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Abstract: Electromagnetic coils are one of the key components of many systems. Their insulation
failure can have severe effects on the systems in which coils are used. This paper focuses on insulation
degradation monitoring and remaining useful life (RUL) prediction of electromagnetic coils. First,
insulation degradation characteristics are extracted from coil high-frequency electrical parameters.
Second, health indicator is defined based on insulation degradation characteristics to indicate the
health degree of coil insulation. Finally, an insulation degradation model is constructed, and coil
insulation RUL prediction is performed by particle filtering. Thermal accelerated degradation
experiments are performed to validate the RUL prediction performance. The proposed method
presents opportunities for predictive maintenance of systems that incorporate coils.

Keywords: insulation degradation; insulation failure; inter-turn short; resonant frequency;
PF; prognostics

1. Introduction

Electromagnetic coil is the energy conversion component of electromagnetic valve,
motor, transformer, and other relevant equipment, and its insulation failure is prominent.
The study from Oak Ridge National Laboratory [1] shows that over 50% of solenoid valve
failures of nuclear power plants in U.S. were attributed to electromagnetic coil failures
(e.g., coil open, coil short); in the field of automobiles, about 40% of motor failures are
caused by stator insulation [2]; in the field of generators, 56% of generator failures are
related to insulation failures [3]; according to the statistics in literature [4], the failures
of transformer winding account for 70–80% of the total transformer failures, and among
which the winding insulation failure rate is the highest. Therefore, it is important to study
the online monitoring approaches for the insulation state of electromagnetic coils, this will
benefit for the reliable operation and predictive maintenance of equipment and reducing
the maintenance cost of factories.

Prognostics and health management (PHM) technology is one of the key technologies
in smart manufacturing. PHM turned equipment management from traditional failure
management into degradation management. Continuous and reliable operation of equip-
ment are realized through predictive maintenance [5,6]. The accurate acquisition of health
information of key components is the base for predicting the health status of the equipment.
In this paper, the PHM technology based on key components is used to study the trend
prediction for degradation status of electromagnetic coils.

Sensors 2021, 21, 473. https://doi.org/10.3390/s21020473 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6134-7281
https://orcid.org/0000-0001-8866-8272
https://doi.org/10.3390/s21020473
https://doi.org/10.3390/s21020473
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020473
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/473?type=check_update&version=1


Sensors 2021, 21, 473 2 of 14

The failure of electromagnetic coils is usually caused by the inter-turn insulation
failure. The classic methods used to characterize the quality of coil insulation are based on
visual inspection, electrical, physical, and chemical measurement. In the literature [7–12],
offline detection methods based on temperature, current, neutral point voltage, magnetic
flux leakage, and other parameters are introduced, and these methods can only detect
the failures of electromagnetic coils, but they cannot detect the degradation process of
insulation performance of electromagnetic coils. Considering that insulation failure usu-
ally occurs suddenly and has catastrophic effects, insulation degradation monitoring of
the electromagnetic coil is preferred to enable predictive maintenance prior to a failure
detection that could cause catastrophic damage. With the degradation of stator winding,
twisted pair, and electromagnetic coil, F. Perisse and N.J.Jameson et al. [13–18] found that
the parameters of parasitic capacitance, impedance, and reactance would change under
high frequency conditions, and these characteristic parameters can be used to characterize
the insulation degradation of electromagnetic coils, however, a large amount of data is
needed to determine the parameters at a specific frequency which can assess the degrada-
tion of the solenoid. The process of insulation degradation is not systematically analyzed
and modeled in the paper, and it is difficult to predict the degradation of the insulation
performance of electromagnetic coils.

In this paper, the insulation performance degradation of electromagnetic coils is stud-
ied under the condition of constant high temperature. Through analyzing the insulation
degradation mechanism and the data of insulation degradation of electromagnetic coils, res-
onance frequency is used as a characteristic parameter to characterize the degradation state
of insulation. Based on the degradation state data, the insulation performance degradation
model of electromagnetic coil is established. The insulation performance degradation
prediction algorithm of electromagnetic coil is proposed based on particle filtering.

This paper is organized as follows. In Section 2, the failure mechanism of an electro-
magnetic coil in a high temperature environment is analyzed, and resonant frequency is
selected as a health indicator for electromagnetic coil degradation monitoring based on
the equivalent circuit model and lumped capacitance network analysis. The accelerated
degradation experimental platform is described to obtain characteristic data. In Section 3,
the model of insulation performance degradation is described with characteristic data
collected through experiment. In Section 4, particle filtering based prediction algorithm is
introduced for degradation of insulation performance of electromagnetic coil. In Section 5,
the conclusion of this paper is given.

2. Framework for Coil Insulation Remaining Useful Life (RUL) Prediction Based on
Data-Driven Methods

Prognostics and health management (PHM) is a method that permits the reliability of
a system to be evaluated in its actual life-cycle conditions, and life prediction and health
management are the core technologies in PHM. PHM methodology is based on monitoring
parameters that are sensitive to impending failure precursors. The precursor is usually
a change in a measurable parameter that can be associated with impending failure. Life
prediction is considered as the foundation and core content of PHM, which can be roughly
divided into a physical failure model based on the method and data-driven method. Since
it is difficult to obtain the physical failure mechanisms, data-driven prediction methods
have become mainstream techniques in recent years. The life prediction methods based
on data-driven include the traditional methods based on failure data, the methods based
on degradation data, and the methods based on multi-source data fusion. The data-
driven method based on degradation data can obtain the characteristic parameters of
equipment health state by analyzing the monitored data, and then realize the life prediction
of equipment, which has been developed rapidly. It is helpful for accelerated fatigue test to
obtain degradation data of the equipment quickly and effectively.

The electromagnetic coil, which is generally referred to as magnet wire, is constructed
of conductor (usually copper) coated by insulation material (usually some kind of polymer).
The electromagnetic coil is susceptible to coupled electrical/thermal failure mechanisms.
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When current is passing through the wire, Joule heating will cause the increase of wire
temperature, this will lead the expansion of the conductor, placing mechanical and thermal
stresses on the insulation material. The mechanical and thermal stresses then lead to
insulation degradation and insulation failure.

Taking the electromagnetic coil as the research object, with the help of accelerated
fatigue test, the whole life cycle data of the electromagnetic coil are collected; the param-
eters which can represent the degradation characteristic of the electromagnetic coil are
determined by analyzing the collected data; the life degradation model of the electro-
magnetic coil is established based on the above characteristic parameters; then, the trend
prediction and RUL prediction of the electromagnetic coil are realized, and the health status
of the electromagnetic coil is analyzed; eventually, the health assessment and predictive
maintenance are realized, as shown in Figure 1.
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Figure 1. The prognostics and health management (PHM) implementation scheme of the electromag-
netic coil.

3. Electromagnetic Coils Data Acquisition Platform Construction and Data Analysis
3.1. Data Acquisition Platform Construction

In order to further study the degradation of electromagnetic coil insulation perfor-
mance, the experimental platform is set up with constant high temperature stress, as shown
in Figure 2. The experimental scheme is determined as follows: The electromagnetic
coil was put into the chamber which is set at 220 ◦C, and the electrical data (inductance,
resistance, impedance, reactance) could be collected by sweeping frequencies from 50 kHz
to 1 MHz every 2 h, which is the frequency range provided by the LCR meter (Keysight’s
E4980A inductance-capacitance-resistance); the electrical data are collected by NI computer;
and direct-current resistance (DCR) of the coil was collected 8 times per cycle, and the
average of DCR value is taken as the final value of DCR, which is used to determine
whether the coil is in the degradation phase (there is no turn-to-turn short circuit in the
coil) or failure stage during the aging test.

3.2. Data Acquisition and Analysis

With the help of thermal acceleration experiment, the life cycle data of electromagnetic
coil are obtained. In this experiment, the direct current resistance (DCR) of the electro-
magnetic coil used is 76.713 Ω, and its single turn DCR is 0.093 Ω. In the degradation
process, the DCR of the electromagnetic coil is constant, there is no inter turn or inter
layer short circuit in the electromagnetic coil, but in the failure process, the DCR decreases
significantly, and there is an inter turn or inter layer short circuit, as shown in Table 1.
During the acceleration experiment, the DCR of the electromagnetic coil is monitored in
real time. As shown in Figure 3, the DCR of the electromagnetic coil remains unchanged
before the 99th cycle, however, the data after 100 cycles show that the DCR decreases
significantly (i.e., short circuit and hot spot formation), and then the failure leads to more
hot spots and a more serious short circuit. When the DCR is detected to decrease, this
indicates that the whole life data of the electromagnetic coil have been obtained.



Sensors 2021, 21, 473 4 of 14
Sensors 2021, 21, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 2. Experimental platform of the electromagnetic coil: Aging experimental platform is used 
for accelerated aging test at constant high temperature, experimental platform of data measure-
ment is used to measure the electrical parameters of the electromagnetic coil. 

3.2. Data Acquisition and Analysis 
With the help of thermal acceleration experiment, the life cycle data of electromag-

netic coil are obtained. In this experiment, the direct current resistance (DCR) of the elec-
tromagnetic coil used is 76.713 Ω, and its single turn DCR is 0.093 Ω. In the degradation 
process, the DCR of the electromagnetic coil is constant, there is no inter turn or inter layer 
short circuit in the electromagnetic coil, but in the failure process, the DCR decreases sig-
nificantly, and there is an inter turn or inter layer short circuit, as shown in Table 1. During 
the acceleration experiment, the DCR of the electromagnetic coil is monitored in real time. 
As shown in Figure 3, the DCR of the electromagnetic coil remains unchanged before the 
99th cycle, however, the data after 100 cycles show that the DCR decreases significantly 
(i.e., short circuit and hot spot formation), and then the failure leads to more hot spots and 
a more serious short circuit. When the DCR is detected to decrease, this indicates that the 
whole life data of the electromagnetic coil have been obtained. 

Table 1. Part of direct-current resistance (DCR) collected by LCR meter. 

Cycle DCR1 DCR2 DCR3 DCR4 DCR5 DCR6 DCR7 DCR8 DCR (Average) 
1 76.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71 

10 76.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71 
20 76.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71 
30 76.71 76.71 76.71 76.72 76.71 76.70 76.71 76.71 76.71 
40 76.72 76.71 76.72 76.72 76.71 76.72 76.72 76.72 76.72 
50 76.72 76.72 76.722 76.72 76.72 76.72 76.72 76.72 76.72 
60 76.72 76.71 76.72 76.71 76.72 76.72 76.71 76.72 76.72 
70 76.72 76.71 76.72 76.72 76.72 76.72 76.71 76.72 76.72 
80 76.71 76.71 76.71 76.71 76.71 76.70 76.72 76.72 76.71 
90 76.71 76.71 76.71 76.72 76.71 76.72 76.72 76.71 76.71 

100 76.62 76.62 76.62 76.63 76.63 76.63 76.64 76.63 76.63 
106 74.35 74.35 74.37 74.34 74.35 74.35 74.36 74.33 74.35 

Figure 2. Experimental platform of the electromagnetic coil: Aging experimental platform is used for
accelerated aging test at constant high temperature, experimental platform of data measurement is
used to measure the electrical parameters of the electromagnetic coil.

Table 1. Part of direct-current resistance (DCR) collected by LCR meter.

Cycle DCR1 DCR2 DCR3 DCR4 DCR5 DCR6 DCR7 DCR8
DCR
(Aver-
age)

1 76.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71
10 76.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71
20 76.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71
30 76.71 76.71 76.71 76.72 76.71 76.70 76.71 76.71 76.71
40 76.72 76.71 76.72 76.72 76.71 76.72 76.72 76.72 76.72
50 76.72 76.72 76.722 76.72 76.72 76.72 76.72 76.72 76.72
60 76.72 76.71 76.72 76.71 76.72 76.72 76.71 76.72 76.72
70 76.72 76.71 76.72 76.72 76.72 76.72 76.71 76.72 76.72
80 76.71 76.71 76.71 76.71 76.71 76.70 76.72 76.72 76.71
90 76.71 76.71 76.71 76.72 76.71 76.72 76.72 76.71 76.71

100 76.62 76.62 76.62 76.63 76.63 76.63 76.64 76.63 76.63
106 74.35 74.35 74.37 74.34 74.35 74.35 74.36 74.33 74.35
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LCR meter is used to collect impedance, resistance, inductance, and reactance data
in a specific frequency range, as shown in Table 2. Figures 4–6 show the impedance and
resistance, inductance data of 106 aging cycles, in the degradation phase, the data of each
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cycle is not clearly distinguished, while in the failure phase, the three kinds of electrical
data have significant changes compared with their respective data in the degradation phase.
As shown in Figure 7, the reactance spectrum data of each aging period are collected. With
the increase of aging time, when the electromagnetic coil is in heathy and degradation state,
the reactance spectrum curves move from the right to the left regularly, the color of the
curve gradually changes from black to red. After the 100th cycle, the reactance spectrum
curve changes significantly (the green curve in Figure 7). Combined with DCR data, it
indicates that the electromagnetic coil has been short-circuited.

Table 2. Part of the data collected by LCR meter under the frequency of 314,050 Hz.

Cycle Acquisition
Time

Frequency
(Hz)

Impedance
(Ω)

Resistance
(Ω)

Inductance
(H)

Reactance
(Ω)

1 2020-4-28
08:02:45 3.14 × 105 4.98 × 102 4.97 × 102 3.4 × 10−5 2.85 × 101

10 2020-4-29
01:37:15 3.14 × 105 4.65 × 102 4.63 × 102 3.5 × 10−5 −4.92 × 101

20 2020-4-29
19:53:08 3.14 × 105 5.39 × 102 5.28 × 102 5.7 × 10−5 −1.11 × 102

30 2020-4-30
20:01:41 3.14 × 105 5.51 × 102 5.38 × 102 6.1 × 10−5 −1.67 × 102

40 2020-5-1
16:13:13 3.14 × 105 4.45 × 102 4.41 × 102 3.2 × 10−5 −6.36 × 101

50 2020-5-4
15:41:46 3.14 × 105 4.56 × 102 4.52 × 102 3.0 × 10−5 −5.91 × 101

60 2020-5-5
21:28:30 3.14 × 105 5.68 × 102 5.53 × 102 6.5 × 10−5 −1.28 × 102

70 2020-5-7
17:37:42 3.14 × 105 4.57 × 102 4.52 × 102 3.6 × 10−5 −7.03 × 101

80 2020-5-9
20:35:33 3.14 × 105 4.71 × 102 4.56 × 102 5.9 × 10−5 −1.15 × 102

90 2020-5-11
00:46:51 3.14 × 105 5.45 × 102 5.13 × 102 6.4 × 10−5 −1.84 × 102

100 2020-5-12
00:28:57 3.14 × 105 5.26 × 102 2.62 × 102 2.3 × 10−5 −4.56 × 102

106 2020-5-12
13:33:31 3.14 × 105 3.07 × 102 6.06 × 101 1.5 × 10−5 −3.01 × 102Sensors 2021, 21, x FOR PEER REVIEW 6 of 15 
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4. Determination of Insulation Degradation Characteristic Parameters and HI Construction

The resonant frequency is the frequency at which reactance (imaginary part of impedance)
is zero, that is, the inductive reactance is equal to the capacitive reactance. With the accelerated
fatigue test, the resonance frequency has the decreasing gradually trend, as shown in Figure 7.
According to the references [19,20], when the imaginary part is equal to zero, then the resonant
frequency can be expressed as:

fr =
2
√

L/Cg − R2/L (1)

where:
fr is the resonant frequency.
According to the reference [19–22], with the degradation of electromagnetic coil, the R

and inductance remain constant, and the Cg changes with the thickness of insulation mate-
rial, and then the resonance frequency also changes. Therefore, the resonance frequency,
as an inherent index of electromagnetic coil, can be used to evaluate the health status of
electromagnetic coil.

According to formula (1), the resonance frequency will change with the degradation
of the electromagnetic coil. The resonant frequency of each cycle can be used as an index to
evaluate the health status of the electromagnetic coil. By fitting the reactance data collected
from the experiment under multiple frequencies, the resonant frequency could be obtained
under the current state. In the process of degradation, the resonance frequency generally
shows a downward trend, cycle 1 to cycle 99 is the degradation phase, cycle 100 to cycle 106
is the failure phase, as shown in Figure 8. The test result demonstrates that the resonance
frequency could be used as an effective characteristic parameter to evaluate the healthy
status of the electromagnetic coil.
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Figure 8. Degradation trend of resonant frequency of the electromagnetic coil.

The health indicator (HI), which is homogenized based on resonant frequency, is
introduced to indicate the degree of insulation degradation of the electromagnetic coil, as
shown in formula (1). Therefore, HI is equal to 0.45, which is the failure threshold of the
electromagnetic coil.

HI(k) = ( f (k)− ffailure)/( fhealth − ffailure) (2)

where:
fhealth is resonant frequency of the health coil;
ffailure is resonant frequency of the failure coil; and
f (k) is the resonant frequency of cycle k.
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5. Modeling of the Degradation of the Insulation Performance of the Electromagnetic
Coils and RUL Prediction Based on Particle Filtering
5.1. Wavelet Threshold Denoising Method

In the accelerated degradation experiment, high-frequency data are collected. The
accuracy of real data is undermined because of the interference of environmental conditions
in the measurement process and the sensitivity of high frequency data. In order to obtain the
high frequency data accurately, using filtering technology to filter out the noise interference
is necessary. Wavelet denoising has a wide range of adaptability, and this will improve
the accuracy of the data. After the use of the wavelet de-noising method, the degradation
curve based on health index is obtained. It shows that the trend of the degradation curve is
more obvious, which is more beneficial for the enhancement of the accuracy of degradation
trend prediction and RUL prediction, as shown in Figure 9.
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5.2. Life Model Based on Health Index

The main idea of degradation modeling is to describe the distribution of degradation
trajectory with the data of characteristic parameters. In this paper, degradation prediction
research of long-life equipment is carried out by studying the change of its characteristic
parameters. Through the characteristic data, which can represent the trend of the equipment
life, the degradation model based on the characteristic parameters is established to predict
the health status of the equipment. Several common degradation models are shown in
formula (3)–(5):

HI(k) = a ∗ exp(b ∗ k) (3)

HI(k) = a ∗ exp(b ∗ k) + c ∗ exp(d ∗ k) (4)

HI(k) = a ∗ k3 + b ∗ k2 + c ∗ k + d (5)

where:
a, b, c, d is parameter of model;
k is aging time (measurement cycle); and
HI(k) is the health indicator of k measurement cycle.
Polynomial and exponential model (formula (3)–(5)) are used to fit the life cycle data of

the electromagnetic coil, and the results are shown in Figure 10. The results show that there
was a decreasing trend of the health indicator as the coil aged during the degradation phase.
The curve-fitting model, which can accurately describe the performance degradation trend,
is identified as the degradation model of the electromagnetic coil. It is not expected to the
two curve-fitting models (the formula (3) and (4)) that can’t track the degradation data very
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well, but the polynomial model (formula (5)) is better than the first two models, as shown
in Figure 10. Therefore, the polynomial model is used as the life degradation model of the
insulation performance of the electromagnetic coil, and the coefficients of the polynomial
degradation model are obtained by means of the fitting tool of MATLAB.
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5.3. Particle Filtering

Particle filter (PF) algorithm is a non-linear, non-Gaussian system filtering method
based on the Monte Carlo idea, UKF, and other Kalman filters that adopt the statistical
linearization method, which is based on the linear and Gaussian assumption of the system.
When the system is in nonlinear and non-Gaussian state, the prediction effect of UKF
is not obvious. The research object of this paper is an electromagnetic coil with a long
life, and the industrial environment is complex, and its life distribution is non-linear and
non-Gaussian, so the PF with wider applicability is selected. Therefore, the PF algorithm is
one of the effective methods to realize the trend and RUL prediction based on model [23].
The two important steps of PF are: (1) Random particles are extracted from the empirical
conditional distribution; (2) the weight of each particle is calculated according to the
observation probability distribution, importance distribution, and Bayesian formula. As
the number of samples increases, the method approaches to the real posterior probability
density function of state variables, and then the prediction of the degradation trend and
RUL of the electromagnetic coil is realized. The model based on particle filter can be
established by formula (6): {

xk = f (xk−1) + uk
yk = h(xk) + vk

(6)

where:
xk is the state vector;
yk is the observation vector;
f (xk−1) is state transition function;
h(xk) is observation function;
k is the time index;
uk is process noise sequence, the gaussian distribution with mean value of 0 and

variance of σ2 is satisfied; and
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vk is observation noise sequence, the gaussian distribution with mean value of 0 and
variance of σ2 is satisfied.

Each particle of PF algorithm is a set of modified parameters, and the particles are
carried out at the same time, therefore, the PF algorithm is a multi-point parallel algorithm,
which greatly improves the prediction accuracy. The following Figure 11 is the prediction
flow chart of particle filtering algorithm. In this paper, the degradation model is used as
the observation equation, and the health indicator of the electromagnetic coil is used as the
observation.
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5.4. Prediction of Insulation Degradation Based on Particle Filtering Algorithm

In the process of degradation of insulation performance of the electromagnetic coil,
the data collection process contains white noise with zero mean and unknown variance.
The state transition equation describes the functional relationship between the state of
the system at the previous moment and the state at the current moment. Therefore, the
degradation model of the insulation performance of electromagnetic coils (Formula 5) is
needed to deal with the following forms:

HI(k) = HI(k − 1) + (3 ∗ a + b) ∗ k2 + (3 ∗ a + 2 ∗ b + c) ∗ k + (a + b + c) (7)

where:
HI(k) is k time health indicator;
HI(k − 1) is k − 1 time health indicator;
k is degenerate cycle (a cycle is 2 h); and
a, b, and c are the parameters of the degradation model.
With (7), the following formula can be obtained by integrating the upper constant

term:
HI(k) = HI(k − 1) + α ∗ k2 + β ∗ k + γ (8)

where:
α = 3 ∗ a + b;
β= 3 ∗ a + 2 ∗ b + c; and
γ = a + b + c.
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It can be seen from the above formula that the health indicator at k-time is composed
of the above two items, which are related to both the health index at k–1 time and the
degeneration cycle. Therefore, the degradation model of the electromagnetic coil is taken
as the observation, and the parameters of this model are taken as the state variables, as
shown in formula (9):

α(k) = α(k − 1) + uα

β(k) = β(k − 1) + uβ

γ(k) = γ(k − 1) + uγ

HI(k) = HI(k − 1) + α ∗ k2 + β ∗ k + γ + vk

(9)

The prediction starting point is set to be Start = cycle 50. As shown in Figure 12, the pre-
diction basically reflects the degradation trend of the insulation of the electromagnetic coil,
which has a certain guiding role for the insulation degradation of the electromagnetic coil.
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5.5. RUL Prediction of the Electromagnetic Coil Based on Particle Filter

The above experiments and analysis show that the HI can describe the performance
degradation of the electromagnetic coil, and the 45% decrease of the HI is taken as the
failure threshold of the electromagnetic coil. The RUL prediction of electromagnetic coil is
realized by the particle filter mentioned above, that is, the life is terminated when the HI is
equal to failure threshold, and the number of cycles from the predicted starting point to
the failure threshold is regarded as the RUL. In order to evaluate the accuracy of RUL, the
absolute error formula of RUL is defined as follows:

RULerror =
∣∣RULtrue − RULprediction

∣∣ (10)

In the process of RUL prediction, the prediction starting point is set to be Start = cycle
50, 60, and 70, as shown in Figures 13–15. According to the above three RUL prediction
results, the prediction error of RUL is quantitatively given by equation 11, as shown in
Table 3. It can be shown from the above results that RUL prediction of the electromagnetic
coil can be realized by PF algorithm, meanwhile, with the increase of the historical data, the
accuracy of RUL prediction is further improved. However, if there is no large amount of
historical data, it is difficult to predict the remaining life, and it lacks accuracy, as shown in
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Figure 13. Only when a lot of historical data is provided, the RUL prediction based on data-
driven can be more accurate. However, the RUL prediction based on the physics-of-failure
model can be realized without a lot of data. At present, our research group is studying the
physics-of-failure model of the electromagnetic coil based on creep degradation, and the
subsequent establishment of the physics-of-failure model can solve the problem due to lack
of data.
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Table 3. Prediction error analysis.

Staring Point Real Life (Cycle) Prediction Result
(Cycle)

Absolute Error
(Cycle)

50 96 72 24
60 96 83 13
70 96 93 3

6. Conclusions

The electromagnetic coils are the widely used components in many applications and
systems. Their insulation is failure-prone, which can lead to disastrous consequences.
Therefore, predicting RUL for electromagnetic coil insulation can effectively avoid the
unexpected shut-down and thus improve the availability of the related equipment that
incorporate coils.

Data-driven PHM framework is proposed to perform insulation degradation monitor-
ing and RUL prediction for coil insulation. Coil electrical parameters, which include DCR
and impedance under different frequencies, were collected by thermal accelerated fatigue
test. Coil resonant frequency is identified as the insulation degradation characteristic
parameter by analysis of the insulation failure mechanism and collected experimental data.
The insulation health indicator is thus defined based on resonant frequency to indicate
the health status of the electromagnetic coil. Further, the life model of the electromagnetic
coil is constructed based on the polynomial fitting for resonant frequency data. The RUL
prediction of electromagnetic coils are realized by PF. In order to increase the accuracy and
reduce the complexity of particle filter, the polynomial model with one parameter reduced
is used as the observation equation of the PF algorithm. The prediction accuracy of RUL is
gradually improved with the increase of historical data. The prediction of electromagnetic
coil health status provides support for predictive maintenance of the related equipment
that incorporates coils.

In the future research, the accelerated fatigue test of the electromagnetic coil will be
carried out to collect the degradation data under different fatigue temperature conditions.
The degradation model of the electromagnetic coil is constructed under multi-temperature,
which lays the foundation for the prediction of RUL on variable temperature environments
on site. Meanwhile, the physics-of-failure model based on creep degradation is established,
which solves the defect that RUL prediction relies seriously on historical data. Combined
with the self-learning function of neural networks and the ability to find the optimal
solution at high speed, the degradation model based on neural network is established to
realize the RUL prediction.
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