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Abstract: Unmanned aerial vehicles (UAVs) have become a very popular way of acquiring video
within contexts such as remote data acquisition or surveillance. Unfortunately, their viewpoint is often
unstable, which tends to impact the automatic processing of their video flux negatively. To counteract
the effects of an inconsistent viewpoint, two video processing strategies are classically adopted,
namely registration and stabilization, which tend to be affected by distinct issues, namely jitter and
drifting. Following our prior work, we suggest that the motion estimators used in both situations
can be modeled to take into account their inherent errors. By acknowledging that drifting and
jittery errors are of a different nature, we propose a combination that is able to limit their influence
and build a hybrid solution for jitter-free video registration. In this work, however, our modeling
was restricted to 2D-rigid transforms, which are rather limited in the case of airborne videos. In the
present paper, we extend and refine the theoretical ground of our previous work. This addition
allows us to show how to practically adapt our previous work to perspective transforms, which our
study shows to be much more accurate for this problem. A lightweight implementation enables
us to automatically register stationary UAV videos in real time. Our evaluation includes traffic
surveillance recordings of up to 2 h and shows the potential of the proposed approach when paired
with background subtraction tasks.

Keywords: registration; stabilization; unmanned aerial vehicle; drone

1. Introduction

Unmanned aerial vehicles (UAVs) have gained popularity within the past few years
as a means of acquiring data in a number of tasks [1,2]. In particular, tethered drones [3–5]
have traded mobility and a short battery lifespan for the ability to sustain several hours
of stationary flight, at heights up to 80 m above ground. The industry advertises them
as temporary video surveillance cameras (https://elistair.com/, https://tethereddrones
ystems.co.uk/, https://www.ntpdrone.com/), to which their video flux is indeed quite
comparable. However, their viewpoint is not constant over the course of a video. Using off-
the-shelf background subtraction (BGS), comparing object trajectories on such flux is, at best,
tedious (Figure 1, left column in particular). Traditionally, registration and stabilization are
two distinct classes of solutions which have been proposed to address this type of issue.
In the case of stationary drone videos, both approaches answer a similar problem with
distinctive advantages and drawbacks, amongst which are jitter and drifting. Jitter refers to
the video being subject to fast, low-magnitude movements. The video is then described as
shaky. Drifting is the tendency to slowly change viewpoint over time, sometimes with high
magnitude. Jitter and drifting may be due to the acquisition itself, even despite the use
of a gimbal; however, they may also be linked to flaws in the post-processing registration
or stabilization techniques. Such flaws tend to appear in lengthy sequences and/or in the
presence of numerous mobile objects. However, both characteristics are not often featured
within available datasets, and few studies have focused on them. This is detrimental to
typical real-world applications, in particular for cases such as traffic monitoring or crowd
surveillance in which stationary UAVs could be very useful [2].
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Figure 1. Images extracted from the one-hour long MFull (left column) and the two-hours long L2
(right column) sequences in our database, described in section 5.1. a: reference frame. b-c: intermediate
frames. d: frames picked near the end of the sequence.

Figure 1. Images extracted from the one hour-long MFull (left column) and the two hours-long L2 (right column) sequences
in our database, described in Section 5.1. (a): reference frame. (b,c): intermediate frames. (d): frames picked near the end of
the sequence.

In [6], we proposed a hybrid method that was reported to handle jitter and drifting well
over sequences of up to 15 min, featuring many mobile objects. We proposed the modeling
of motion estimation methods, assimilated to matrix products, by decomposing them into
two terms: an optimum and an error. Then, we showed how to combine registration and
stabilization into a hybrid solution that is jitter-free and driftless. However, this approach
was only applied to 2D-rigid transforms, which is a rather limited transformation space
for this problem. In this paper, we generalize the theoretical ground of this approach
and show how to expand it to perspective transforms, or 2D homographies, which require
space-specific adjustments. Our study shows that upgrading from 2D-rigid transforms to
perspective transforms alone significantly improves the performance of the application.
By conducting an evaluation on video sequences that last up to two hours, sometimes even
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while using a gimbal, we demonstrate that this hybrid method has a very positive impact
on further processing such as off-the-shelf background subtraction.

2. Prior Work

In our work, video registration must be understood as the action of keeping the
background content of the video stable over the course of a video. Our application purpose
includes traffic surveillance from stationary UAVs, where many objects may enter and
leave the field of view. Therefore, we cannot expect the existence of a dense mapping
between every pixel from one video frame to one another, including foreground pixels,
as in the case of the registration hypothesized in [7].

Our problem is to estimate an image transformation that optimally compensates for
camera motion. When a significant part of the image (i.e., its background) is available
throughout the video sequence, we can estimate this transformation between any current
frame and a reference image. This is the video registration approach. A stabilization
approach does not usually make such an assumption. In this scenario, the camera may
change angle and even content over the course of a sequence, and the goal is to remove
shakiness, as is often the case with hand-held devices. Under such circumstances, the image
content, including the background, is not necessarily consistent over time. The typical
approach can be understood, very roughly, as primarily estimating a trajectory, which is
defined as a combination of short-term inter-frame motions. This trajectory is then filtered
to generate a smooth trajectory. Finally, the image is re-projected to follow the desired,
stable trajectory [8,9].

Other techniques are designed to determine the camera position and orientation,
such as Structure from Motion (SfM) [10] or Simultaneous Localization and Mapping
(SLAM) [11]. Unfortunately, they tend to be confused by the relative lack of parallax from
background objects and the motion of numerous foreground objects.

In the case of a stationary UAV, we may assume that a background is constantly
visible over the course of a sequence. Therefore, this results in a situation in which both
registration and stabilization techniques apply and should ideally provide similar results.

The straightforward application of registration techniques has been reported to gener-
ate a high-frequency noise, referred to as jitter, in previous studies [12–14]. From our un-
derstanding, this is related to the typical implementation of registration methods. Most are
based on a sparse feature points matching process, and then the rejection of outliers through
robust estimators such as RANdom SAmple Consensus (RANSAC). While this is com-
putationally very effective, thresholds in the matching of feature points, or in the inliers
selection process, tend to cause some points to be sporadically selected. This can cause
jitter. This issue may be tackled by estimating the motion on a more global (holistic) scale,
as in [15] or more recently by using deep-learning, regression-based approaches, such as
in [16] or [17]. Holistic approaches tend to be computationally expensive as compared to
feature-point approaches and still do not prevent the occurrence of noise, as theorized in
Section 3.1. Another approach is to add temporal coherence into the solution, which is
closer to stabilization techniques, as in the present work.

Standard stabilization techniques [8,9] have been applied to drone videos. In [18], the
authors were able to simultaneously stitch and stabilize video from a swarm of drones.
Sparse feature points matching, such as the Kanade Lukas Tracker (KLT) [19], is often
used to estimate inter-frame motion with various strategies: one is to track several points
during a video sequence, thus producing a number of tracklets that are assembled to
estimate global motion; another is to directly estimate the frame-to-frame motion given
a transformation space. Specific optical flow models have also been proposed to favor
spatial coherence [20]. Convolutional Neural Networks have been proposed, such as
in [21], where the authors sought to reproduce the behavior of gimbals by using a specifi-
cally designed device to which two cameras were attached, with one of them physically
stabilized by a gimbal to produce the ground-truth. While appealing, this approach has
proved impractical for our problem [6]. In general, approaches which do not hypothe-
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size the existence of constant background should not be expected to stay registered to a
constant background.

Most of the previously cited works about camera motion compensation state that this
problem is made increasingly difficult by lighting and content changes. These phenomena
are almost impossible to avoid with longer video sequences, especially in scenarios such as
traffic or crowd monitoring which feature numerous mobile objects. In our case, the use of
tethered drones, which allows virtually unlimited flight time, has emphasized the need
to address those issues. Based on our observations, stabilization techniques have shown
limitations when registering video sequences longer than several minutes. Despite progress
in designing efficient and robust motion estimators, such as in [22], computationally light
registration techniques can become noisy over time. However, errors in both situations are
very distinctive when compared to a theoretical, noise-free registration.

In [6], we proposed to take advantage of the difference in the behavior of motion
estimators between stabilization and registration contexts to propose a hybrid solution.
We have used the computationally inexpensive KLT approach for both registration and
stabilization parts. This simple scheme allowed for the real-time, online handling of long
sequences featuring multiple objects. However, the presented model applied only to simple,
2D-rigid transforms, the expressiveness of which, according to the present evaluation,
is limited. In this paper, we rework the proposed model and show how to apply this
approach to more relevant homographies. We provide an evaluation which shows the
benefits of our approach for challenging videos in an applied context.

3. Modeling the Problem
3.1. Image Warping

In both cases, stabilizing or registering a video is the action of compensating for
undesired camera motion while preserving the image content variability over time.

This compensation is performed using an image alignment; that is, a warping opera-
tion applied to an image so that it matches the view of another image.

Let H ⊂ R3 be the space of homogeneous image coordinates. Defining a warping
transformation to register from an image to another is relevant under the assumption that
a significant part of both images is shared. Classically, warping methods such as Thin
Plate Splines (TPS) [23], homographies or rigid transforms [24] are bijections when in
non-degraded cases. As such, we define W : H → H as the space of bijective warping
transforms.

Let w1, w2, and w3 be elements of W, the space of warping transformations. It is
possible to compose warping transformations. The composition of w1 first and then w2 is
denoted as

w3 = w2 ◦ w1

We can also define the inverse transform w−1 as

Id = w ◦ w−1

where w ∈ W and Id is the identity (the coordinates in H were unchanged during the
transform). Under those conditions, W is a group.

Suppose that we want to register two images pi and pj of a similar scene but taken
with a different camera pose. We denote w(i, j) ∈W as the warping transform determined
to warp from image pi to image pj. Note that

w(i, j)−1 = w(j, i).
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3.1.1. Video Registration

Let us align every image in the video sequence to a reference frame denoted as p0.
The straightforward application of a motion estimation solution to register a video (Figure 2)
may be expressed as

wr(i) = w̃r(i, 0) (1)

where wr(i) is the applied warping transform at frame i and w̃r is the motion estimator
used for the registration task.

One issue is that performing frame-to-frame alignment in this fashion does not take
into account temporal coherence. Most camera movements are compensated, but an
additional high-frequency noise, referred to as jitter by the authors [12–14], tends to be
introduced by the solution.

Figure 2. Typical registration procedure. “Inv” corresponds to an inversion in the space of warp-
ing transforms.

3.1.2. Video Stabilization

Jitter in video is avoided by the use of stabilization techniques.
Stabilizing a video is typically a problem of smoothing the observed camera move-

ments over the course of a video. Although not always explicitly described this way in
the literature, we can model it by constructing a short-term trajectory; by a short-term
trajectory, we mean a series of transforms that is representative of recent motion relative to
the background in the video. We define a trajectory as a series of warping transforms:{

tw̃s(0) = Id
tw̃s(i) = w̃s(i− 1, i) ◦ δ(i) ◦ tw̃s(i− 1) with i > 0

(2)

where tw̃s(i) ∈ W the trajectory position at time i, w̃s the motion estimator used for the
stabilization task, and δ(i) ∈W a decay term, when it is needed. It should be close or equal
to Id further details about this term are provided in Section 5.2.

We define T n
w̃s

= {tw̃s(i); 0 ≤ i ≤ n} ∈ TW as a trajectory of length n + 1 within TW.
TW is the set of trajectories in W.

A stabilization solution aims at removing the high-frequency motion, considered as noise,
from the trajectory. It requires the definition of a filter that is able to smooth trajectories.

This kind of filter is a function F : (TW,N)→W that produces a warping transform
at a given frame from a trajectory. We denote this kind of filter as F (T n

w̃s
, i) with i ≤ n the

index of the image to which we apply the filter.
In an online context, the filter can only use trajectory elements from the previous and

the current frames, meaning that n = i.
To stabilize the video at frame i, we first cancel the observed trajectory tw̃s(i), then re-

place it by the corresponding smoothed trajectory F (T n
w̃s

, i) (Figure 3):

ws(i) = F (T n
w̃s , i) ◦ tw̃s(i)

−1 (3)

with n ≥ i.
While not designed to register to a constant background over the course of a video, this

approach is effectively designed to remove high-frequency motion relative to the background.
Note that when δ(i) is the identity, calculating T n

w̃s
becomes a method of measuring

motion from the initial point in the video. Therefore, it may seem acceptable to use it to
register the video; however, this measure tends to slowly accumulate error, which is a form
of drifting. We elaborate on this phenomenon in the following section.



Sensors 2021, 21, 513 6 of 19

Figure 3. Typical stabilization procedure. “Inv” corresponds to an inversion in the space of warping
transforms; LPF stands for low-pass filter.

4. Proposed Approach

In this section, we adapt the method presented in [6] to the more general formalism
presented in this paper. We propose to model the motion estimation problem through the
following decomposition:

w̃(i, j) = Ew̃(i, j) ◦ wopt(i, j) (4)

where w̃(i, j) ∈ W is the estimated camera motion between pi and pj, wopt(i, j) ∈ W
corresponds to the unique optimal transform from pi to pj. It is measured as background
motion between pi and pj, and Ew̃(i, j) ∈W corresponds to a motion estimation error.

The general idea is to assert the existence of a unique transform wopt(i, j) ∈ W that
compensates optimally for the camera movements between pi and pj while preserving
their content, given the studied warping space.

A range of registration methods, either holistic [15] or sparse [19], is available in the
literature. They all aim at estimating wopt(i, j) independently of inter-frame variations
(illumination changes, mobile objects, acquisition noise, etc.). In other terms, their goal
is to minimize the magnitude of the term Ew̃(i, j) given their respective constraints and
application domains. Minimizing this term is important to achieve good performances.
However, we argue that this kind of error cannot be completely avoided.

Following Equations (1) and (4), we have

wr(i) = wopt(0, i)−1 ◦ Ew̃r (0, i)−1 (5)

Following Equations (2) and (4), we have

tw̃s(i) = Ew̃s(i− 1, i) ◦ wopt(i− 1, i) ◦ δ(i) ◦ tw̃s(i− 1) (6)

Assuming that camera movements are such that a constant background is consistently
available over the course of the video, we have, by construction,

wopt(0, i) = wopt(i− 1, i) ◦ ... ◦ wopt(0, 1) (7)

which allows us to define an equivalent error relative to the initial position, for each element
in Tw̃s :

tw̃s(i) = E
equiv
w̃s

(0, i) ◦ wopt(0, i) (8)

For instance,

tw̃s(1) = Ew̃s(0, 1) ◦ wopt(0, 1) ◦ δ(1) (9)

Thus, we have

Eequiv
w̃s

(0, 1) = Ew̃s(0, 1) ◦ wopt(0, 1) ◦ δ(1)−1 ◦ wopt(0, 1)−1 (10)

When δ(1) is close to Id, Eequiv
w̃s

(0, 1) is close to Ew̃s(0, 1). It is possible to construct

Eequiv
w̃s

(0, i) in a similar manner. This equivalent error term becomes a composition between
successive error terms Ew̃s(i− 1, i), decay factors and the optimal motion estimation.
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The attractiveness of this model lies in the fact that the nature of the terms Ew̃r (0, i)
and Eequiv

w̃s
(0, i) is different.

The more dissimilar pi and pj, the more significant Ew̃(i, j) is likely to be. With consec-
utive images being rather similar, their error term is likely of a low magnitude. However,
in such cases, foreground objects often exhibit little movement. This motion then tends to
be wrongly considered as background motion by the motion estimator, which contributes
in part to the term Ew̃(i, j). We believe this to be a generic behavior and that it is non-specific
to the motion estimation solution chosen in a particular case.

Designing a robust registration or stabilization technique in the presence of a constant
background is therefore equivalent to estimating Ew̃r (0, i) or Eequiv

w̃s
(0, i). While we cannot

measure this directly, we can take advantage of a combination of both Equations (5) and (6).

d(i) = tw̃s(i) ◦ w̃r(i, 0)

T n
d = {d(i); 0 ≤ i ≤ n} ∈ TW

(11)

Following the notation in Section 3.1.2, we have

d(i) = Eequiv
w̃s

(0, i) ◦ Ew̃r (0, i)−1

We have stated that Eequiv
w̃s

(0, i) should be a low-frequency term, referred to as drift-
ing, and Ew̃r (0, i) should be a high-frequency, noisy term, which is referred to as jitter.
Under those conditions, applying a filter such as the one discussed in Section 3.1.2 allows
us to isolate one error term from another.

F (T n
d , i) ≈ Eequiv

w̃s
(0, i) (12)

Finally, the proposed registration is as follows:

wp(i) = F (T n
d , i) ◦ tw̃s(i)

−1 (13)

An overview of the final process is proposed in Figure 4.
In a similar manner to [6], the construction here shows that, as long as the error term

Eequiv
w̃s

(0, i) is of a low frequency, this combination holds. This implies that the trajectory
can be built in the short term, which practically allows the use of more refined warping
spaces as homographies (Section 4.2), as in the original paper.

Figure 4. Overview of the proposed method. “Inv” corresponds to an inversion in the space of
warping transforms; LPF stands for low-pass filter.
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4.1. Application to 2D-Rigid Transforms

In the previous section, we proposed a hybrid combination of registration and stabi-
lization techniques that is designed to provide a jitter-free registration solution. This model
holds under the strict condition that motion estimators and all the compositions stay within
the group W.

In the case of 2D-rigid transforms, the W space is better represented by a quartet of
parameters (tx, ty, α, s) from which we can classically determine the 3 × 3 matrices used for
2D linear transforms in the homogeneous space [24]. The composition can be computed
directly by using the quartet (tx, ty, α, s). Staying in W is guaranteed as long as s 6= 0.

Under those conditions, the decay factor δ(i) can be neutral, meaning that it is equal
to Id. This is the configuration presented in [6]. As proposed in the latter, a Kalman Filter
(KF) [25] is applied to those (tx, ty, α, s) parameters independently, allowing online operation.

4.2. Application to Perspective Transforms

In our context, the UAV is stationary and films towards the ground, and its height is
significantly higher than the captured vertical objects. In this case, perspective transforms
(homographies) are a much more accurate model than 2D-rigid transforms. They are also
represented by 3 × 3 matrices, and they are defined up to a scale factor. However, multiply-
ing such matrices does not guarantee that we can stay within the group of homographies.
Interpolation (needed for filtering) should also not be performed directly on 3 × 3 matrices.

One can represent homographies by associating two sets of ordered quartets of 2D
points. We used this to compose and interpolate between homographies. Every element of
W is represented by the displacement it causes on the boundaries of an image of fixed size
(w, h), with its dimensions corresponding to those of our video frames. The four corners of
the image and their respective positions after the perspective transform can be described
with eight variables (2D coordinates for four points), allowing us to generate a unique,
eight-DOF (degree of freedom) homography matrix. Following the works of Hartley and
Zisserman [24], degraded cases occur when the resulting tetragon (in our representation,
the coordinates of the image corners after the homography has been applied) contains
colinear points. In this case, defining an inverse transform is no longer possible, and we do
not stay within the group W.

We now need to define how to compose and interpolate between homographies.
Composition is performed as follows: let ha and hb be two homographies. Composing
homographies hb and ha is performed by calculating the image corner positions after
warping them the first time according to ha and then a second time according to hb. Solving
between the original image corner positions and the resulting corner positions provides us
with a new hc homography, which is the result of hb ◦ ha.

Interpolation is performed by applying a unique coefficient to the displacement of all
four corners. Interpolating between homographies implies that every intermediate position
between two homographies stays within W. Avoiding degraded cases implies that this
representation must be restricted strictly to convex sets of ordered quartets of 2D points.
We did not find this restriction to cause any drawback. From our understanding, concave
(diabolo-shaped) or triangular sets of points should not occur when registering real-life
images within our context.

To lower the risks of falling into a degraded case, we need to prevent the series of
transforms from diverging infinitely. For this reason, we need the term δ in (2) to be non-
neutral. Through δ, in a small proportion, we integrate the term F (d, i) into the calculation
of tw̃s(i)

−1. This proposition only holds under the assumption that our solution is accurate
enough. It can be understood as a positive feedback loop.

Note that representing homographies as a set of corner displacements is only used to
allow operations such as inverting, composing and interpolating between elements of W.
Motion estimators such as wr and ws are still computed with the help of standard methods
such as KLT, where many feature points are matched from one image to another, and least
square adjustment and/or robust estimators can be applied.
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5. Evaluation
5.1. Evaluation Dataset

To evaluate our method, we used 10 RGB, 1080p (Full HD) video sequences, of which
the shortest eight had already been used in [6]. Most sequences were acquired at 25 fps,
in daylight, and featured multiple mobile vehicles. Four of them, namely “C0”, “C1”,
“C2” and “C4”, were filmed from overhead with a GoPro camera attached to a light drone
pointed directly towards the ground along the vertical (yaw) axis. As was unknown
to us, the mounting system of the camera seemed to offer little stabilization, especially
when compared to the later-described L2 sequence. The videos are not shaky, but feature
occasionally significant camera motion. Videos “C1” and “C4” are 4 min long and display
few vehicles and only light motion. “C2” is also 4 min long, but features heavy motion with
two fast 180° clockwise yaw motions performed by the human operator (Figure 5). The 15 s
long “C0” is an excerpt from “C1” in which all vehicles are static, which was produced with
the aim of evaluating the proposed methods in the absence of foreground motion. “MFull”
is a one-hour long video, acquired with a CMOS camera which was attached without a
gimbal to a tethered drone. The drone was positioned approximately 50 m above ground
in stationary flight next to a congested roundabout. Overall, the sequence features heavy
viewpoint motion and continuous foreground motion from multiple vehicles. “MFull”
was cut into four successive subsequences of 15 min in length, namely “M1”, “M2”, “M3”
and “M4”, which were already featured in [6]. Note that heavy motion is exhibited during
“M4”, while the UAV was lowered by a few meters during “M3”, producing a significant
change in the aspect of the scene. None of the previously mentioned sequences displayed
significant rolling shutter issues. Finally, “L2” is a 120 min long contiguous sequence
streamed from a tethered drone. The camera was a Yangda sky-eye-30Hz 1080p 30× zoom
camera (only light zoom was used), which is a camera mounted on a gimbal specifically
designed for drones, making this sequence very stable overall. The video displays light
rolling shutter, compression artifacts and lighting changes but few mobile objects. Figure 1
provides examples from the sequences “MFull” and “L2”. This shows the high variety of
camera poses and mobile vehicles in MFull, and the high variety of lightning conditions
during L2.

Figure 5. Images extracted from the five-minute long C2 sequences, taken approximately 30 s apart. The left image is the
reference frame.

5.2. Implementation

We used the OpenCV version 4.3 library [26] and C++ to implement the approaches
evaluated in this paper. Regarding 2D-rigid transforms, the settings were identical to those
presented in [6].

In both 2D-rigid and perspective cases, images were set to one-channel grayscale
and resized to 576 × 24. Motion estimators w̃s and w̃r were performed through the KLT
approach. In both cases, we extracted 200 Shi–Tomasi corners [19] and used the Lukas and
Kanade Pyramidal Optical Flow (LKPOF) algorithm [27] as a tracking solution.

For 2D-rigid transforms, all tracked points were used to compute w̃s following the
least square adjustment. For w̃r, only the best 100 points according to their matching
score in the LKPOF algorithm were used, as a simple step to reject the worst outliers.
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For unclear reasons, our experiments with RANSAC and its OpenCV implementation were
unsuccessful with 2D-rigid transforms. Motion estimation matrices were converted to
the quartet (tx, ty, α, s) mentioned in Section 4.1, and composition was performed directly
on the quartet. Those four parameters were fed to a Kalman Filter (KF) with the scale
parameter s converted into a logarithmic scale, meaning that the KF worked linearly with
this parameter.

For perspective transforms, we used all tracked points (at most 200 following the
LKPOF method) and the robust estimators implemented in OpenCV to generate homog-
raphy matrices. Consecutive transforms were implemented by using the non-parametric
least median algorithm, while the registration transforms were implemented by using
RANSAC, with the error and threshold parameters set as default following the OpenCV
implementation. The reason why we used different estimators between both motion esti-
mations is that the KLT approach performed on consecutive images at 30 fps produces few
outliers, allowing the least median robust estimator to be efficient while computationally
less expensive. Meanwhile, the estimator used to compute w̃r used the classical RANSAC
procedure on the 100 best-matched points according to the LKPOF algorithm, since outliers
were likely to occur. Following the homography matrix estimations, we determined the
corresponding displacement of corners of the image as specified in Section 4.2 to allow us
to compose and interpolate between transforms. Filtering was performed through a KF
applied to the corners set of the image, in the Euclidean space.

In both cases, our implementation used CPU-only operation and ran at a minimum of
60 fps, on a 2.5 Ghz Intel Core i7 MacBook Pro. This enabled real-time operation and left
room for further processing analysis.

None of our experiments seemed to indicate a particular sensitivity towards a given
set of parameters.

5.3. Evaluation Protocol

To show the benefits of the proposed combination, we have compared it with different
arrangements of its elementary components, in both 2D-rigid transforms and homography
configurations. The following settings were evaluated:

• Raw: the original, unprocessed video.
• StabKalRig (or StabKalPer): the video stabilized by the algorithm described in Equation (3),

using the same computation of w̃s and filter as described in Section 5.2, in the 2D-rigid
(or the 2D homographies) domain.

• RegLPosRig (or RegLPosPer): the video registered by the algorithm described as w̃r in
Section 5.2, with the registration proposed at frame i− 1 as an initialization for the
registration of frame i, in the 2D-rigid (or the 2D homographies) domain.

• RegKalRigid (or RegKalPer): the video registered by the algorithm described as w̃r in
Section 5.2, with a KF set as described in Section 5.2 for both the initialization and the
filtering, in the 2D-rigid (or the 2D homographies) domain.

• CombiRig (or CombiPer): the proposed combination method, as described in
Section 4, in the 2D-rigid (or the 2D homographies) domain.

It is necessary to quantify two different properties: the registration (the ability of
a solution to remain registered to the same viewpoint), and the stability (the ability of
a solution to avoid background motion). Lacking the ground-truth for camera move-
ments and the image content, we used the same protocol as in [6] as a basis and added
another measurement.

Registration properties were evaluated with the frame displacement (fd) measure,
which consisted of measuring the median displacement of a set of feature points tracked
from the reference frame to the current frame. In practice, we tracked 200 Shi–Tomasi cor-
ners through LKPOF, following the KLT approach. To reject the worst outliers, the measure
was performed using only the 100 best points according to their matching score.

Stabilization properties were evaluated through a measure called the mean pixel
values difference (mpvd), which consisted of measuring the evolution of pixels’ grayscale
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intensity between consecutive images. In practice, we warped frames according to the
evaluated setting; then, we calculated the absolute difference between consecutive frames,
pixel by pixel, thus forming a new image. The mpvd measure consisted of computing the
average pixel value on this differential image, only within the area where both warped con-
secutive images were overlapped. This measure was computed on 8-bit images converted
to floating points, and thus ranged from 0 to 255. Our assumption was as follows: when the
video is stable, only mobile objects should cause pixel values to change significantly from
one frame to the next one; when the video is unstable, the intensity values of a significant
part of the pixels from the background may change in addition to foreground objects,
causing this measure to increase.

In general, better registration (or stability) was found with the lowest fd (or mpvd) measure.
In addition to the evaluation protocol available in [6], we proposed a last performance

measurement related to the actual application field of the proposed approach. This con-
sisted of applying a baseline background subtraction model, without any form of smoothing
or filtering, to the warped video. The ratio of segmented foreground pixels, denoted as fgr,
fused both stability and registration properties. When the video was correctly registered—
i.e., the background was stable—only pixels related to foreground motion were classified
as foreground. When the background drifted or was shaky, pixels from the background
may also have been wrongly classified as foreground. Thus, we believe that, in general,
the lower fgr is, the better. This measure shows the relevance of different registration
or stabilization approaches in an applied context. For this measure, and because of its
computational efficiency, we used ViBe [28] without any form of filtering or morphology
transform. However, since ViBe, as well as other background subtraction models, is re-
ported to handle shaky videos well (meaning that it integrates jitter into its background
model), fgr was only used complementary to mpvd to measure stability properties.

5.4. Results

First, we must assess how the tested methods remained registered to an initial view-
point. The results in Table 1 show the mean fd measure for all tested videos. As anticipated,
stabilization approaches (StabKalRig and StabKalPer) performed poorly. All of the tested
2D-rigid registration techniques (RegLPosRig, RegKalRig, CombiRig) displayed compa-
rable results on relatively short sequences with little camera motion, such as “C0”, “C1”
and “M2”.

However, the fd measurement was globally lower on registration methods in the per-
spective domain, such as RegLPosPer, RegKalPer and foremost the proposed combination
of CombiPer. For our dataset, 2D-rigid transforms were not expressive enough to com-
pensate for camera motions. In both cases, a filtered registration (RegKalRig, RegKalPer)
suffered from the inertia and sometimes even strong divergence (RegKalPer on M4 and
C2, for instance), that occurred when the optical flow algorithm was badly initialized,
and it could not track enough points to provide a good registration. It is also important to
note that the use of a gimbal, as in L2, did not provide viewpoint registration. With the
fd indicator, results for the L2 raw video were remarkably similar to those obtained with
software stabilization. On all tested videos, when the proposed method could not provide
the best performance, it was well within a subpixel range from the best solution. The same
can be stated when only using rigid transforms, as in [6], even with the longer sequences
L2 and MFull. This is emphasized in Figures 6 and 7, which show the evolution of the fd
indicator on the longer sequences of the database. On those figures, we can observe the
significantly improved stability of the proposed method over time. As shown by a linear
regression on the various curves displayed, the proposed combination in the perspective
domain was remarkably stable, although following a slightly increasing slope. The trend
is however much more stable than other tested approaches, which the results suggest
to be more affected by noise. Figures 6 and 7 also show that 2D-rigid transforms may
have reached an optimum, while much improvement can be observed with the use of
perspective transforms.



Sensors 2021, 21, 513 12 of 19

Table 1. Mean frame displacement (fd) on our test sequences (pixels). First rank; second rank;
third rank.

Settings M1 M2 M3 M4 MFull C0 C1 C2 C4 L2

Raw 17.54 17.98 14.9 27.35 19.53 10.39 11.94 20.17 9.19 12.83
StabKalRig 18.95 17.85 15.28 26.41 19.79 12.4 13.47 20.37 10.5 12.92
StabKalPer 17.73 17.82 14.53 27.42 19.31 12.38 13.07 18.45 10.66 12.91
RegLPosRig 4.9 3.86 6.55 11.94 7.73 0.81 1.33 4.73 1.1 3.6
RegLPosPer 1.6 0.89 1.74 3.0 2.6 0.44 0.68 1.41 0.8 1.0
RegKalRig 6.26 5.47 7.39 12.59 8.71 1.04 1.49 14.07 1.3 3.75
RegKalPer 3.74 4.04 3.7 22.42 4.25 0.8 0.87 17.59 1.0 7.03
CombiRig 4.91 3.9 6.59 11.96 7.74 0.81 1.34 4.74 1.13 3.61
CombiPer 0.8 0.71 1.13 2.05 1.51 0.6 0.72 1.02 0.9 0.65

Figure 6. Frame displacement (fd) indicator over time on the MFull sequence; the lower the position on the graph, the
better. Values were aggregated by averaging on intervals of approximately 500 frames. For more clarity, we left out the less
relevant methods. The dashed line shows the result of a linear regression over the whole sequence.

Figure 7. Frame displacement (fd) indicator over time on the two hours long L2 sequence. The lower the position on the
graph, the better. Values were aggregated by averaging on intervals of approximately 1000 frames. For more clarity, we left
out the less relevant methods. The dashed line shows the result of a linear regression over the whole sequence.
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Table 2 shows the stability properties of tested approaches according to the mpvd
indicator. Results emphasize the effect of jitter, with registration solutions (both in rigid
and perspective cases) performing even more poorly than the original video on longer se-
quences, including MFull and L2. Filtered registration techniques (RegKalRig, RegKalPer),
even when diverging, provided better stability performances. Meanwhile, stabilization
techniques displayed significantly better performance, with a slight overall advantage
towards homographies. Results for L2 show that even a video acquired from camera
mounted on a gimbal in a stationary flight can be positively affected by software stabi-
lization. The proposed combination, especially when using perspectives, was the most
consistent solution of all, suggesting that it is jitter-free and driftless.

Table 2. Mean pixel value difference (mpvd) between consecutive frames (grayscale value). First rank;
Second rank; Third rank. Higher values tend to be caused by jitter while lower values show the
stability properties.

Settings M1 M2 M3 M4 MFull C0 C1 C2 C4 L2

Raw 6.81 7.2 7.15 7.25 6.78 2.03 2.2 2.71 2.26 3.27
StabKalRig 3.24 3.32 3.38 3.3 3.18 1.51 1.6 2.09 1.65 2.38
StabKalPer 3.08 3.08 3.15 3.12 2.96 1.47 1.58 2.32 1.63 2.32
RegLPosRig 6.46 4.96 6.54 7.88 7.42 2.32 2.39 3.92 2.11 6.77
RegLPosPer 6.6 4.69 6.35 6.52 7.52 2.22 2.64 4.49 2.26 6.78
RegKalRig 5.37 5.6 5.61 5.8 5.49 1.51 1.65 2.21 1.67 2.74
RegKalPer 5.33 5.58 5.53 6.92 5.36 1.5 1.65 2.35 1.68 2.48
CombiRig 3.24 3.25 3.38 3.41 3.27 1.44 1.6 1.59 1.62 2.5
CombiPer 2.95 3.01 3.06 3.04 2.9 1.41 1.57 1.51 1.61 2.37

The last proposed evaluation showed the impact of our approach in an applied con-
text. Table 3 displays the fgr using a baseline background subtraction algorithm, ViBe [28].
ViBe parameters were kept as default, as provided by the authors. In essence, static back-
grounds are supposed to give better results, which tends to favor registration solutions
over drifting videos. ViBe is also designed to handle shaky images, to a certain extent.

Table 3. Ratio of segmented foreground pixels (fgr) within the database as a percentage. First rank;
Second rank; Third rank. Lower values suggest that less background motion was wrongly considered
as foreground motion.

Settings M1 M2 M3 M4 MFull C0 C1 C2 C4 L2

Raw 15.03 14.87 14.22 14.75 14.53 5.19 3.52 4.89 3.46 11.04
StabKalRig 10.46 10.01 9.99 10.01 9.91 4.61 2.14 4.16 2.23 5.16
StabKalPer 9.04 8.61 8.83 9.41 8.6 4.42 2.01 4.65 2.13 5.16
RegLPosRig 6.87 6.11 7.1 8.5 7.77 0.4 1.0 2.52 1.08 3.15
RegLPosPer 5.84 4.76 5.61 5.5 6.07 0.15 0.84 2.05 1.01 2.38
RegKalRig 10.94 11.18 10.62 11.68 11.23 0.98 1.28 4.42 1.41 4.84
RegKalPer 10.5 10.87 9.77 13.77 10.38 0.63 1.1 4.2 1.37 5.02
CombiRig 6.51 6.07 6.67 7.83 7.27 0.39 0.97 2.37 1.09 2.82
CombiPer 4.28 4.45 4.39 4.47 4.36 0.26 0.83 1.53 1.12 1.8

The results show that perspective transforms suited this problem consistently better
than other options. However, even while using only rigid transforms, the proposed combi-
nation showed decent performance, while the proposed combination using perspective
transforms resulted in a significantly lower amount of segmented foreground pixels than
all other solutions. More interestingly, the one hour long MFull sequence displayed a
similar fgr to its 15 min subsets M1, M2, M3 and M4, while the other competing registra-
tion methods tended to output a higher ratio for the full sequence than for its subsets,
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suggesting that jitter tends to increase over time (see also Figure 8). Our study shows
that the proposed combination could remain consistently registered without adding jitter,
even when handling long sequences. This behavior was emphasized on the two hours long
sequence L2, where CombiPer performed better in the long term than other approaches
(Figure 9). Analyzing the trends in Figures 8 and 9 with the help of linear regressions sug-
gests that the proposed method in the perspective domain resulted in very stable results for
both videos, which seems rational given their content (consistency in terms of foreground
content and drone motion). On the other hand, for a given approach, the behaviors differed
from one video to another. For L2, a growing slope was linked to growing noise over time
(Figure 9, RegLPosPer). For MFull, the difference in performances between CombiPer
and RegLPosPer seemed to be less linked to a general trend and more to changes in the
drone viewpoint than for L2. The presence of a gimbal on L2 may explain the behavioral
difference between both situations.

Figure 8. Evolution of the foreground pixel ratio (fgr) indicator over time for the MFull sequence (the lower, the better).
Values were aggregated by averaging on intervals of approximately 500 frames. For more clarity, we kept only the methods
using homographies. The dashed line shows the result of a linear regression over the whole sequence.

Figure 9. Evolution of the foreground pixel ratio (fgr) indicator over time on the two hours long L2 sequence (the lower,
the better). Values were aggregated by averaging on intervals of approximately 1000 frames. For more clarity, we kept only
the methods using homographies. The dashed line corresponds to a linear regression over the whole sequence.

For a better overview of the results provided by the fgr measure, we have included
in Figures 10 and 11 examples from the sequence MFull where we applied ViBe to the
output of each method. At the time of the test-frame, the drone was unintentionally
lowered by a few meters. A crop is included to show precisely how the background
was preserved between the various tested algorithms and to see the output of the BGS
segmentation more clearly. Figures show that tested stabilization solutions did not preserve
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a constant background alignment, while registration techniques tended to perform better.
However, significant differences can be seen regarding the behavior of ViBe. In both 2D-
rigid and perspective domains, we can notice noise in the BGS output, which was caused
by jitter. This noise is particularly noticeable around edges in the background, such as
trees and building contours. Filtering the output of the registration algorithm actually
makes this worse, because it generates inertia and prevents the solution from staying
well registered even on average. Meanwhile, our proposed combination allowed the BGS
output to be less noisy; in particular, in the perspective domain where almost no static
object is segmented. It can be observed that the road topology was well preserved on the
CombiPer line (Figure 11), while vertical objects such as buildings were stretched because
of the change in viewpoint.

Version December 11, 2020 submitted to Journal Not Specified 16 of 19
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Figure 10. Results from tested 2D-rigid methods on the sequence MFull. Test-Frame is picked
approximately 38 minutes after the start of the video. To emphasize differences, we have displayed the
output of the Background Subtraction algorithm ViBe[28] on tested configurations (segmented parts in
purple, contours in white). Full frame (center column) is cropped at a fixed location (right column) to
better show details.

Figure 10. Results from tested 2D-rigid methods on the sequence MFull. The test-frame was picked approximately 38 min
after the start of the video. To emphasize differences, we have displayed the output of the background subtraction algorithm
ViBe [28] on tested configurations (segmented parts in purple, contours in white). The full frame (center column) is cropped
at a fixed location (left column) to show details more clearly.
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Figure 11. Results from the tested perspective methods on the sequence MFull. Test-Frame is picked
approximately 38 minutes after the start of the video. To emphasize differences, we have displayed the
output of the Background Subtraction algorithm ViBe[28] on tested configurations (segmented parts in
purple, contours in white). Full frame (center column) is cropped at a fixed location (right column) to
better show details.

Figure 11. Results from the tested perspective methods on the sequence MFull. The test-frame was picked approximately
38 min after the start of the video. To emphasize differences, we have displayed the output of the background subtraction
algorithm ViBe [28] on tested configurations (segmented parts in purple, contours in white). The full frame (left column) is
cropped at a fixed location (right column) to show details more clearly.
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6. Conclusions and Perspectives

This paper addresses the problem of generating a constant viewpoint from videos
acquired by stationary UAVs. Through the theoretical study of motion estimation models,
we show how to combine a short-term trajectory and a long-term registration technique
into a registration method that is jitter-free and driftless. We show how to apply this to per-
spective transforms that are well suited to UAV imagery. The use of low-cost, simple bricks
allows for real-time application, as a pre-processing step, on lengthy sequences featuring a
significant number of mobile objects.

Our study shows that this approach can be efficiently applied to improve the use of
off-the-shelf background subtraction solutions on stationary UAV-acquired videos. We also
show that such an approach can effectively handle videos with or without the use of
physical stabilization devices such as gimbals. Depending on the circumstances, it may be
possible to rely on this kind of computational solution rather than an expensive physical
stabilization device. However, an end-user should keep in mind that gimbals or optical
stabilization devices can help with other issues such as vibrations, which may induce blur
or rolling shutter issues not addressed in this work. Using our approach may also allow the
use of captive balloons as an environmentally friendly, cheaper replacement to stationary
drones, despite their tendency to be heavily affected by windy conditions. We would be
very interested in trying our approach on such devices.

In our implementation, a Kalman Filter (KF) was used to smooth what can be un-
derstood as the difference between a short-term trajectory and a long-term registration.
After the short-term trajectory was updated with a new frame, the KF allowed us to pre-
dict where to initialize the next registration estimation. Since a motion estimation step
is essentially a minimization problem, a better initialization means a more efficient and
accurate estimation. Another advantage of our method is its ability to handle the tem-
porary disappearance of the background provided in the reference frame (for instance,
when very large camera movements occur, or when foreground objects hide most of the
background). When the registration estimation is unable to converge, we can set it as
the identity of the proposed combination. Under this circumstance, our approach is still
capable of staying registered to the initial viewpoint by relying on the short-term trajectory
inversion. One drawback of the proposed hybrid combination is that we always assume
that the short-term trajectory estimation produces a low-magnitude, slowly evolving error
term. If the short-term trajectory happened to generate a high-magnitude, high-frequency
noise, our method would be likely to fail, since it would be unable to differentiate the
error terms caused by registration and stabilization, respectively. One way to avoid this
is to work with high fps video acquisition. The more similar consecutive images are, the
less likely erroneous short-term trajectory estimations will be. For real-time application,
this may imply that the end-user has to find a trade-off between frame-rate and resolution.

Although our evaluation shows that we can properly handle video sequences of
up to two hours, significantly longer sequences remain a challenge that still needs to be
addressed. In our approach, we can compensate noise in the registration step by filtering
out its corresponding motion estimation. This step relies on the assumption that this
estimation is, although very noisy, averagely accurate. This assumption may not hold
when drastic appearance changes occur; for instance, when we try to register a night
view from a scene that was initialized in daylight. More sophisticated motion estimation
techniques can be integrated in the general scheme of our approach and may prove helpful
to tackle this kind of challenging situation. Another approach might be, in this case,
to design a reference frame-updating procedure. In future works, we will focus on this
challenging situation.
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