected
sound features, the configuration where both devices operate simultaneously leads to
oscillate between state 1, state 2 and state 3 characterizing the TV in operation, the Amazon
Echo smart speaker in operation and the silence, respectively. In this context, the IOHMM
modeling framework leveraged in this paper, by allowing to specify contextual inputs,
adds valuable information that help designers to analyze drifts in effectiveness.

Additional state transitions occur where either the TV or the Amazon Echo smart
speaker are in operation. These configurations are legitimate but were not part of the data
used to learn the model of the legitimate behavior.

The proposed algorithm enables statistical analysis on states and state transitions, i.e.,
the width of the states and the state transitions depends on their frequency of occurrence.
For instance, the state 3 (corresponding to the silence) in Figure 9, occurs more frequently
than others. Providing designers with this information may add valuable insights on the
behavior of the system beyond dissimilarities between states and state transitions.

6. Conclusions and Perspectives

IoT-based systems whose purpose is achieved through interactions with the physi-
cal environment are complex and difficult to model. State-of-the-art formal verification
techniques carried out at design-time are often ineffective even though the trustworthi-
ness of these systems remains a first class concern. One way to address this problem is
to quantitatively evaluate their effectiveness at run-time on the basis of a model of their
legitimate behavior and field observations. However, while this quantitative evaluation can
be leveraged as part of a monitoring process, thereby triggering actions in the field and/or
conceptual investigations on the system in response to drifts in effectiveness, it does not
provide guidance to designers to help them investigate their possible causes, increasing
the time needed to resolve them. To address this problem, a novel unsupervised generic
clustering-based Input-Output Hidden Markov Model (IOHMM) structure and parameters
learning algorithm, implemented with HDBSCAN*/FISHDBC clustering algorithms was
presented. These algorithms were first leveraged to learn the model of the legitimate behav-
ior of an IoT-based system from continuous observations either generated from simulations
or gathered from the field. This model was then complemented with observations from
the field, characterizing the IoT-based system in operation. Then, a second algorithm was
proposed to generate a dissimilarity graph making it clear to designers the structural and
parametric differences between both models, helping them to investigate their possible
causes. In [32], a gap was found in the visualization of anomalies for the analysis of
IoT-based systems. The authors recognize that new methods and approaches are needed.
The approach proposed in this paper contributes to this field.

The approach proposed in this paper is generic; assuming that observations are
stochastically correlated with the IoT-based system conditions, (1) the unsupervised learn-
ing algorithm can accommodate any continuous observation space clustering algorithm,
(2) observations can be fitted into any distribution type beyond Gaussian Mixture Mod-
els (GMM) usually assumed, for instance, in the Expectation-Maximization-based (EM)
algorithms (e.g., Baum-Welch).

Although promising, the approach presented in this paper raises questions that shall be
addressed in future research. For instance, specific to the HDBSCAN* algorithm and deriva-
tives is the question on how to choose the min_samples parameter. A possible approach
would be to handle model learning as an optimization problem where the min_samples pa-
rameter value chosen is the one maximizing a particular criteria (e.g., likelihood, Bayesian
Information Criteria (BIC)). The IOHMM unsupervised learning algorithm presented in
this paper is based on observation space clustering and we also plan to leverage clustering
evaluation indexes (e.g., silhouette [53], Davies-Bouldin [54] or Calinski-Harabasz [55]) as crite-
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ria. Finally, we plan to implement a functionality that would enable the learning algorithm
to forget the obsolete elements of the IOHMM model learned from field observations.
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Appendix A. Dissimilarity Graph Computation Algorithms

Algorithm A1: States and state transitions weights computation.
Input :Sequence of input clusters SI
Input :Set of input clusters CI
Input :Sequence of output clusters SO
Output :State transitions weights matrix Aw

Output :State emissions weight vector ~Bw

1 Aw : (awi,j,k)0≤i,j≤max(SO)−1,0≤k≤|CI|−1

2 ~Bw : (bwi)0≤i≤max(SO)−1// Aw and ~Bw initialized to 0

3 bwSO(1)
← 1

4 for i← 2 to len(SO) do
5 awSO(i−1) ,SO(i) ,CISI(i−1)

+ = 1// state transitions freq.

6 bwSO(i)
+ = 1 // state occurrence freq.

7 for i in range(max(SO)) do // Normalization
8

9 ~Bwi ←
~Bwi

len(SO)
10 for j in range(max(SO)) do
11 for k in range |CI| do
12 awi,j,k =

awi,j,k
len(SO)−1

13 Return(Aw,~Bw)

https://gitlab.com/enact/behavioural_drift_analysis/-/blob/master/demos/demo_smarthome/Dataset_MDPI_Sensors.zip
https://gitlab.com/enact/behavioural_drift_analysis/-/blob/master/demos/demo_smarthome/Dataset_MDPI_Sensors.zip
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Algorithm A2: Dissimilarity graph computation.

Input : Observation sequence (~u(v),~y(v))
V
v=1 corresponding to the legitimate behavior

Input : Observation sequence (~u(w),~y(w))
W
w=1 gathered from the field

Input : An empty graph data structure G
Output : The dissimilarity graph G
// Instances of the clustering engine

1 fi ←FISHDBC(min_samples=n)
2 fo ←FISHDBC(min_samples=n)
// IOHMM corresponding to the legitimate behavior (See Algorithm 1)

3 Q,A, ~B,SI , CI ,SO, CO ←Learn( fi, fo, (~u(v),~y(v))
V
v=1)

// Increment fi and fo with observations from the field
4 Q, A,~B, SI, CI, SO, CO←Learn( fi, fo, (~u(w),~y(w))

W
w=1)

5 Aw,~Bw ← GetWeights(SI,CI,SO) // (See Algorithm A1)

// COMPUTE DISSIMILARITY GRAPH NODES (Obs. from the field start at index
V + 1)

6 for i← V + 1 to len(SO) do
7 if SO(i) ≥ 0 then
8 if not G.NodeExists(SO(i)) then
9 if SO(i) in range(max((SO(t))

V
t=1)) then

// This state is legitimate
10 G.AddNode(SO(i), label=~BSO(i)

, line width = ~BwSO(i)
, color=blue)

11 else
// This state is not legitimate

12 G.AddNode(SO(i), label=~BSO(i)
, line width = ~BwSO(i)

color=red)

13 for i← 1 to V do
14 if SO(i) not in range(max((SO(t))

V+W+1
t=V+1 )) then

15 if not G.NodeExists(SO(i)) then // This legitimate state has not been
covered

16

17 G.AddNode(SO(i), label=~BSO(i)
, line width = ~BwSO(i)

, color=orange)

// COMPUTE DISSIMILARITY GRAPH EDGES
// Build transition matrix A′ for the legitimate behavior (elements init.

to null)
18 A′ : (a′ i,j,k)0≤i,j≤|Q|−1,0≤k≤|CI|−1

19 for i← 2 to V do
20 if SO(i−1) ≥ 0 and SO(i) ≥ 0 and SI(i−1) ≥ 0 then
21 λ← CISI(i−1)

22 a′SO(i−1) ,SO(i) ,CISI(i−1)
← λ

23 for i in range |Q| do
24 for j in range |Q| do
25 for k in range |CI| do
26 if ai,j,k 6=null and a′ i,j,k 6= null then

// This state transition is legitimate
27 G.AddEdge(i, j, label=λ, line width = Awi,j,k, color=blue)
28 else if ai,j,k 6=null then

// This state transition is not legitimate
29 G.AddEdge(i, j, label=λ, line width = Awi,j,k, color=red)
30 else

// This legitimate state transition has not been covered
31 G.AddEdge(i, j, label=λ, line width = Awi,j,k, color=orange)

32 return G
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