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Abstract: Recent decades have witnessed the breakthrough of autonomous vehicles (AVs), and the
sensing capabilities of AVs have been dramatically improved. Various sensors installed on AVs
will be collecting massive data and perceiving the surrounding traffic continuously. In fact, a fleet
of AVs can serve as floating (or probe) sensors, which can be utilized to infer traffic information
while cruising around the roadway networks. Unlike conventional traffic sensing methods relying
on fixed location sensors or moving sensors that acquire only the information of their carrying
vehicle, this paper leverages data from AVs carrying sensors for not only the information of the AVs,
but also the characteristics of the surrounding traffic. A high-resolution data-driven traffic sensing
framework is proposed, which estimates the fundamental traffic state characteristics, namely, flow,
density and speed in high spatio-temporal resolutions and of each lane on a general road, and it is
developed under different levels of AV perception capabilities and for any AV market penetration
rate. Experimental results show that the proposed method achieves high accuracy even with a low
AV market penetration rate. This study would help policymakers and private sectors (e.g., Waymo)
to understand the values of massive data collected by AVs in traffic operation and management.

Keywords: autonomous vehicle; LiDAR; camera; state estimation; traffic sensing; data-driven; traffic
flow; NGSIM

1. Introduction

As the combination of a wide spectrum of cutting-edge technologies, autonomous
vehicles (AVs) are destined to fundamentally change and reform the whole mobility sys-
tem [1]. AVs have great potentials in improving safety and mobility [2–4], reducing fuel
consumption and emission [5,6], and redefining civil infrastructure systems, such as road
networks [7–9], parking spaces [10–12], and public transit systems [13,14]. Over the past
two decades, many advanced driver assistance systems (ADAS) (e.g., lane keeping, adap-
tive cruise control) have been deployed in various types of production vehicles. Currently,
both traditional car manufacturers and high-tech companies are competing to lead full
autonomy technologies. For example, Waymo’s AVs alone are driving 25,000 miles every
day in 2018 [15], and there have been commercialized AVs operating in multiple cities by
Uber [16].

Despite the rapid development of AVs technologies, there is still a long way to reach
the full autonomy and to completely replace all conventional vehicles with AVs. We
will witness a long period over which AVs and conventional vehicles co-exist on public
roads. How to sense, model and manage the mixed transportation systems presents a great
challenge to public agencies. To the best of our knowledge, most current studies view
AVs as controllers and focus on modeling and managing the mixed traffic networks [17].
For example, novel system optimal (SO) and user equilibrium (UE) models are estab-
lished to include AVs [18,19], coordinated intersections are proposed to improve the traffic
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throughput [20–22], vehicle platooning strategies are developed to reduce highway con-
gestion [23,24], and AVs can also complement conventional vehicles to solve last-mile
problems [25,26]. However, there is a lack of studies in traffic sensing methods for the
mixed traffic networks.

In this paper, we advocate the great potentials of AVs as moving observers in high-
resolution traffic sensing. We note that traffic sensing with AVs in this paper is different
from perception of AVs [27]. The perception of AV is the key to the safe and reliable
AVs, and it refers to the ability of AVs in collecting information and extracting relevant
knowledge from the environment through various sensors [28], while traffic sensing with
AVs refers to estimating the traffic conditions, such as flow, density and speed using the
information perceived by AVs [29]. To be precise, traffic sensing with AVs is built on top of
the perception technologies on AV, and in this paper, we will discuss the impact of different
perception technologies on traffic sensing.

In fact, a fleet of autonomous vehicles (AVs) can serve as floating (or probe) sensors,
detecting and tracking the surrounding traffic conditions to infer traffic information when
cruising around the roadway network. Enabling traffic sensing with AVs is cost effective.
The AVs equipped with various sensors and data analytics capabilities may be costly. While
costly, those sensors and data are used primarily to detect and track adjacent objects to
enable safe AV driving in the first place. Therefore, there is no additional overhead cost of
these data collections for traffic sensing, since it is a secondary use.

High-resolution traffic sensing is central to traffic management and public policies.
For instance, local municipalities would need information regarding how public space (e.g.,
curbs) is being utilized to set up optimal parking duration limits; metropolitan planning
agencies would need various types of traffic/passenger information, including travel
speed, traffic density and traffic flow by vehicle classifications, as well as pedestrians and
cyclists. In addition, non-emergent and emergent incidents are reported by citizens through
the 911 system, respectively. Automated traffic sensing, both historical and in real time,
can complement those systems to enhance their timeliness, accuracy and accessibility. In
general, accurate and ubiquitous information of infrastructure and usage patterns in public
space is currently missing.

By leveraging the rich data collected through AVs, we are able to detect and track vari-
ous objects in transportation networks. The objects include, but are not limited to, moving
vehicles by vehicle classifications, parked vehicles, pedestrians, cyclists, signage in public
space. When all those objects in high spatio-temporal resolutions are being continuously
tracked, those data can be translated to useful traffic information for public policies and
decision making. The three key features of traffic sensing based on autonomous vehicles
sensors are: inexpensive, ubiquitous and reliable. Those data are collected by automotive
manufacturers for guiding autonomous driving in the first place, which promises great
scalability in this approach. With minimum additional efforts, the same data can be effec-
tively translated into information useful for the community. For instance, how much time
in public space at a particular location is utilized by different classifications of vehicles and
by what travel modes, respectively? Can we effectively evaluate the accessibility, mobility
and safety of the mobility networks? The sensing coverage will become ubiquitous in
the near future, provided with an increasing market share of autonomous vehicles. Data
acquired from individual autonomous vehicles can be compared, validated, corrected, con-
solidated, generalized and anonymized to retrieve the most reliable and ubiquitous traffic
information. In addition, this paper for traffic sensing also implies the future possibility
of interventions for effective and timely traffic management. It enables real-time traffic
monitoring, potentially safer traffic operation, faster emergency response, and smarter
infrastructure management.

The rest of this paper focuses on a critical problem to estimate the fundamental traffic
state variables, namely, flow, density and speed, in high resolution, to demonstrate the
sensing power of AVs. In addition to traffic sensing, there are many aspects and data in
community sensing that could be explored in the near future. For example, perception of
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AVs can be used for monitoring urban forest health, air quality, street surface roughness
and many other applications of municipal asset management [30–33].

Traffic state variables (e.g., flow, density and speed) play a key role in traffic operation
and management. Over the past several decades, traffic state estimation (TSE) methods
have been developed for not only stationary sensors (i.e., Eulerian data) but also moving
observers (i.e., Lagrangian data) [34]. Stationary sensors, including loop detectors, cameras
and radar, monitor the traffic conditions at a fixed location. Due to the high installation
and maintenance cost, the stationary sensors are usually sparsely installed in the network,
and hence the collected data are not sufficient for the practical traffic operation and man-
agement [35]. Data collected by moving observers (e.g., probe vehicles, ride-sourcing
vehicles, unmanned aerial vehicles, mobile phones) have a better spatial coverage and
hence it enables cost-effective TSE in large-scale networks [36]. Though the TSE method
with moving observer dates back to 1954 [37], recent advances in communication and
Internet of Things (IoT) technologies have catalyzed the development and deployment of
various moving observers in the real world. Readers are referred to Seo et al. [29], Wang
and Papageorgiou [38] for a comprehensive review of existing TSE models.

To highlight our contributions, we present studies that are closely related to this
paper. The moving observers can be categorized into four types: originally defined mov-
ing observers, probe vehicles (PVs), unmanned aerial vehicles (UAVs) and AVs. Their
characteristics and related TSE models are presented as follows:

• Originally defined moving observers. The moving observer method for TSE was origi-
nally proposed by Wardrop and Charlesworth [37]. The proposed method requires a
probe vehicle to transverse along the road and count the number of slower vehicles
overtaken by the probe vehicle and the number of faster vehicles which overtake the
probe vehicle [39]. Though the setting of the originally defined moving observers is
too ideal for practice, it enlightened us on the value of using Lagrangian data for TSE.

• PVs. The PVs refer to all the vehicles that can be geo-tracked, and it includes, but
is not limited to, taxis, buses, trucks, connected vehicles, ride-sourcing vehicles [40].
The PV data have great advantages in estimating speed, while it hardly contains
density/flow information. Studies have explored the sensing power of PVs [41]. PV
data are usually used to complement stationary sensor data to enhance the traffic state
estimation [42,43]. PVs with spacing measurement equipment can estimate traffic flow
and speed simultaneously [44–47].

• UAVs. By flying over the roads and viewing from top-view perspectives, UAVs
are able to monitor a segment of road or even the entire network [48–50]. UAVs
have the advantage of better spatial coverage, while extra purchase of UAVs and the
corresponding maintenance cost are required. Traffic sensing with UAV has been
extensively studied in recent years, including vehicle identification algorithms [50–52],
sensing frameworks [53,54], and UAV routing mechanisms [55,56].

• AVs. AVs can be viewed as probe vehicles equipped with more sensors and hence have
better perception capabilities. Not only can the AV itself be geo-tracked, the vehicles
surrounded by AVs can also be detected and tracked. AVs also share some similarities
with UAVs because AVs can scan a continuous segment of road. We believe that AVs
fall in between the PVs and UAVs, and hence existing TSE methods can hardly be
applied to AVs. Furthermore, there are few studies on TSE with AVs. Moreover, Chen
et al. [57] presents a cyber-physical system to model the traffic flow near AVs based
on flow theory, while the TSE for the whole road is not studied. Recently, Uber ATG
conduct an experiment to explore the possibility of TSE using AVs [58] but no rigorous
quantitative analysis is provided.

The characteristics of TSE methods using different sensors are compared in Table 1.
One can see that AVs have unique characteristics that are different from any other moving
observers. Given the unique characteristics of AVs, there is a great need to study the AV-
based TSE methods. However, as discussed above, this research area is still under-explored.
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In view of this, we develop a data-driven framework that estimates high-resolution traffic
state variables, namely flow, density and speed using the massive data collected by AVs.
The framework clearly defines the task of TSE with AVs involved and considers different
perception levels of AVs. A two-step TSE method is proposed under a low AV market
penetration rate. While this paper focuses on the road level traffic state estimation, the
proposed approach could be further extended to the network-wide TSE, which is left for
future research. The main contributions of this paper are summarized as follows:

• We firstly raise and clearly define the problem of TSE with multi-source data collected
by AVs.

• We discuss the functionality and role of various AV sensors in traffic state estimation.
The sensing power of AVs is categorized into three levels.

• We rigorously formulate the AV-based TSE problem. A two-step framework that
leverages the sensing power of AVs to estimate high-resolution traffic state variables
is developed. The first step directly translates the information observed by AVs to
spatio-temporal traffic states and the second step employs data-driven methods to
estimate the traffic states that are not observed by AVs. The proposed estimation
methods are data-driven and consistent with the traffic flow theory.

• The next generation simulation (NGSIM) data are adopted to examine the accuracy
and robustness of the proposed framework. Experimental results are compelling,
satisfactory and interpretable. Sensitivity analysis regarding AV penetration rate,
sensor configuration, and perception accuracy will also be studied.

Table 1. Comparisons among TSE methods using different sensors.

Stationary Probe Vehicles (PVs)
UAVs

Detectors Conventional PVs PVs with Spacing
Measurement AVs

Installed Sensors Loop detectors, cameras GPS GPS, LRR GPS, LRR, LiDAR,
cameras GPS, cameras

Raw Data Collected Vehicle counts over time Trajectory of the PVs
Trajectory of the PVs and
their first preceding
vehicles

Trajectory of the AVs
and their first
preceding vehicles;
locations (or
trajectories) of all the
surrounding vehicles

Birdviews of all vehicle
locations

Is TSE possible? Yes No, only speed can be
estimated Yes Yes Yes

Cost-effective No Yes Yes Yes No

Easy to Deploy No Yes Yes Yes Yes

Required Market
Penetration Rate
for TSE

N/A N/A High Low Low

Literature Wang and Papageorgiou
[38], Thai and Bayen [59]

O’Keeffe et al.
[41], Herring et al.
[60], Yu et al. [61]

Wilby et al. [44], Seo et al.
[45,46], Fountoulakis et al.
[47]

This paper Puri [48], Kanistras et al.
[49], Ke et al. [50]

GPS: The Global Positioning System. LRR: Long Range Radar. LiDAR: Light Detection and Ranging.

Since TSE with AV data has not been explored in previous studies, this paper is
probably the first attempt to rigorously tackle this problem. To this end, we first review the
existing AV technologies that can contribute to traffic sensing, then we rigorously formulate
the TSE problem. Finally, we propose and examine the solution framework. An overview
of the paper structure is presented in Figure 1.
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Figure 1. An overview of the paper structure.

Section 2 discusses the sensing power of AVs. Section 3 rigorously formulates the high-
resolution TSE framework with AVs, followed by a discussion of the solution algorithms
in Section 4. In Section 5, numerical experiments are conducted with NGSIM data to
demonstrate the effectiveness of the proposed framework. Lastly, conclusions are drawn in
Section 6.

2. Sensing Power of Autonomous Vehicles

In order to prepare for the rigorous formulation of the AV-based TSE framework, we
first discuss different levels of AV perception capabilities and how they associate with
traffic sensing in this section. We discuss various sensors installed on AVs and their
relation to traffic sensing. Analogous to the automation level definitions from the Society
of Automotive Engineers (SAE), we define three sensing levels of AVs. Lastly, we discuss a
conceptual data center for processing the sensing data.

2.1. Sensors

In this section, we discuss different types of sensors used for AV perception and their
potential usage for traffic sensing. Sensors for perception that are mounted on AVs include,
but are not limited to, camera, stereo vision camera, LiDAR, radar and sonar [28].

A camera can detect shapes and colors, so it is widely used for object detection (e.g.,
signals, pedestrians, vehicles and lane marks). Due to its low cost, multiple cameras can
be mounted on a single AV. Theoretically, studies have shown that camera data can be
used for object detection, tracking and traffic sensing [62,63]. In practice, camera image
does not contain depth (distance) information, the localization of vehicles is challenging
when using a single camera. On the modern AV prototypes, cameras are usually fused
with stereo vision camera system or LiDAR to perceive the surrounding environments.
In particular, the shape and color information obtained from camera are essential for
object tracking [64,65]. Stereo vision camera refers to a device with two or more cameras
horizontally mounted. Stereo vision camera is able to obtain the depth information of each
pixel from the slightly different images taken by its cameras.

Light detection and ranging (LiDAR) uses the pulsed laser beam to measure the
distance to the detected object. LiDAR can also obtain the 3D shape of the detected object.
The LiDAR used on AVs is typically 360◦, and the detection range varies from 30 to 150
m, depending on makers, detection algorithms and weather conditions. Both LiDAR and
stereo vision camera can be used for vehicle detection and 3D mapping. The system latency
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(time delay for processing the retrieved data) of stereo vision camera is higher than LiDAR,
though the price of stereo vision camera is much cheaper [27]. Theoretically, either the
LiDAR or stereo vision camera can be used to build the full AV perception system, while
currently, most AVs use LiDAR as the primary sensor.

There are two types of radar-mounted on AVs. The short-range radar (SRR) is typically
used for blind spot detection, parking assist and collision warning. The range for SRR
is around 20 m [66]. Similarly, sonar, with its limited detection range (3 to 5 m), is also
frequently used for blind spot detection and parking assist. Neither of the two sensors
are considered as appropriate sensors for traffic sensing. In contrast, the long-range radar
(LRR), which is primarily used for adaptive cruise control, can be potentially used for
traffic sensing. The range for LRR is around 150 m and it is dedicated to detecting the
preceding vehicle in its current lane.

To conclude, Table 2 summarizes a list of sensors that can be potentially used for traffic
sensing based on Van Brummelen et al. [27], Thakur [67].

Table 2. Sensors used for traffic sensing.

Sensors Usage Range

Camera Surrounding vehicle detection/tracking, lane detection 20∼60 m
Stereo vision camera Surrounding vehicle detection/tracking, 3D mapping 20∼60 m

LiDAR Surrounding vehicle detection/tracking, 3D mapping 30∼150 m
Long-range radar Preceding vehicle detection 150 m

2.2. Levels of Perception

In this section, we discuss how to categorize the sensing power of AVs with sensors
listed in Table 2. The Society of Automotive Engineers (SAE) proposed a six-level classifi-
cation criteria for autonomous vehicles [68]. L1 AVs can conduct adaptive cruise control
(ACC), which is fulfilled by the long-range radar. From the perspective of traffic sensing,
the L1 AV can always detect the location and speed of its preceding vehicle in the same lane.
From L2 to L5, AVs gradually take control from human drivers. To achieve that, AVs need
to continuously monitor the surrounding traffic conditions. From the perspective of traffic
sensing, L2–L5 vehicles can detect or track the vehicles in their surrounding areas. Here,
we emphasize the difference between vehicle detection and vehicle tracking. Detection
refers to the localization of a vehicle when it appears in the detection area of an AV, and
tracking means that AV can keep track of a vehicle, as long as it is within the detection
area. To be precise, the task of detection does not require one to “memorize” the detected
vehicles in each time frame, while tracking requires the AV to keep track of the detected
vehicles when they are within the detection range. Tracking is technically much more
challenging than the detection. As of today, the detection technology is fairly mature, while
the tracking technology is still not ready for real-world applications [69]. The reason for
the difference is that the detection/tracking is conducted frame by frame on AVs. If the AV
processes 30 frame per-second, tracking requires one to accurately detect all the vehicles
in each frame and match them correspondingly, while detection does not require one to
match the vehicles in different frames. The matching is challenging because vehicles often
block each other at times, and this makes it difficult for machines to decide whether the
detected vehicle is the same vehicle detected in previous frames. From the perspective
of traffic sensing, detection only provides the locations of each vehicle, but tracking can
provide additional speed information.

Analogous to the SAE’s automation level definitions, we define three levels of sensing
power for AVs, as presented in Figure 2.
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Figure 2. Overview of the perception levels.

The precise descriptions of the three perception levels are as follows.

• S1: The primary task for S1 is to track the preceding vehicle within the same lane, and
this is originally used for the ACC. However, the speed and location of the preceding
vehicle are obtained for TSE.

• S2: In addition to S1, the primary task for S2 is to detect and locate surrounding
vehicles of an AV. Only vehicle counting at each time frame is obtained, and the speed
information is not required in S2.

• S3: In addition to S2, the primary task for S3 is to track every uniquely identified vehi-
cle in the detection area, hence the location and speed of each vehicle are monitored
over time by AVs in S3.

Based on the definition of AV perception levels, S1 requires a LRR dedicated for
preceding vehicles, S2 requires a LiDAR/radar system, and S3 requires a comprehensive
fusion of camera, LiDAR, and radar. To be precise, Section 2.3 discusses how different
sensors are combined to fulfill different levels of sensing power.

2.3. Detection Area of AVs

We now define the surrounding area (or detection area) of AVs, which is used through-
out the paper. The detection area of AVs depends on the sensor configurations. Figure ??
presents two configurations of AV sensors. In the model of nuScenes, various sensors are
mounted at different locations of an AV, while Waymo integrates most of the sensors on top
of the vehicle. Depending on various sensor configurations on different AVs, the detection
area of AVs can be different [70].

Sensors 2021, 21, 0 7 of 35

Figure 2. Overview of the perception levels.

The precise descriptions of the three perception levels are as follows.

• S1: The primary task for S1 is to track the preceding vehicle within the same lane, and
this is originally used for the ACC. However, the speed and location of the preceding
vehicle are obtained for TSE.

• S2: In addition to S1, the primary task for S2 is to detect and locate surrounding
vehicles of an AV. Only vehicle counting at each time frame is obtained, and the speed
information is not required in S2.

• S3: In addition to S2, the primary task for S3 is to track every uniquely identified vehi-
cle in the detection area, hence the location and speed of each vehicle are monitored
over time by AVs in S3.

Based on the definition of AV perception levels, S1 requires a LRR dedicated for
preceding vehicles, S2 requires a LiDAR/radar system, and S3 requires a comprehensive
fusion of camera, LiDAR, and radar. To be precise, Section 2.3 discusses how different
sensors are combined to fulfill different levels of sensing power.

2.3. Detection Area of AVs

We now define the surrounding area (or detection area) of AVs, which is used through-
out the paper. The detection area of AVs depends on the sensor configurations. Figure 3
presents two configurations of AV sensors. In the model of nuScenes, various sensors are
mounted at different locations of an AV, while Waymo integrates most of the sensors on top
of the vehicle. Depending on various sensor configurations on different AVs, the detection
area of AVs can be different [70].

             (a) nuScenes   (b) Waymo

Figure 3. Two examples of sensor configurations, from nuScenes [71], Waymo Team 
[72].

In this paper, we adopt a simplified representation of the AV detection area, as pre-
sented in Figure 4.

Figure 3. Two examples of sensor configurations, from nuScenes [71], Waymo Team [72].

In this paper, we adopt a simplified representation of the AV detection area, as pre-
sented in Figure 4.
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Figure 4. A simplified representation of AV detection area.

The detection area in Figure 4 consists of two components: D1 and D2. D1 is used
for detecting the preceding vehicle and fulfilled by the LRR; D2 is for detecting all the
surrounding vehicles, which is supported by the combination of LiDAR and cameras. We
assume only D1 is active in S1, while both D1 and D2 are active in S2 and S3, as presented
in Table 3. Within the detection range, we assume that the AV can measure the distance
between itself and surrounding vehicles with a zero mean distance error, and the impact of
the error will be quantified in the numerical experiments.

Table 3. Summary of detection area and level of perceptions.

Sensing Power Detection Area Information Obtained

S1 D1 Speed/location of the preceding vehicle
S2 D1 and D2 Speed/location of the preceding vehicle, location of surround vehicles
S3 D1 and D2 Speed/location of the preceding vehicle and surrounding vehicles

2.4. Centralized Data Communication, Collection, and Processing

In this paper, we assume that there is a centralized data service (data center) that
receives all the information sent by AVs, as presented in Figure 5. Due to the bandwidth
and latency restrictions, AVs do not send all the raw data to the data center. Instead, they
only send the location and speed of the surrounding vehicles if applicable. The main task
for the data center is to aggregate the information and remove the redundant information
when the same vehicle is detected multiple times by different AVs in S2 and S3. This
task can be done by checking and matching the location of the detected vehicles. For
example, the vehicle with a green rectangle in Figure 5 is detected by two AVs, hence two
duplicate data points are sent to the data center and the data center is able to identify
and clean these duplicate data points. The localization accuracy is usually within the size
of a standard vehicle, hence the accuracy for matching and cleaning is high [73]. In the
numerical experiments, we will conduct a sensitivity analysis to evaluate the impact of
different matching accuracies.
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Figure 5. An illustration of the data center.

3. Formulation

Now, we are ready to rigorously formulate the traffic state estimation (TSE) framework
with AVs. We first present the notations, and then the traffic states variables are defined. A
two-step estimation method is proposed: the first step directly translates the information
observed by AVs to spatio-temporal traffic states, and the second step employs data-driven
methods to estimate the traffic states that are not observed by AVs.

3.1. Notations

All the notations will be introduced in context, and Table 4 provides a summary of the
commonly used notations for reference.

3.2. Modeling Traffic States in Time-Space Region

We consider a highway with |L| lanes, where L = {0, 1, · · · , |L| − 1}. The operator
| · | is the counting measure for countable sets. For each lane l ∈ L, we denote Xl as the set
of longitudinal locations on lane l. In this paper, we treat each lane as a one-dimensional
line. Without loss of generality, we set the starting point of Xl to be 0, hence Xl = [0, µ(Xl)],
where µ(Xl) is the length of lane l. Throughout the paper, we denote operator µ(·) as the
Lebesgue measure in either one or two dimensional Euclidean space, and it represents the
length or area for one or two dimensional space. Note in this paper we assume the length
of each lane is the same µ(X) = µ(Xl), ∀l ∈ L, while the proposed estimation method
can be easily extended to accommodate different lane lengths. We further discretize the
road Xl to |S| equal distance road segments and each road segment is denoted by Xls,
where s ∈ S is the index of the road segment and S = {0, 1, · · · , |S| − 1}. Hence, we have
Xls = [s∆X, (s + 1)∆X ] and ∆X = µ(X)

|S| . The above road discretization is visualized in
Figure 6.

Figure 6. An illustration of the highway discretization.
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Table 4. List of notations.

General Variables

l Index of a lane
L The set of all lane indices l
T The set of all time points in the study period
Th The set of all time points in time interval h
x A longitudinal location along the road

Xl The set of all longitudinal locations on lane l
? Traffic state that is not directly observed by AVs

µ(·) The Lebesgue measure for either one or two dimensional Euclidean space
| · | The counting measure for the countable sets

Variables in a Time-Space Region

h Index of a time interval
H The set of all indices t in the study period
s Index of a longitudinal road segment
S The set of all indices s

Xls The set of all longitudinal locations in road segment s and lane l
Al(h, s) A cell in time-space region for time interval h road segment s and lane l
v̄l(h, s) Average speed for time interval h road segment s and lane l
q̄l(h, s) Average traffic flow for time interval h road segment s and lane l
k̄l(h, s) Average density for time interval h road segment s and lane l
ai

l(h, s) The headway area of vehicle i in time-space region Al(h, s)

Variables Related to Vehicles

i Index of a vehicle
I The set of all vehicle indices i

Il(h, s) The set of all vehicles indices in time interval h road segment s and lane l
vi(t) Instantaneous speed of vehicle i at time t
hi(t) Instantaneous headway of vehicle i at time t
xi(t) Instantaneous longitudinal location of vehicle i at time t
li(t) The lane in which vehicle i is located at time t

ti The time point when the vehicle i enters the road
t̄i The time point when the vehicle i exits the roads

di
ls The distance traveled by vehicle i in road segment s on lane l

ti
lh The time spent in time interval h on lane l by vehicle i

Variables Related to Autonomous Vehicles

j Index of detection area
Dj The detection area of an AV
IA The set of all autonomous vehicle indices
Oj

l The set of time-space indices (h, s) such that Xls is covered by the AV detection area Dj in time interval h

Variables Related to the Sensing Framework

k̃l(h, s) The directly observed density for time interval h road segment s and lane l
ṽl(h, s) The directly observed speed for time interval h road segment s and lane l
k̂l(h, s) The estimated density and speed for time interval h road segment s and lane l
v̂l(h, s) The estimated speed for time interval h road segment s and lane l

We denote i as the index of a vehicle and I as the set of all vehicle indices. We further
define the location

(
xi(t), li(t)

)
, speed vi(t), and space headway hi(t) at a time point t ∈ T,

where xi(t) is the longitudinal location of vehicle i at time t, li(t) is the lane in which vehicle
i is located at time t, and T is the set of all time points in the study period. We assume
that each vehicle i only enters the highway once. If a vehicle enters the highway multiple
times, the vehicle at each entrance will be treated as a different vehicle. To obtain the traffic
states, we construct the distance di

l and time ti
l and headway area αi

l from vehicle location(
xi(t), li(t)

)
, speed vi(t), and headway hi(t) for a vehicle i based on Edie [74]. Throughout

the paper, each vehicle is represented by a point, which is located at the center of each
vehicle shape. When the vehicle is at the border of two lanes, function li(t) will randomly
assign the vehicle to either of the lanes.

Suppose ti denotes the time point when the vehicle enters the highway and t̄i denotes
the time point when the vehicle exits the highway, we denote the distance traveled and
time spent on lane l by vehicle i as di

ls and ti
lh, respectively. Mathematically, di

ls and ti
lh are

presented in Equation (1).
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di
ls = µ

({
xi(t) ∈ Xls|ti ≤ t ≤ t̄i, li(t) = l

})
ti
lh = µ

({
t ∈ Th|ti ≤ t ≤ t̄i, li(t) = l

}) (1)

We use the headway area αi
l to represent the headway between vehicle i and its

preceding vehicle on lane l in the time-space region, and it is represented by Equation (2).

αi
l =

{
(t, x)|ti ≤ t ≤ t̄i, li(t) = l, xi(t) ≤ x ≤ xi(t) + hi(t)

}
(2)

When we have the trajectories of all vehicles on the road, we can model the traffic states
of each lane in a time-space region. Without loss of generality, we set the starting point of t
to be zero, hence we have T = [0, µ(T)], where µ(T) is the length of the study period. We
discretize the study period T to |H| equal time intervals, where H = {0, 1, · · · , |H| − 1}.
We denote Th as the set of time points for interval h, where h ∈ H. Therefore, we have
Th = [h∆H , (h + 1)∆H ], where ∆H = µ(T)

|H| . In this paper, we use uniform discretization for
Xl and T to simplify the formulation, while the proposed estimation methods work for the
arbitrary discretization scheme.

We use Al(h, s) to denote a cell in the time-space region for road segment Xls and time
period Th, as presented in Equation (3).

Al(h, s) = Th ⊗ Xls
= Polygon[(h∆H , s∆X), ((h + 1)∆H , s∆X),

((h + 1)∆H , (s + 1)∆X), (h∆H , (s + 1)∆X)]
= {(t, x)|h∆H ≤ t ≤ (h + 1)∆H , s∆X ≤ x ≤ (s + 1)∆X}

We denote the headway area of vehicle i in cell Al(h, s) by ai
l(h, s), as presented in

Equation (3). The headway area can be thought of as the multiplication of the space
headway and time headway in the time-space region.

ai
l(h, s) = Al(h, s) ∩ αi

l (3)

Example 1 (Variable representation in time-space region). In this example, we illustrate the
variables defined in the time-space region. We consider a one-lane road and the lane index is l.
Furthermore, Xl is segmented into 6 road segments (Xl0, · · · , Xl5), and T is segmented into 10
time intervals (T0, · · · , T9), as presented in Figure 7. The cell Al(0, 4) is the intersection of Xl4
and T0, Al(8, 1) is the intersection of Xl1 and T8.

Each green line in the time-space region represents the trajectory of a vehicle. In Figure 7,
we highlight the first (i = 0), second (i = 1) and the 8th (i = 7) vehicle trajectory. The distance
traveled by each vehicle is the same, hence di

l = µ(Xl) = µ(X). We also highlight t7
l in Figure 7,

which represents the time spent by each vehicle i = 7 on lane l.
The headway area of vehicle i = 1, denoted by α1

l , is represented by the green shaded area.
The red shaded area, which represents a1

l (1, 2), is the intersection of α1
l and Al(1, 2), based on

Equation (3).

According to Seo et al. [46], Edie [74], we compute the traffic states variables, namely
flow q̄l(h, s), density k̄l(h, s) and speed v̄l(h, s), for each road segment Xls and time period
Th, as presented in Equation (4).

q̄l(h, s) =
∑i∈I di

ls
∑i∈I µ(ai

l(h,s))

k̄l(h, s) =
∑i∈I ti

lh
∑i∈I µ(ai

l(h,s))

v̄l(h, s) = q̄l(h,s)
k̄l(h,s) =

∑i∈I di
ls

∑i∈I ti
lh

(4)
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Figure 7. An example of variables in time-space region (the time-space region is associated with the
green-colored lane, vehicles on the left subplot are for illustration purpose and do not exactly match
with the trajectories on the left subplot).

We treat the traffic states, (e.g., flow q̄l(h, s), density k̄l(h, s) and speed v̄l(h, s)) esti-
mated from full samples of vehicles I as ground truth and unknown. In the following
sections, we will develop a data-driven framework to estimate the traffic states from the
partially observed traffic information obtained from autonomous vehicles under different
levels of perception power.

3.3. Challenges in the High-Resolution TSE with AVs

As summarized in Table 1, TSE with AVs is a unique problem that has not been
explored. In this section, we highlight the difficulties of this unique problem, and further
motivate the proposed traffic sensing framework in the following sections.

As the vehicle trajectories in high-resolution time-space region are complicated, the
information collected by the AVs is also highly complicated and fragmented. To illustrate,
we consider a two-lane road with three vehicles (one AV, and two conventional vehicles A
and B), as shown in Figure 8. The trajectory of the AV is represented by the blue line, and
the shaded area is the detection area of the AV. The detection area of the AV is represented
by the shaded areas with blue and grey color. Even when the AV is on the lane 0, it can still
detect the vehicles on lane 1, thanks to the characteristics of LiDAR and cameras. Hence,
the blue area means that the AV is on the current lane, and the grey area means that the AV
is on the other lane.

As shown in Figure 8, both the AV and vehicle A change lanes during the trip. Vehicle
A changes lane at the middle of time interval 1, and the AV change lanes at the beginning
of time interval 3. One can see that vehicle A can be detected by the AV in the cell (1, 2) on
both lane 0 and lane 1, and vehicle B can be detected in the cell (3, 3) and (3, 4) on lane 1.
For the cell (1, 3) on lane 1, it is not straightforward to see whether vehicle A is detected or
not, hence rigorous mathematical formulations should be developed to determine which
cells are observable and which cells should be estimated. In real-world congested roads,
vehicles might change lanes frequently, and hence their trajectories can be very complicated.
From the example, we can see that, due to the complicated vehicle trajectories on the roads,
the information collected by the AVs is non-uniformly distributed in the time-space region,
and most of the existing TSE methods cannot be applied to such data. Therefore, solving
the TSE with AV data calls for a new estimation framework.
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Figure 8. An illustrative example of the complicated and fragmented information collected by AVs
(colored version available online).

3.4. Overview of the Traffic Sensing Framework

In this section, we present an overview of the traffic sensing framework with AVs. We
assume a subset of vehicles are AVs, namely IA ⊆ I, where IA denotes the index set of all
AVs. The goal for the traffic sensing framework is to estimate the density and speed of
each cell in the time-space region, using the information observed by AVs. Once the speed
and density are estimated accurately, the traffic flow can be obtained by the conservation
law [75].

The TSE methods can be categorized into two types: model-driven methods and
data-driven methods. The model-driven methods rely on physical models such as traffic
flow theory, while the data-driven methods automatically learn the relationship between
different variables. In the case of AV-based TSE, the observed information is fragmented
and lacking in certain patterns, so it is challenging to establish the physical model. In
contrast, the data-driven methods can be built easily, thanks to the massive data collected
by the AVs. Therefore, this paper focuses on the data-driven approach.

The proposed framework consists of two major parts: direct observation and data-
driven estimation, as presented in Figure 9.

In the direct observation step, density and speed are observed directly through AVs.
Since AVs are moving observers [37], traffic states can only be observed partially for a
set of time intervals and road segments (i.e. cells) in a time-space region. Section 3.5 will
rigorously determine the set of cells that can be directly observed by AVs and compute
the direct observations from information obtained by AVs. We will discuss the direct
observation with different levels of sensing power. The second part aims at filling up the
unobserved information with data-driven estimation methods. The functions Ψl and Φl
are used to estimate the unobserved density and speed on lane l, respectively. Details will
be presented in Section 3.6.
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Figure 9. An overview of the traffic sensing framework for each one lane.

3.5. Direct Observation

In this section, we present to compute traffic states using the information that is
directly observed by AVs under different levels of perception. We define Oj

l , j ∈ {1, 2} as
the set of time-space indices (h, s) of the cells that are observed by the AVs, and j is the
index of the detection area. The set O1

l presents all (h, s) detected by D1, and O2
l present

all (h, s) detected by D2. Details are presented in Appendix A. Now we formulate the
traffic states that can be directly observed by AVs under different levels of perception. As a
notation convention, we use ? to represent the information that cannot be directly observed
by AVs, and k̃l , ṽl denote the directly observed density and speed, respectively.

3.5.1. S1: Tracking the Preceding Vehicle

In the perception level S1, an AV can only detect and track its preceding vehicle, and
hence its detection area for density and speed is O1

l . The observed density and speed can
be represented in Equation (5).

k̃l(h, s) =


∑i∈IA ti

lh

∑i∈IA µ(ai
l(h,s))

if (h, s) ∈ O1
l

? else

ṽl(h, s) =


∑i∈IA di

ls

∑i∈IA ti
lh

if (h, s) ∈ O1
l

? else

(5)

Equation (5) is proven to be an accurate estimation of the traffic states [46]. We note
that some AVs also have a LRR mounted to track the following vehicle behind the AVs,
and this situation can be accommodated by replacing the set IA with IA ∪ Following(IA)
in Equation (5), where Following(IA) represents all the vehicles that follow AVs in IA.

When the AV market penetration rate is low, O1
l only covers a small fraction of all cells

in the time-space region, especially for multi-lane highways. In contrast, O2
l covers more

cells than O1
l . Practically, it implies that the LiDAR and cameras are the major sensors for

traffic sensing with AVs.

3.5.2. S2: Locating Surrounding Vehicles

In the perception level S2, both D1 and D2 are enabled by the LRR, LiDAR and
cameras, while D2 can only detect the location of surrounding vehicles. Hence, the density
can be observed in both D1 and D2, and the speed is only observed in D1. The estimation
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method for D1 cannot be used for D2, since the preceding vehicles of the detected vehicle
might not be detected, hence αi

l(h, s) cannot be estimated accurately. Instead, D2 provides
a snapshot of the traffic density at a certain time point, and we can compute the density of
time interval h by taking the average of all snapshots, as presented in Equation (6).

k̃l(h, s) =


∑i∈A ti

lh
∑i∈A µ(ai

l(h,s))
if (h, s) ∈ O1

l

1
µ(To

h (l,s))

∫
t∈To

h (l,s)
|Io

l (t,s)|
∆X

dt else if (h, s) ∈ O2
l

? else

ṽl(h, s) =


∑i∈A di

ls
∑i∈A ti

lh
if (h, s) ∈ O1

l

? else

(6)

where To
h (l, s) represents the set of time indices when Xls is covered by the D2 in Th, and

Io
l (t, s) represents the set of vehicles detected by D2 on Xls at time t. Detailed formulations

are presented in Appendix A.

3.5.3. S3: Tracking Surrounding Vehicles

In the perception level S3, both localization and tracking are enabled by the LRR,
LiDAR and cameras. In addition to the information obtained by S2, speed information
of surrounding vehicles in D2 is also available. Similar to the density estimation, we first
computed the instantaneous speed of a cell at a certain time point by taking the harmonic
mean of all detected vehicles, and then the average speed of a cell is computed by taking
the average of all time points, as presented by Equation (7).

k̃l(h, s) =


∑i∈A ti

lh
∑i∈A µ(ai

l(h,s))
if (h, s) ∈ O1

l

1
µ(To

h (l,s))

∫
t∈To

h (l,s)
|Io

l (t,s)|
∆X

dt else if (h, s) ∈ O2
l

? else

ṽl(h, s) =


∑i∈A di

ls
∑i∈A ti

lh
if (h, s) ∈ O1

l
1

µ(To
h (l,s))

∫
t∈To

h (l,s)
hmean

({
vi(t)|xi(t) ∈ Xls, i ∈ I

})
dt else if (h, s) ∈ O2

l

? else

(7)

where hmean(·) represents the harmonic mean. Though S3 provides the most speed infor-
mation, the directly observed density is the same for S2 and S3. Overall, the sensing power
of AV increases as more cells are directly observed from S1 to S3. In the following section,
we will present to fill the ? using data-driven methods.

3.6. Data-Driven Estimation Method

In this section, we propose a data-driven framework to estimate the unobserved
density and speed in k̃l(h, s), ṽl(h, s). To differentiate the density (speed) before and after
the estimation, we use k̂l(h, s) and v̂l(h, s) to represent the estimated density and speed
for time interval h road segment s and lane l, while k̃l(h, s), ṽl(h, s) denote the density and
speed before the estimation (i.e. after the direct observation). The method consists of two
steps: (1) estimate the unobserved density k̂l(h, s) given the observed density k̃l(h, s); (2)
estimate the unobserved speed v̂l(h, s) given that the density k̂l(h, s) is fully known from
estimation and speed ṽl(h, s) is partially known from direct observation.

We present the generalized form for estimating the unobserved density and speed in
Equations (8) and (9), respectively.

k̂l(h, s) = Ψl
(
h, s, {k̃l′}l′

)
(8)

v̂l(h, s) = Φl

(
h, s, {ṽl′}l′ , {k̂l′}l′

)
(9)
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where Ψl is a generalized function that takes the observed density {k̃l}l and time/space
index h, s as input and outputs the estimated density. Φl is also a generalized function to
estimate speed, while its inputs include the observed speed {ṽl}l , the estimated density
{k̂l}l , and the time/space index h, s. In this paper, we propose matrix completion-based
methods for Ψl , and both matrix completion-based and regression-based methods for Φl .
The details are presented in the following subsections.

3.6.1. Matrix Completion-Based Methods

The matrix completion-based model can be used to estimate either density or speed.
We first assume that densities (speeds) in certain cells are directly observed by the AVs, as
presented in Equation (10).

k̂l(h, s) = k̃l(h, s), ∀(h, s) ∈ Ok
l

v̂l(h, s) = ṽl(h, s), ∀(h, s) ∈ Ov
l

(10)

where we denote Ok
l and Ov

l as the detection area for density and speed of lane l in time-
space region with a certain sensing power. Precisely, for S1, Ok

l = O1
l , Ov

l = O1
l ; for S2,

Ok
l = O1

l ∪O2
l , Ov

l = O1
l ; and for S3, Ok

l = O1
l ∪O2

l , Ov
l = O1

l ∪O2
l .

For each lane l, the estimated density k̂l (or speed v̂l) forms a matrix in the time-space
region, and each row represents a road segment s, and each column represents a time
interval h. Some entries ((h, s) /∈ Ok

l or (h, s) /∈ Ov
l ) in the density matrix (or speed matrix)

are missing. To fill the missing entries, many standard matrix completion methods can
be used. For example, the naive imputation (imputing with the average values across
all time intervals or across all cells), k-nearest neighbor (k-NN) imputation [76], and the
singular-value decomposition (SVD)-based SOFTIMPUTE algorithm [77]. In the numerical
experiments, the above-mentioned methods will be benchmarked using real-world data.

3.6.2. Regression-Based Methods

The speed data can also be estimated by a regression-based model, given that the
density k̂l(h, s) is fully estimated. We train a regression model fl to estimate the speed from
densities for lane l, as presented in Equation (11).

v̂l(h, s) = fl({k̂l′(h′, s′) : l − δl ≤ l′ ≤ l + δl , h− δh ≤ h′ ≤ h,

s− δs ≤ s′ ≤ s + δs, l′ ∈ L, s ∈ S, h ∈ H}) (11)

where δl , δh, δs represent the number of nearby lanes, time intervals and road segments
considered in the regression model. The intuition behind the regression model is that
the speed of a cell can be inferred by the densities of its neighboring cells. The choice
of Equation (11) is inspired by the traffic flow theory (e.g., fundamental diagrams and
car-following models) as the interactions between vehicles result in the road volume/speed.
A specific example of fl is the fundamental diagram [78], which is formulated as v̂l(h, s) =
fl

(
k̂l(h, s)

)
by setting δl = δh = δs = 0.

In this paper, we adopt a simplified function fl(·) presented in Figure 10. Suppose
we want to estimate the speed for cell 1; there are 12 neighboring cells (including cell 1)
considered as inputs. The regression methods adopted in this paper are Lasso [79] and
random forests [80]. We also map the cells to the physical roads in time t and t− 1, as
presented in Figure 11. Figure 11 shows a three-lane road in time t and t − 1, and the
numbers marked for each road segment exactly match the cell number in Figure 10.
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Figure 10. Cells in time-space region used for speed estimation.

Figure 11. Cells in physical road used for speed estimation.

4. Solution Algorithms

In this section, we discuss some practical issues regarding the traffic sensing frame-
work proposed in Section 3.

4.1. Computation of ai
l(h, s)

To obtain the ground truth (Equation (4)) and the observed density (Equation (5)),
ai

l(h, s), which denotes the headway area of vehicle i in cell Al(h, s) (Equation (3)), needs
to be computed in the time-space region. Moreover, ai

l(h, s) is computed by intersecting
Al(h, s) and αi

l , and Al(h, s) can be represented by a rectangle in the time-space region.
The headway area for vehicle i αi

l is usually banded [46], which can be approximated by a
polygon. Therefore, ai

l(h, s) can also be represented by a polygon, and the interaction of a
rectangle (which is also a special polygon) and a polygon can be conducted efficiently [81].

4.2. Sampling Rate

As discussed in Section 2.4, AVs send messages to the data center periodically. Let the
sampling rate denote the message sending frequency, and we assume that all AVs have
the same sampling rate. When the sampling rate is high, the data center can obtain the
density and speed information in high temporal resolution, hence the traffic sensing can be
accurate. On the other hand, the sampling rate is limited by the bandwidth and latency of
the message transmission network. In the numerical experiments, sensitivity analysis will
be conducted to study the impact of sampling rate.

4.3. Cross-Validation

In the data-driven method presented in Section 3.6, the cross-validation is conducted
for model selection in both matrix completion-based and regression-based methods.
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In the matrix completion-based model, we use cross-validation to select the maximal
rank in the SOFTIMPUTE and the number of nearest neighbors in the k-NN imputation [82].
To perform the cross-validation for the matrix completion, we randomly hide 10% of the
matrix entries and run the imputation methods on the rest of entries. Then, we measure
the imputation accuracy by comparing the imputed values and the actual values on the
10% hidden entries.

In the regression-based model, 5-fold cross-validation is performed to select the
optimal parameter settings for different regression methods, such as the weight of regular-
ization term in Lasso, number of base estimators in random forests.

5. Numerical Experiments

In this section, we conduct the numerical experiments with NGSIM data to examine
the proposed TSE framework. All the experiments below are conducted on a desktop with
Intel Core i7-6700K CPU @ 4.00GHz × 8, 2133 MHz 2 × 16GB RAM, 500GB SSD, and the
programming language is Python 3.6.8.

5.1. Data and Experiment Setups

We use next generation simulation (NGSIM) data to validate the proposed framework.
NGSIM data contain high-resolution vehicle trajectory data on different roads [83]. Our
experiments are conducted on I-80, US-101 and Lankershim Boulevard, and the overviews
of the three roads are presented in Figure 12. NGSIM data are collected using a digital
video camera, and its temporal resolution is 100ms. Details of the three roads can be found
in Alexiadis et al. [83], He [84].

Figure 12. Overview of three networks(adapted from NGSIM website [83] and He [84], high-
resolution figures are available at FHWA [85]).

We assume that a random set of vehicles are AVs and the AVs can perceive the
surrounding traffic conditions. Given the limited information collected by AVs, we estimate
the traffic states using the proposed framework. We further compare the estimation results
with the ground truth computed from the full vehicle trajectory data. The normalized
root mean squared error (NRMSE), symmetric mean absolute percentage error (SMAPE1,
SMAPE2) will be used to examine the estimation accuracy, as presented by Equation (12).
SMAPE2 is considered as a robust version of SMAPE1 [86]. All three measurements
are unitless.
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NRMSE(z, ẑ) =

√
∑ν∈M(zν−ẑν)2

∑ν∈M z2
ν

SMAPE1(z, ẑ) = 1
|M| ∑ν∈M

|zν−ẑν |
zν+ẑν

SMAPE2(z, ẑ) = ∑ν∈M |zν−ẑν |
∑ν∈M(zν+ẑν)

(12)

where z is the true vector, ẑ is the estimated vector, ν is the index of the vector, andM is
the set of indices in vector z and ẑ. When comparing two matrices, we flatten the matrices
to vector and then conduct the comparison.

Here, we describe all the factors that affect the estimation results. The market pene-
tration rate denotes the portion of AVs in the fleet. In the experiments, we assume that
AVs are uniformly distributed in the fleet. The detection area D1 is a ray fulfilled by LRR
and D2 is a circle fulfilled by LiDAR. We assume that LiDAR has a detection range (radius
of the circle) and it might also oversee a vehicle with a certain probability (referred to as
missing rate). The AVs can be at one level of perception, as discussed in Section 2. The
sampling rate of data center can be different. In addition, different data-driven estimation
methods are used to estimate the density and speed, as presented in Section 3.6. We define
LR1 and LR2 as Lasso regressions, and RF1 and RF2 as random forests regressions. The
number 1 means that only cells 1 to 4 are used as inputs, while the number 2 means that
all 12 cells in Figure 10 are used as inputs. SI denotes the SOFTIMPUTE, KNN denotes the
k-nearest neighbor imputation, and NI denotes the naive imputation by simply replacing
missing entries with the mean of each column.

Baseline setting: the market penetration rate of AVs is 5%. The detection range of
LRR is 150 m, and the detection range of LiDAR is 50 m with 5% missing rate. The level of
perception is S3, and the speed is detected without any noise. The sampling rate of data
center is 1 Hz. SI is used to estimate density and LR2 is used to estimate speed. We set
|H| = 90 and |S| = 60.

5.2. Basic Results

We first run the proposed estimation method with the baseline setting. The estimation
method takes around 7 minutes to estimate all three roads, and the most time consuming
part is the information aggregation in the data center (discussed in Section 2.4) and the
computation of Equation (7). The estimation accuracy is computed by averaging the
NRMSE, SMAPE1 and SMAPE2 through all lanes, and the results are presented in Table 5.
In addition to the unitless measures, we also include the mean absolute error (MAE) in
the table.

Table 5. Estimation accuracy with basic setting (unit for NRMSE, SMAPR1, SMAPE2: %; unit for
speed MAE: miles/hour; unit for density MAE: vehicles/miles).

Measures Density Speed

NRMSE SMAPE1 SMAPE2 MAE NRMSE SMAPE1 SMAPE2 MAE

I-80 18.61 7.65 6.87 10.83 9.40 3.17 2.73 0.56
US-101 18.28 7.76 6.89 10.75 7.49 2.88 2.40 1.13
Lankershim 50.94 22.73 19.71 27.03 24.08 10.01 8.00 4.26

In general, the estimation method yields accurate estimation on highways (I-80 and
US-101), while it underperforms on the complex arterial road (Lankershim Boulevard).
Estimation accuracy of speed is always higher than that of density, which is because the
density estimation requires every vehicle being sensed, while speed estimation only needs
a small fraction of vehicles being sensed [87].
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Estimation accuracy on different lanes. We then examine the performance of the
proposed method on each lane separately, and the estimation accuracy of each lane is
summarized in Table 6.

Table 6. Estimation accuracy on each lane with basic setting (unit: %).

Item Lanes I-80

1 2 3 4 5 6

Density
NRMSE 32.08 15.24 18.08 15.46 15.51 15.30
SMAPE1 13.43 6.21 7.17 6.02 6.45 6.61
SMAPE2 12.40 5.57 6.39 5.35 5.71 5.75

Speed
NRMSE 6.82 9.68 9.17 10.99 9.99 9.73
SMAPE1 1.93 3.71 3.17 3.77 3.26 3.18
SMAPE2 1.94 3.01 2.73 3.17 2.83 2.73

Item Lanes US-101 Lankershim Blvd

1 2 3 4 5 1 2 3 4

Density
NRMSE 17.90 17.95 18.47 18.09 18.96 45.49 41.30 43.75 73.19
SMAPE1 7.56 7.62 7.60 7.75 8.27 20.92 21.00 21.37 27.63
SMAPE2 6.75 6.79 6.83 6.79 7.28 17.53 16.59 16.95 27.73

Speed
NRMSE 8.76 7.85 6.86 7.18 6.76 23.94 21.33 25.26 25.78
SMAPE1 3.62 3.05 2.65 2.56 2.50 10.22 8.77 10.97 10.08
SMAPE2 2.87 2.48 2.22 2.19 2.21 7.71 6.77 8.49 9.02

One can read from Table 6 that the proposed method performs similarly on most
lanes. One interesting observation is that the proposed method performs well on Lane 6 on
I-80, Lane 5 on US-101 and Lane 1 on Lankershim Blvd, and those lanes are merged with
ramps. This implies that the proposed method has the potential to work well on merging
intersections.

The proposed method performs differently on lanes that are near the edge of roads.
For example, the proposed method yields the worst density estimation and the best speed
estimation on lane 1 of I-80, which is an HOV lane. The vehicle headway is relatively large
on the HOV lane, hence estimating density is more challenging given limited detection
range of LiDAR. In contrast, speed on HOV lane is relatively stable, making the speed
estimation easy. In addition, the estimation accuracy of the Lane 4 of Lankershim Blvd is
low, as a result of the physical discontinuity of the lane.

One noteworthy point is that the estimation accuracy also depends on the traffic
conditions. For example, traffic conditions on the HOV lane of I-80 tend to be free-flow
and low-density, so the estimation accuracy is different from other lanes which tend to be
dense and congested.

To visually inspect the estimation accuracy, we plot the true and estimated density and
speed in time-space region for Lane 2 and Lane 4 of all three roads in Figures 13 and 14.
It can be seen that the estimated density and speed resemble the ground truth; even the
congestion is discontinuous in the time-space region (see Lankershim Blvd in Figure 13).
Again, the Lane 4 of Lankershim Blvd is physically discontinuous, hence a large block of
entries are entirely missing in time-space region (see the third row of Figure 14), and the
blocked missingness may affect the proposed methods and increase the estimation errors.
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Figure 13. True and estimated density and speed for lane 2 (first row: I-80, second row: US-101. third row:
Lankershim Blvd; first column: ground truth density, second column: estimated density, third column: ground
truth speed, fourth column: estimated speed; density unit: veh/km, speed unit: km/h).

Figure 14. True and estimated density and speed for lane 4 (first row: I-80, second row: US-101. third row:
Lankershim Blvd; first column: ground true density, second column: estimated density, third column: ground
true speed, fourth column: estimated speed; density unit: veh/km, speed unit: km/h).
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Effects of Densities on Speeds in the Regression-Based Models

We use the LR2 method to estimate the speed. After fitting the LR2 model, we look
at the fitted regression coefficients and interpret the coefficients from the perspective of
traffic flow theories. In particular, we select Lane 2 on US-101 and summarize the fitted
coefficients in Table 7. The regression coefficients for other lanes and networks can be
found in the supplementary material.

Table 7. Coefficients of Lasso regression for Lane 2 on US-101 (x1 to x12 correspond to the cell
number in Figure 10 or Figure 11).

Variables Coefficients Standard Error t-Statistic p-Value 2.5% Quantile 97.5% Quantile

Intercept 0.0778 0.000 254.909 0.000 0.077 0.078
x1 −0.4738 0.023 −20.676 0.000 −0.519 −0.429
x2 −0.2630 0.018 −14.326 0.000 −0.299 −0.227
x3 −0.4146 0.023 −17.700 0.000 −0.461 −0.369
x4 −0.4781 0.024 −20.346 0.000 −0.524 −0.432
x5 −0.2043 0.023 −9.030 0.000 −0.249 −0.160
x6 −0.0947 0.017 −5.726 0.000 −0.127 −0.062
x7 −0.1620 0.022 −7.352 0.000 −0.205 −0.119
x8 −0.2354 0.022 −10.562 0.000 −0.279 −0.192
x9 −0.1727 0.025 −6.790 0.000 −0.223 −0.123
x10 −0.1788 0.019 −9.477 0.000 −0.216 −0.142
x11 −0.1553 0.025 −6.198 0.000 −0.204 −0.106
x12 −0.2067 0.025 −8.256 0.000 −0.256 −0.158

The R-square for Lane 2 on US-101 is 0.832, indicating that the regression model is
fairly accurate. From Table 7, one can see that the Intercept is positive and it represents
the free flow speed when the density is zero. Coefficients for x1 to x12 are all negative with
high confidence, and this implies that higher density generally yields lower speed.

Recall Figure 10; suppose we want to estimate the speed for cell 1, we refer to cell 1∼4
as the surrounding cells in the current lane and cell 5∼12 as the surrounding cells in the
nearby lanes. The coefficients of x1 to x4 are the most negative, indicating the densities
of the surrounding cells in the current lane have the highest impact on the speed. The
densities of surrounding cells in the nearby lanes also have negative impact on the speed
but the magnitude is lower.

5.3. Comparing TSE Methods with Different Types of Probe Vehicles (PVs)

In this section, we compare the proposed method with other TSE methods using
different types of PVs. Consistent with Table 1, we consider the following three types of
PVs:

• Conventional PVs: Only speed can be estimated using the conventional PVs, and the
estimation method is adopted from Yu et al. [61].

• PVs with spacing measurement: the TSE can be conducted and both speed and
density can be estimated. The estimation method is adopted from Seo et al. [46].

• AVs: The TSE can be conducted and both speed and density can be estimated. The
estimation method is proposed in this paper.

All three methods are implemented with baseline setting, and we make 5% of PVs
conventional PVs, PVs with spacing measurement, or AVs. The estimation accuracy in
terms of SMAPE1 is presented in Figure 15.
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(a) Estimation accuracy for density. (b) Estimation accuracy for speed.

Figure 15. Average SMAPE1 for different types of PVs with baseline setting.

One can see that, by using more information collected by AVs, the proposed method
outperforms the other TSE methods using different PVs for both speed and density estima-
tion. This experiment further highlights the great potential of using AVs for TSE.

5.4. Comparing Different Algorithms

In this section, we examine different methods in estimating density and speed. Recall
in Section 3.6 that the matrix completion-based methods can estimate both density and
speed, while the regression-based methods can only estimate the speed. We run the
proposed estimation method with different combinations of estimation methods for density
and speed, and the rest of the settings are the same as the baseline setting. To be precise,
three methods are used to estimate density: naive Imputation (NI), k-nearest neighbor
imputation (KNN) and SOFTIMPUTE (SI). Seven methods will be used to estimate speed,
and they are NI, KNN, SI, LR1, LR2, RF and RF2. We plot the heatmap of SMAPE1 for each
road separately, as presented in Figure 16.

Figure 16. Average MSAPE1 for different estimation methods on each road (in terms of MSAPE1, first
row: density, second row: speed).

The speed estimation does not affect the density estimation, as the density estimation
is conducted first. SI always outperforms KNN and NI for density estimation. Different
combinations of algorithms perform differently on each road. We use A-B to denote the
method that uses A for density estimation and B for speed estimation. NI-LR2 on I-80,
SI-LR2 on US-101 and SI-RF on Lankershim Blvd outperform the rest of the methods
in terms of speed estimation. Overall, the SI-LR2 generates accurate estimation for all
three roads.

5.5. Impact of Sensing Power

We analyze the impact of sensing power of AVs on the estimation accuracy. Re-
calling Sections 2.2 and 3.5, we consider three levels of perception for AVs. Based on
Equations (5)–(7), more entries in the time-space region are directly observed when the
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perception level increases. We run the proposed estimation method with different percep-
tion levels and different methods for speed estimation. Other settings are the same as the
baseline setting. The heatmap of MSAPE1 for each road is presented in Figure 17.

Figure 17. Estimation accuracy under three levels of perception (in terms of MSAPE1, first row: density,
second row: speed).

As shown in Figure 17, the proposed method performs the best on US-101 and the
worst on Lankershim Blvd. With 5% market penetration rate, at least S2 is required for
I-80 and US-101 to obtain an accurate traffic state estimation. Similarly, S3 is required for
Lankershim Blvd to ensure the estimation quality. Later, we will discuss the impact of
market penetration rate on the estimation accuracy under different perception levels.

The estimation accuracy improves for all speed estimation algorithms and all three
roads when the perception level increases. Different speed estimation algorithms perform
differently on different roads within the same perception level. For example, in S2, the
imputation-based methods outperform the regression-based method on I-80 and US-101,
while the Lasso regression outperforms the rest on Lankershim Blvd. In S3, all the density
estimation methods perform similarly on I-80 and US-101, while the regression-based
method significantly outperforms the imputation-based methods on Lankershim Blvd in
terms of density estimation.

5.6. Impact of AV Market Ppenetration Rate

To examine the impact of AV market penetration rate, we run the proposed method
with different market penetration rates ranging from 0.03 to 0.7, and the rest of the settings
are the baseline settings. The experimental results are presented in Figure 18.

Generally, the estimation accuracy increases when the AV market penetration rate
increases. Moreover, 5% penetration rate is a tipping point for an accurate estimation
for I-80 and US-101, while Lankershim Blvd requires larger penetration rate. To further
investigate the impact of market penetration rate under different levels of perception, we
run the experiment with different penetration rate under three levels of perception, and
the results are presented in Figure 19.
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Figure 18. Estimation accuracy under different AV market penetration rate (first row: density, second
row: speed).

Figure 19. SMAPE1 under different market penetration rates and perception levels (first row: density,
second row: speed).

One can read that S2 and S3 yield the same density estimation, as the vehicle detection
is enough for density estimation. Better speed estimation can be achieved on S3, since
more vehicles are tracked and the speeds are measured. Again, Figure 19 indicates that
at least S2 is required for I-80 and US-101 to obtain an accurate traffic state estimation,
and S3 is required for Lankershim Blvd to ensure the estimation quality. For S1 and S2 in
Lankershim Blvd, the estimation accuracy for speed reduces when the market penetration
rate increases, probably due to the overfitting issue of the LR2 method.

We remark that AVs in S1 level are equivalent to connected vehicles with spacing
measurements [46], and hence Figure 19 also presents a comparison between the pro-
posed framework and the existing method. The results demonstrate that by using more
information collected by AVs, the proposed framework outperforms the existing methods
significantly when the market penetration rate is low.

In addition to the above findings, another interesting finding is that when the market
penetration rate is low, the regression methods usually outperform the matrix completion-
based methods, while the matrix completion-based methods outperform the regression-
based methods when the market penetration rate is high.
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5.7. Platooning

In the baseline setting, AVs are uniformly distributed in the fleet, while many studies
suggest that a dedicated lane for platooning can further enhance mobility [88]. In this case,
AVs are not uniformly distributed on the road. To simulate the dedicated lane, we view all
vehicles on Lane 1 of I-80, Lane 1 of US-101, and Lane 1,2 of Lankershim Blvd as AVs, and
all the vehicles on other lanes as conventional vehicles. To compare, we also set another
scenario with the same number of vehicles, which are treated as AVs, uniformly distributed
on roads. We run the proposed method on both scenarios with the rest of settings being
the baseline setting, and the results are presented in Table 8.

Table 8. Estimation accuracy with AVs on dedicated lanes and uniformly distribution (A/B: A is for
the uniformly distribution scenario, B is for the dedicated lane scenario, unit: %).

Measures Density Speed

NRMSE SMAPE1 SMAPE2 NRMSE SMAPE1 SMAPE2

I-80 31.71/31.65 12.45/12.47 11.86/11.85 19.78/19.84 8.08/7.81 6.92/6.95
US-101 25.93/25.91 10.18/10.16 9.62/9.61 15.13/15.15 6.05/6.05 4.90/4.91
Lankershim 66.67/66.71 31.17/31.58 28.89/28.70 38.99/37.60 20.03/19.74 16.00/15.67

As can be seen from Table 8, the distribution of AVs has a marginal impact on the
estimation accuracy. The proposed method performs similarly on the scenarios of the
dedicated lane and uniformly distribution for all three roads, which is probably because
the detection range of LiDAR is large enough to cover the width of the roads.

5.8. Effects of Sensing Errors

As the object detection and tracking depend on the accuracy of sensors and algorithms,
the ability of AVs in sensing varies. In this section, we study the effects of sensing errors on
the estimation accuracy, and the sensing errors can be categorized into detection missing
rate, speed detection noise, and distance measurement errors.

Detection missing rate. The AVs might overlook a certain vehicle during the detec-
tion, and we use the missing rate to denote the probability. We examine the impact of
the missing rate by running the proposed estimation method with different missing rate
ranging from 0.01 to 0.9, and the rest of the settings are the baseline settings. We plot the
estimation accuracy for each road separately, as presented in Figure 20.

Figure 20. Estimation accuracy under different detection missing rate (first row: density, second
row: speed).

From Figure 20, one can read that the estimation error increases when the missing rate
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increases for all three roads. The density estimation is much more sensitive to the missing
rate than the speed estimation. This is because overlooking vehicles have a significant
impact on density estimation, while speed estimation only needs a small fraction of vehicles
being observed.

Noise level in speed detection. We further look at the impact of noise in speed
detection. We assume that the speed of a vehicle is detected with noise, and the noise level
is denoted as ξ. If the true vehicle speed is ν, we sample ξ̄ from the uniform distribution
Unif(−ξ, ξ), and then the detected vehicle speed is assumed to be ν + νξ̄. The reason that
we define this noise is that the observation noise is usually proportional to the scale of
the observation. We run the proposed estimation method by sweeping ξ from 0.0 to 0.4,
and the rest of the settings are baseline settings. The estimation accuracy is presented in
Figure 21.

Figure 21. Estimation accuracy under different levels of speed noise (first row: density, second
row: speed).

Surprisingly, the proposed method is robust to the noise in speed detection, as the
estimation errors remain stable when the speed noise level increases. One explanation
for this is that the speed of each cell is computed by averaging the detected speeds from
multiple vehicles, hence the detection noise is complemented and reduced based on the
law of large numbers.

Distance measurement errors. When AVs detect or track certain vehicles, it measures
the distance between itself and the detected/tracked vehicles in order to locate the vehicles.
The distance measurement is either conducted by the sensors ( e.g., LiDAR) or computer
vision algorithms, and hence the measurement might incur errors.

We categorize the distance measurement errors into two components: (1) frequency of
the error happening, which is quantified by the percentage of the distance measurement
that are associated with an error; (2) magnitude of the error, which is quantified by the
number of cells that are offset from the true cell. For example, we assume that the distance
measurement is 10% and 5 cells, that means 10% of the distance measures are associated
with an error, and the detected location is at most 5 cells away from the true cell (the cell in
which the detected vehicle is actually located).

To quantify the effects of the distance measurement errors, two experiments are
conducted. Keeping the other settings the same as the baseline setting, we set the magnitude
of the distance measurement as 5 cells, and then we vary the percentage of the errors from
5% to 50%. The results are presented in Figure 22. Similarly, we set the percentage of the
errors to be 10% and vary the magnitude from 1 cell to 9 cells, and the results are presented
in Figure 23.
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Figure 22. Estimation accuracy under different percentages of distance measurement errors (first row:
density, second row: speed).

Figure 23. Estimation accuracy under different magnitude of distance measurement errors (first row:
density, second row: speed).

Both figures indicate that the increasing frequency and magnitude of the distance
measurement errors could reduce the estimation accuracy. The proposed framework is
more robust on the magnitude of the measurement error, while it is more sensitive to the
frequency of the measurement error.

5.9. Sensitivity Analysis

In this section, we examine the sensitivity of other important factors, (e.g., LiDAR
detection range, sampling rate, and discretization size) in our experiments.

LiDAR detection range. The detection range of LiDAR varies in a wide range for
different brands [89]. We run the proposed estimation method using different detection
rage ranging from 10 m to 70 m, and the rest of the settings are the baseline settings. The
estimation accuracy for each road is presented in Figure 24.



Sensors 2021, 21, 464 29 of 35

Figure 24. Estimation accuracy with different LiDAR detection range (first row: density, second
row: speed).

One can read that the estimation error reduces for both density and speed when the
detection range increases. The gain in estimation accuracy becomes marginal when the
detection range is large. For example, when the detection range exceeds 40 m on US-101,
the improvement of the estimation accuracy is negligible. Another interesting observation
is that, on Lankershim Blvd, even a 70-m detection range cannot yield a good density
estimation with a 5% market penetration rate.

Sampling rate. Recall that the sampling rate denotes the frequency of the message
(which contains the location/speed of itself and detected vehicles) sent to the data center, as
discussed in Section 2.4. When the sampling rate is low, we conjecture that the data center
received fewer messages, which increases the estimation error. To verify our conjecture, we
run the proposed estimation method with different sampling rate ranging from 0.3 Hz to
10 Hz, and the rest of the settings are the base settings. The estimation accuracy on each
road is further plotted in Figure 25.

Figure 25. Estimation accuracy with different sampling rate (first row: density, second row: speed).

The estimation accuracy increases when the sampling rate increases for all three roads,
as expected. The density estimation is more sensitive to the sampling rate than the speed
estimation. This is probably because the density changes dramatically in time-space region,
while the speed is relatively stable.
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Different discretization sizes. In this section, we demonstrate how the different
discretization sizes affect the estimation accuracy. |H| = 90 and |S| = 60 in the baseline
setting, and we change that to |H| = 60 and |S| = 40. The other settings remain the same,
and the comparison results are presented in Table 9.

Table 9. Estimation accuracy with AVs on baseline discretization and larger segmentation (A/B: A is
for the baseline setting, B is for 40/60 discretization, unit: %).

Measures Density Speed

NRMSE SMAPE1 SMAPE2 NRMSE SMAPE1 SMAPE2

I-80 18.61/11.18 7.65/4.51 6.87/4.08 9.40/6.84 3.17/2.34 2.73/2.10
US-101 18.28/13.66 7.76/5.66 6.89/5.25 7.49/6.47 2.88/2.02 2.40/1.89
Lankershim 50.94/39.73 22.73/17.27 19.71/15.39 24.08/20.90 10.01/8.89 8.00/7.72

One can see that a bigger discretization size yields better estimation accuracy, because
the speed and density change more stably on larger cells. This result also suggests that
higher-granular TSE is more challenging and hence it requires more coverage of the
observation data. A proper discretization size should be chosen based on the requirements
for the estimation resolution and the available data coverage.

6. Conclusions

This paper proposes a high-resolution traffic sensing framework with probe au-
tonomous vehicles (AVs). The framework leverages the perception power of AVs to
estimate the fundamental traffic state variables, namely, flow, density and speed, and the
underlying idea is to use AVs as moving observers to detect and track vehicles surrounded
by AVs. We discuss the potential usage of each sensor mounted on AVs, and categorize the
sensing power of AVs into three levels of perception. The powerful sensing capabilities of
those probe AVs enable a data-driven traffic sensing framework which is then rigorously
formulated. The proposed framework consists of two steps: (1) directly observation of the
traffic states using AVs; (2) data-driven estimation of the unobserved traffic states. In the
first step, we define the direct observations under different perception levels. The second
step is done by estimating the unobserved density using matrix-completion methods,
followed by the estimation of unobserved speed using either matrix completion methods
or regression-based methods. The implementation details of the whole framework are
further discussed.

The next generation simulation (NGSIM) data are adopted to examine the accuracy
and robustness of the proposed framework. The proposed estimation framework is ex-
amined extensively on I-80, US-101 and Lankershim Boulevard. In general, the proposed
framework estimates the traffic states accurately with a low AV market penetration rate.
The speed estimation is always easier than density estimation, as expected. Results show
that, with 5% AV market penetration rate, at least S2 is required for I-80 and US-101 to
obtain an accurate traffic state estimation, while S3 is required for Lankershim Blvd to
ensure the estimation quality. During the estimation of speed, all the coefficients in the
Lasso regression are consistent with the fundamental diagrams. In addition, a sensitivity
analysis regarding AV penetration rates, sensor configurations, speed detection noise and
perception accuracy is conducted.

This study would help policymakers and private sectors (e.g Uber, Waymo and other
AV manufacturers) understand the values of AVs in traffic operation and management,
especially the values of massive data collected by AVs. Hopefully, new business models to
commercializing the data [90] or collaborations between private sectors and public agencies
can be established for smart communities. In the near future, we will examine the sensing
capabilities of AVs at network level and extend the proposed traffic sensing framework to
large-scale networks. We also plan to develop a traffic simulation environment to enable
the comprehensive analysis of the proposed framework under different traffic conditions.
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Another interesting research direction is to investigate the privacy issue when AVs share
the observed information with the data center.
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Appendix A. Determining the Detection Areas by AVs

Suppose the detection area of AV i ∈ IA at time t is Ri(t), and Ri(t) consists of two
parts, which are the detection area for preceding vehicles (Ri,D1 ) and the detection area for
surrounding vehicles (Ri,D2), as discussed in Section 2.3. We further denote the detection

area Dj of vehicle i in road segment s on lane l by R
i,Dj
l (t, s), as presented in Equation (A1).

R
i,Dj
l (t, s) = Ri,Dj(t) ∩ Xls, ∀j ∈ {1, 2}, i ∈ IA (A1)

As discussed in Section 2.4, the detected information of all AVs will be aggregated

by the data center. Hence the whole detection area by all AVs is denoted by R
Dj
l (t, s),

as presented in Equation (A2).

R
Dj
l (t, s) = ∪i∈IA R

i,Dj
l (t, s), ∀j ∈ {1, 2} (A2)

The next step is to discretize the detection area into the time-space region. We define

O
Dj
l as the set of time-space indices (h, s) such that Xls is covered by the detection range Dj

in time interval h, as presented in Equation (A3).

O
Dj
l = {(h, s)|∃t ∈ Th, s.t. µ(R

Dj
l (t, s)) ≥ (1− ε)µ(Xls)}, j = {1, 2} (A3)

where ε is the tolerance and is set to 0.05. In the main paper, we simplify the notation such

that Oj
l = O

Dj
l , ∀j ∈ {1, 2}.

We further have To
h (l, s) = {t ∈ Th|µ

(
RD2

l (t, s)
)
≥ (1− ε)µ(Xls)} to represent the set

of time indices when Xls is covered by the D2 in Th, and Io
l (t, s) = {i ∈ I|xi(t) ∈ RD2

l (t, s)}
represents the set of vehicles detected by D2 in Xls at time t.

https://github.com/Lemma1/NGSIM-interface
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