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Abstract: This paper explores how well deep learning models trained on chest CT images can
diagnose COVID-19 infected people in a fast and automated process. To this end, we adopted
advanced deep network architectures and proposed a transfer learning strategy using custom-sized
input tailored for each deep architecture to achieve the best performance. We conducted extensive
sets of experiments on two CT image datasets, namely, the SARS-CoV-2 CT-scan and the COVID19-
CT. The results show superior performances for our models compared with previous studies. Our
best models achieved average accuracy, precision, sensitivity, specificity, and F1-score values of
99.4%, 99.6%, 99.8%, 99.6%, and 99.4% on the SARS-CoV-2 dataset, and 92.9%, 91.3%, 93.7%, 92.2%,
and 92.5% on the COVID19-CT dataset, respectively. For better interpretability of the results, we
applied visualization techniques to provide visual explanations for the models’ predictions. Feature
visualizations of the learned features show well-separated clusters representing CT images of COVID-
19 and non-COVID-19 cases. Moreover, the visualizations indicate that our models are not only
capable of identifying COVID-19 cases but also provide accurate localization of the COVID-19-
associated regions, as indicated by well-trained radiologists.

Keywords: coronavirus; COVID-19 detection; SARS-CoV-2; explainable deep learning; feature visualization

1. Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the new
coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The
virus is highly contagious and can be transmitted by direct and/or indirect contact with
infected people through respiratory droplets when they sneeze, cough, or even talk [1–3].
Currently, the real-time polymerase chain reaction (RT-PCR) test is the standard reference
for confirming COVID-19, and with the rapid increment in the number of infected people,
most countries are encountering a shortage in testing kits. Moreover, RT-PCR testing has
high turnaround times and a high false negative rate [4]. Thus, it is highly desirable to
consider other testing tools for identifying COVID-19-contaminated patients to isolate
them and mitigate the pandemic’s impact on the lives of many people.

Chest computed tomography (CT) is an applicable supplement to RT-PCR testing
and has been playing a role in screening and diagnosing COVID-19 infections. In recent
studies [5,6], the authors manually examined chest CT scans for more than a thousand
patients and confirmed the usefulness of chest CT scans for diagnosing COVID-19 with
high sensitivity rates. In some cases, the patients initially had negative PCR tests; however,
confirmation was based on their CT findings. Moreover, chest CT screening has been
recommended when patients show symptoms compatible with viral infections, but the
results of their PCR tests are negative [5,7]. Nevertheless, diagnosing COVID-19 from chest
CT images by radiologists takes time, and manually checking every CT image might not
be feasible in emergency cases. Therefore, there is a need for automated detection tools
that exploit the recent advances in artificial intelligence (AI) and deep learning along with
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the availability of CT images to build AI-based tools to expedite the diagnosis process and
prevent further spreading [8].

This paper adopts the most advanced deep convolutional neural network (CNN)
architectures, which were top performers in the ImageNet large scale visual recognition
challenge (ILSVRC) [9], and presents a comprehensive study for detecting COVID-19
based on CT images. We explored CNN models that have different architectural designs
and varying depths to obtain the best performance. Even though we conducted our
experiments on two of the largest CT scan datasets available for research, they are still of
insufficient size to train deep networks from scratch. An effective strategy to overcome this
limitation is to use transfer learning [10], where deep networks trained on visual recognition
tasks are utilized to initialize networks for different but related target tasks. Most of the
published work that applied transfer learning strategies from deep networks pretrained
on the ImageNet dataset [11], followed the strict fixed-sized input predetermined for each
network architecture, and resized their input images accordingly. However, we argue that
resizing images with different aspect ratios to match a specific resolution can distort the
image severely. Consequently, we addressed the problem by placing the images into a fixed-
sized canvas determined specifically for each CNN architecture, where the aspect ratio of
the original image was preserved. This proved to be a less violating and more effective
procedure to achieve better results, as reported in [12]. Moreover, we utilized the layer-wise
adaptive large batch optimization technique called LAMB [13], which has demonstrated
better performance and convergence speed for training deep networks. The performances
of the models were measured quantitatively using accuracy, precision, sensitivity, specificity,
F1-score, and the confusion matrix for each model. Our results indicate the ability of our
models to achieve state-of-the-art results on the considered datasets.

In order to provide better explainability of the deep models and make them more trans-
parent, we applied two visualization techniques. The first approach was the t-distributed
stochastic neighboring embedding (t-SNE) [14], which is a dimensionality reduction and
visualization technique for visualizing clusters of instances in a high-dimensional space.
The visualizations of the t-SNE embeddings show well-separated clusters representing CT
images for COVID-19 and non-COVID-19 cases. The second approach was the gradient-
weighted class activation mapping (Grad-CAM) [15], which is a visualization technique
for CNN-based models. It provides high-resolution and class-discriminative visualizations
that localize the important image regions considered for the model prediction. The Grad-
CAM visualizations show how accurately our models localize the COVID-19-associated
regions. Overall, this paper exhibits the following contributions:

• A comparative experimental study was conducted on how well advanced deep CNNs
trained on chest CT images can identify COVID-19 cases. To this end, we experimented
with 12 deep networks that have different architectural designs and varying depths,
and provide quantitative and qualitative analyses.

• We propose a transfer learning strategy to fine-tune deep networks using custom-
sized inputs determined specifically for each architecture, and utilized the LAMB
optimizer for training the networks. Our experimental results prove the effectiveness
of our strategy to obtain state-of-the-art performance on the considered CT image
datasets. Our best models achieved average accuracy of 99.4% and 92.9%, and average
sensitivity rates of 99.8% and 93.7% on the largest datasets of CT images available
for research.

• We provide visualizations of the features extracted from different models to under-
stand how deep networks represent CT images in the feature space. The visualizations
show well-separated clusters representing the CT images of the different classes,
which indicates that our models have learned discriminative features to distinguish
CT images of different cases.

• We show discriminative localizations and visual explanations obtained by our models
for detecting COVID-19-associated regions in CT images as annotated by expert radiologists.
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The rest of the paper is structured as follows. We review the related work in the next
section. The considered deep CNN architectures are explained in Section 3. Our transfer
learning strategy to learn discriminative representations is described in Section 4. The
experimental settings and the results are reported in Section 5. Finally, we draw the main
conclusions in Section 6.

2. Related Work

This section highlights some relevant work that adopted deep CNNs for building
computer-aided diagnosis (CAD) systems to facilitate the interpretation of medical images.
The authors in [16] employed different deep CNN architectures, which were pretrained on
the ImageNet dataset [11], and fine-tuned them on specific CT scans for thoraco-abdominal
lymph node detection and interstitial lung disease classification. Their study indicated
the effectiveness of deep CNNs for CADs problems even when training data are limited.
In [17], the authors proposed the CheXNet model to detect different types of pneumonia
from chest X-ray images. The model consisted of 121-layers and was trained on a large
dataset that contained over 100,000 X-ray images for 14 different thoracic diseases. The
model showed outstanding detection performance at the level of practicing radiologists.

In the context of the COVID-19 pandemic, extensive research has been conducted to
develop automated image-based COVID-19 detection and diagnostic systems [18–25]. We
hereafter review the proposed approaches for reliable detection systems based on chest
X-ray and CT-scan imaging modalities. These techniques follow either one of the two
main paradigms.

On one hand, new deep network architectures have been developed and tailored
specifically for detecting and recognizing COVID-19. COVID-Net [26] represents one of the
earliest convolutional networks designed for detecting COVID-19 cases automatically from
X-ray images. The performance of the network showed an acceptable accuracy of 83.5%
and a high sensitivity of 100% for COVID-19 cases. Hasan et al. [27] proposed a CNN-based
network named the Coronavirus Recognition Network (CVR-Net) to automatically detect
COVID-19 cases from radiography images. The network was trained and evaluated on
datasets with X-ray and CT images. The results showed varying accuracy scores according
to the number of classes in the underlying X-ray image dataset, and an average accuracy
of 78% for the CT image dataset. Further modifications were applied to COVID-Net
to improve its representational ability for one specific image modality and to make the
network computationally more efficient, as in [28]. Mukherjee et al. [29] proposed a tailored
CNN architecture composed of nine layers for detecting COVID-19 positive cases. They
trained and tested their network using CT scans and X-rays together. The network obtained
promising results compared with existing CNN architectures, and achieved an overall
accuracy of 96.28%.

On the other hand, some deep networks have been proposed for similar tasks of
automated detection and recognition of COVID-19 cases; however, these networks are
based on well-designed and existing CNN architectures, such as ReseNet [30], Xception [31],
and Capsule Networks [32]. The authors in [22] adopted transfer learning from deep
networks for automatic COVID-19 detection using X-ray images from patients with COVID-
19, patients with bacterial pneumonia, and disease-free cases. They reported the best
results for the two and three-class classification tasks with accuracies of 98.75% and 93.48%,
respectively. Minaee et al. [33] applied transfer learning by fine-tuning four popular
pretrained CNNs to identify COVID-19 infection. They experimented on a prepared X-ray
image dataset with 5000 chest X-rays. Their best approach obtained average sensitivity
and specificity values of 98% and 90%, respectively. Brunese et al. [34] utilized transfer
learning by using a pretrained VGG-16 network [35] to automatically detect COVID-19
from chest X-rays. On a dataset collected from different sources with X-rays for healthy
and pulmonary diseases, they reported an average accuracy of 97%.

Zhou et al. [36] highlighted the importance of deep learning techniques and chest
CT images for differentiating between COVID-19 and influenza pneumonias. The study



Sensors 2021, 21, 455 4 of 22

was conducted on CT images for confirmed COVID-19 patients from different hospitals in
China. Their study proved the potential of accurate COVID-19 diagnosis from CT images
and the effectiveness of their proposed classification scheme to differentiate between the
two pneumonia types. DeepPneumonia [37] was developed to identify COVID-19 cases
(88 patients), bacterial pneumonia (100 patients), and healthy cases (86 subjects) based on
CT images. The model achieved an accuracy of 86.5% for differentiating between bacterial
and viral (COVID-19) pneumonia and an accuracy of 94% for distinguishing between
COVID-19 and healthy cases. The authors in [38] used CT images to identify COVID-
19 patients from non-COVID-19 people by applying transfer learning from a pretrained
DenseNet201 network. The model achieved an accuracy of 96.25%.

Very few studies employed handcrafted feature extraction methods and conventional
classifiers. In [39], texture features were extracted from X-ray images using popular tex-
ture descriptors. The features were combined with those extracted from a pretrained
InceptionV3 [40] using different fusion strategies. Then, various classifiers were used to
differentiate between normal X-rays and different types of pneumonia. The best classifi-
cation scheme achieved an F1-score of 83%. In [41], the authors proposed an approach
to differentiate between positive and negative COVID-19 cases using CT scans. Different
texture features were extracted from CT images with Gabor filters, and then support vector
machines were trained for classification. Their proposed scheme achieved an average
accuracy of 95.37%, and a sensitivity of 95.99%.

The above discussion of the related work indicates the prominence of deep learning
methods in addressing the task of automated COVID-19 detection. We build on the existing
body of published work by using advanced deep networks for detecting COVID-19 using
CT images. We conducted experiments on two of the largest CT image datasets and
compared the performances of 12 deep networks using standard evaluation metrics. We
also provide visualizations for better explainability of the resulting models.

3. Deep Network Architectures

This section describes the deep CNN architectures utilized to identify COVID-19 using
chest CT scans. These networks are state-of-the-art deep models for image recognition.
They differ in their architectural design in order to achieve better representational power
and to reduce their computational complexity. In this work we consider the most advanced
networks, such as SqueezeNet [42], Inception [40], ResNet [43], ResNeXt [44], Xception [45],
ShuffleNet [46], and DenseNet [47].

3.1. SqueezeNet

The SqueezeNet architecture is a deep CNN proposed for computer vision tasks with
the main concerns on efficiency (having fewer parameters and smaller model size) [42].
The basic building block for the SqueezeNet architecture is the fire module depicted in
Figure 1. The module incorporates a squeeze phase and an expand phase. The squeeze
phase applies a set of 1 × 1 filters followed by a ReLU activation. The number of learned
squeeze filters is always smaller than the size of the input volume. Consequently, the
squeeze phase can be considered as a dimensionality reduction process, and at the same
time it captures the pixel correlations across the input channels. The output of the squeeze
phase is fed into the expand phase, in which a combination of 1 × 1 and 3 × 3 convolutions
are learned. The larger 3 × 3 filters are used to capture the spatial correlations amongst
pixels. The outputs of the expand phase are concatenated across the channel dimension
and then evaluated by a ReLU activation.
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1x1

1x1 3x3

Squeeze

Expand

Input

Figure 1. The fire module used in SqueezeNet.

The original paper proposed using n, 1 × 1; and n, 3 × 3 filters in the expand phase,
where n is 4× larger than the number of filters used in the squeeze phase. The entire
SqueezeNet architecture is constructed by stacking conventional convolution layers, max-
pooling, fire modules, and an average pooling layer at the end. The model has no fully
connected layers. For more details about the number of fire modules for each stage, their
order, and numbers of squeeze and expand filters for the different stages, see [42].

3.2. Inception

The Inception network is a deep convolutional architecture introduced as GoogLeNet
(Inception V1) in 2014 by Szegedy et al. [48]. The architecture has been refined in various
ways, such as adding batch normalization layers to accelerate training (Inception V2 [49]),
and factorizing convolutions with larger spatial filters for computational efficiency (In-
ception V3 [40]). We adopt the InceptionV3 model due to its outstanding performance in
image recognition and object localization.

The fundamental building block for all Inception-style networks is the Inception
module of which several forms exist. Figure 2 shows one variant of the Inception module
that is used in the InceptionV3 model. The module accepts an input and then branches into
four different paths, each performing a specific set of operations. The input passes through
convolutional layers with different kernel sizes (1 × 1 and 3 × 3) and a pooling operation.
Applying different kernel sizes allows the module to capture complex patterns at different
scales. The outputs of all branches are concatenated channel-wise.

Input

pool1x1
1x1

1x13x3

3x3
3x3 1x1

Concat

Figure 2. A variant of the Inception module used in InceptionV3 architecture.

The overall architecture of the InceptionV3 network is composed of conventional 3× 3
convolutional layers at the early stages of the network, where some of these layers are
followed by max-pooling operations. Subsequently, a stack of various Inception modules
is applied. These modules have different designs with respect to the number of applied
filters, filter sizes, depth of the module after symmetric or asymmetric factorization of
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larger convolutions, and when to expand the filter bank outputs. The last Inception module
is followed by an average-pooling operation and a fully connected layer.

3.3. ResNet

Deep residual networks (ResNet) proposed by He et al. in [43], represent a family
of extremely deep CNN architectures that won the ILSVRC-2015 challenges for image
recognition, object detection and localization [9]. The winning network was composed of
152 layers, which confirms the beneficial impact of network depth on visual representations.
However, two major problems are encountered when training networks of increasing depth:
vanishing gradients and performance degradation. The authors addressed the problems
by adding skip connections to prevent information loss as the network gets deeper.

The cornerstone for constructing deep residual networks is the residual module, of
which two variants are depicted in Figure 3. The left path of the residual module in
Figure 3a is composed of two convolutional layers, which apply 3 × 3 kernels and preserve
the spatial dimensions. Batch normalization and ReLU activation are also applied. The
right path is the skip connection where the input is added to the output of the left path. This
variant is used in the ResNet18 model. Another variant of the residual module named the
bottleneck residual module is depicted in Figure 3b, in which the input signal also passes
through two branches. However, the left path performs a series of convolutions using 1 × 1
and 3 × 3 kernel sizes, along with batch normalization and ReLU activation. The right path
is the skip connection, which connects the module’s input to an addition operation with
the output of the left path. This variant is utilized in ResNet50 and ResNet101 models.

Input

+

BN, ReLU

ReLU

BN

3x3

3x3

(a)

Input

1x1

3x3

1x1

+

BN, ReLU

BN, ReLU

BN

ReLU

(b)

Figure 3. The basic residual module used in ResNet18 (a), and the bottleneck residual module utilized
in ResNet50 and ResNet101 (b), both as introduced in [43].

A deep residual network is constructed by stacking multiple residual modules on
top of each other along with other conventional convolution and pooling layers. For
our experiments we implemented three variants of ResNet: ResNet18, ResNet50, and
ResNet101 models. The full configurations and the overall structure of each model are
given in [43].

3.4. ResNeXt

The ResNeXt architecture proposed in [44] is a deep CNN model constructed by
stacking residual building blocks of identical topology in a highly modularized fashion.
The ResNeXt architectural design was inspired by the well-designed architectures of
ResNet and Inception models. Similarly to the former, it stacks multiple building blocks
to construct deeper networks, and it exploits the split-transform-merge strategy of the
latter in an expendable manner. Nevertheless, the building blocks of ResNeXt apply an
identical set of transformations in all branches, which makes the number of branches an
independent hyperparameter to be investigated. The authors referred to the size of the set
of transformations as cardinality, and empirically investigated its impact on the network’s
representational power. Figure 4 shows a variant of ResNeXt block with a cardinality of 32.



Sensors 2021, 21, 455 7 of 22

Input

256, 1x1, 4
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4, 1x1, 256

256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

256, 1x1, 4

4, 3x3, 4

4, 1x1, 256...

32 paths
in total

+

+

...

256

256

Figure 4. A basic ResNeXt block with cardinality of 32 as proposed in [44].

To construct a deep ResNeXt network, conventional convolution and max-pooling
layers are used at the beginning of the network and are followed by multiple stages
of varying ResNeXt blocks. In our experiments we utilized two variants of ResNeXt:
ResNext50 and ReNeXt101. Even though original ResNeXt models used RGB-inputs of
224 × 224, we decided to use the same input size as for ResNet variants, 349 × 253, due to
similar architectural design.

3.5. Xception

Xception is a deep CNN architecture proposed in [45]. It was inspired by the Inception
architecture and utilizes the residual connections proposed in ResNet models [43]. How-
ever, it replaces the Inception modules with depthwise separable convolution layers. A
depthwise separable convolution consists of a depthwise convolution (spatial convolution
of 3× 3, 5× 5, etc.) performed over each channel of an input to map the spatial correlations,
followed by a pointwise convolution (1 × 1) to map the cross-channel correlations.

The Xception architecture depends entirely on depthwise separable convolution layers
with a strong assumption that spatial correlations and cross-channel correlations can
be mapped separately. The network consists of 36 convolutional layers structured into
14 modules. All modules have residual connections except for the first and last modules.
The reader is referred to [45] for a complete description of the model specification.

Due to its superior performance in vision tasks, we adopted the Xception model in
our experiments. Even though the original model used an RGB-input of size 299 × 299, we
found that an input size of 327 × 231 obtains the best results.

3.6. ShuffleNet

ShuffleNet is a very computationally-efficient CNN architecture that is mainly de-
signed for mobile devices with constrained computational power [46,50]. The architecture
introduces two important operations to significantly reduce the computational cost while
maintaining accuracy. The first operation is pointwise group convolutions, which can re-
duce the computational complexity of the 1× 1 convolutions. The second operation consists
of shuffling the channels, which assists the information flow across feature channels.

The cornerstone of the ShuffleNet model is the ShuffleNet unit depicted in Figure 5.
It is a bottleneck residual module in which the 3 × 3 convolutional layer is replaced by a
3 × 3 depthwise separable convolution as in [45]. Additionally, the first 1 × 1 convolutional
layer is replaced by a pointwise group convolution followed by a channel shuffle operation.
The second pointwise group convolutional layer is used to retrieve the channel dimension
to match the left path of the unit. The overall ShuffleNet network is composed of a stack of
these units grouped into three different stages along with other conventional convolution
and pooling layers.
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Input

+
ReLU

BN, ReLU

BN

Channel Shuffle

3x3 DWConv

1x1 GConv

1x1 GConv

BN

Figure 5. The building unit of the ShuffleNet architecture.

In this study we adopted the recent variant of the ShuffleNet architecture. The original
model used an RGB-input of 224 × 224; however, we found that an input resolution of
321 × 225 works better for the considered datasets.

3.7. DenseNet

Densely connected convolutional networks (DenseNets) are a class of CNN archi-
tectures introduced in [47] with several compelling characteristics. They alleviate the
vanishing gradients problem, foster feature reuse, achieve high performance, consolidate
feature propagation, and are computationally efficient. DenseNets modify the shortcut
connections from ResNet by concatenating the output of the convolutions instead of
summing them up. Thus, the input to the next layer will be the feature maps of all the
preceding layers.

Figure 6 shows a 3-layer dense block where each layer performs a set of batch nor-
malization, ReLU activation, and 3 × 3 convolution operations. Previous feature maps
are concatenated and provided as the input to a subsequent layer, which then generates
k feature maps, where k is a newly introduced hyper-parameter denoted as the growth
rate. Thus, if the input to layer x0 is k0, then the number of feature maps at the end of a
3-layer dense block is 3 × k + k0. To prevent the number of feature maps from increasing
too rapidly, DenseNet introduces a bottleneck layer with 1 × 1 convolution and 4 × k filters.
To tackle the difference in the feature map sizes when transitioning from a large feature
map to a smaller one, DenseNet applies a transition layer made of 1 × 1 convolution and
average pooling.

A deep DenseNet is constructed by stacking multiple dense blocks with transition
layers. Conventional convolution and pooling layers are used at the beginning of the
network. Eventually the output is pooled by global average pooling, flattened, and passed
to a softmax classifier. For our study we experimented with three DenseNet variants:
the 121-layer, the 169-layer, and the 201-layer architectures. The original models used an
RGB-input of 224 × 224; however, we found that an input size of 349 × 253 achieves better
results for images from the used datasets.
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Figure 6. A 3-layer Dense block in DenseNet. The input to each layer is all the previous feature maps.

Table 1 summarizes the important characteristics of the adopted deep CNN models.
Those include the square-sized input for each network, our proposed custom-sized input,
trainable parameters in millions, number of layers, and model size in megabytes.

Table 1. Characteristics of the deep CNN architectures considered for this work.

Model
Model Characteristics

Default Input Size Custom Input Size Layers Parameters (M) Model Size (MB)

SqueezeNet 227 × 227 335 × 255 18 0.73 3.0
ShuffleNet 224 × 224 321 × 225 51 0.34 1.5
ResNet18 224 × 224 349 × 253 18 11.17 44.8
ResNet50 224 × 224 349 × 253 50 23.51 94.3

ResNet101 224 × 224 349 × 253 101 42.50 170.6
ResNeXt50 224 × 224 349 × 253 50 22.98 92.3
ResNeXt101 224 × 224 349 × 253 101 86.74 347.9
InceptionV3 299 × 299 331 × 267 48 21.79 87.4

Xception 299 × 299 327 × 231 37 20.81 83.5
DenseNet121 224 × 224 349 × 253 121 6.95 28.3
DenseNet169 224 × 224 349 × 253 169 12.48 50.8
DenseNet201 224 × 224 349 × 253 201 18.09 73.6

4. Transfer Learning

Transfer learning is an effective representation learning approach in which the net-
works trained on abundant numbers of images (millions) are used to initialize the networks
for tasks for which data are scarce (a few hundred or thousand images). In the context of
deep learning there are two common strategies to apply transfer learning from pretrained
networks: feature extraction and fine-tuning [51,52]. In the first strategy only the weights
of some newly added layers are optimized during training, while in the second strategy
all the weights are optimized for the new task. Here, we consider fine-tuning as a more
effective strategy that outperforms feature extraction and achieves better performance. As
our pretrained networks explicitly require an RGB-input, we assigned identical values to
the R, G, and B channels. Since the CT images in the two datasets have varying spatial
sizes, the images needed to be scaled to match the target input size. One strategy to unify
images with different aspect ratios involves stretching or excessive cropping. We opted for
a different, less violating procedure and embed the image into a fixed-sized canvas. The
aspect ratio of the original image was not altered and padding was applied to match the
target shape.
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5. Experiments and Results

This section presents our experimental setup and extensive experiments to show the
efficacy of our fine-tuned networks. First, we describe the CT image datasets. Second, we
state the experimental settings and performance evaluation metrics. Third, we discuss
the results of different models on each dataset. Finally, we provide visual explanations to
facilitate interpreting the decisions made by the models and to show their ability to localize
the COVID-19-associated regions.

5.1. Datasets

SARS-CoV-2 CT Scan dataset [53]: The dataset was collected from hospitals of Sao
Paulo, Brazil, with a total of 2482 CT scans acquired from 120 patients of both genders.
It is composed of 1252 scans for patients infected with SARS-CoV-2, and 1230 scans for
patients infected with other lung diseases. The CT scans have varying spatial sizes between
104 × 119 and 416 × 512, and are available in PNG format. CT scans from this dataset are
shown in Figure 7.

Figure 7. Examples of chest CT scans from the SARS-CoV-2 CT dataset. The first row represents CT
scans diagnosed with COVID-19, whereas the second row represents non-COVID-19.

COVID19-CT dataset [54]: The dataset consists totally of 746 CT images. There are
349 CT images of patients with COVID-19 and 397 CT images showing non-COVID-19,
but other pulmonary diseases. The positive CT images were collected from preprints
about COVID-19 on medRxiv and bioRxiv, and they feature various manifestations of
COVID-19. Since the CT images were taken from different sources, they have varying
sizes between 124 × 153 and 1485 × 1853. Figure 8 shows example CT images from the
COVID19-CT dataset.

Figure 8. Examples of chest CT images from the COVID19-CT dataset. The first row represents CT
images diagnosed with COVID-19, whereas the second row represents non-COVID-19 cases, but
other lung diseases.
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5.2. Experimental Settings

To assess the performances of our models, we performed stratified K-fold cross-
validation with K = 5 to keep the distribution of the two classes consistent in each fold.
The final performances of the models were computed by averaging the obtained values
from the five networks on their test folds respectively.

Data augmentation methods were implemented to effectively increase the number of
training samples for improved generalization. Affine transformations such as rotation and
shearing turned out to have a worsening effect on performance, so we excluded this type of
augmentation. More augmentation steps include cropping, adding blur with a probability
of 25%, adding a random amount of Gaussian noise, changes in brightness and contrast,
and random horizontal flipping. Finally, the images were normalized using the mean and
standard deviation of the ImageNet dataset.

We followed a set of optimization configurations for all deep networks. The networks
were optimized by applying the LAMB optimizer on a binary cross-entropy loss. The initial
learning rate was set to 0.0003 and was scheduled to decrease according to the following
steps: epoch 50: 0.0001, epoch 70: 0.00003, epoch 80: 0.00001, epoch 90: 0.000003. We used a
batch size of 32 and we applied a high weight decay of 1 for regularization. The networks
were implemented using the PyTorch framework and were trained for 100 epochs on a PC
with Intel(R) Core(TM) i7-3770 CPU, 8 GB RAM, and Nvidia GTX 1080 GPU.

5.3. Evaluation Metrics

We consider different performance evaluation metrics for evaluating our models. For
each model we count the number of predicted cases as true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). Then, we compute the following metrics.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Sensitivity =
TP

TP + FN
(3)

Speci f icity =
TN

TN + FP
(4)

F1−score =
2 × TP

2 × TP + FP + FN
(5)

5.4. Results and Discussion

Here, we present and discuss the results for detecting COVID-19 on the considered
CT image datasets using our fine-tuned deep networks. We report the quantitative results
along with the confusion matrices for every single architecture of the adopted networks.

Table 2 summarizes the average values of evaluation metrics achieved by our different
networks on each CT image dataset. All values are given in percentages and the best results
are written in bold. We also compare our results with the previously obtained results
from the literature when applicable. Generally, we observed some performance differences
between the results from the SARS-CoV-2 CT and the COVID19-CT datasets. We also
observed the superiority of our obtained models compared with the similar models from
the recently published work.



Sensors 2021, 21, 455 12 of 22

Table 2. Performance comparison of different deep models for detecting COVID-19 using various
evaluation metrics. The results are given in the form of mean and standard deviation scores. For a
direct comparison, the results from the recently published work are included when applicable.

Dataset Model
Evaluation Metrics

Accuracy Precision Sensitivity Specificity F1-Score

SARS-CoV-2 CT [53]

SqueezeNet 95.1 ± 1.3 94.2 ± 2.0 96.2 ± 1.4 94.0 ± 2.2 95.2 ± 1.2
ShuffleNet 97.5 ± 0.8 96.1 ± 1.4 99.0 ± 0.2 95.9 ± 1.5 97.5 ± 0.8
ResNet18 98.3 ± 0.8 97.2 ± 1.2 99.6 ± 0.3 97.1 ± 1.4 98.4 ± 0.7
ResNet50 99.2 ± 0.3 99.1 ± 0.5 99.4 ± 0.5 99.1 ± 0.5 99.2 ± 0.3

ResNet101 99.4 ± 0.4 99.6 ± 0.3 99.1 ± 0.6 99.6 ± 0.3 99.4 ± 0.4
ResNeXt50 99.1 ± 0.5 99.0 ± 0.5 99.3 ± 0.5 98.9 ± 0.6 99.1 ± 0.5

ResNeXt101 99.2 ± 0.3 99.2 ± 0.4 99.3 ± 0.5 99.2 ± 0.4 99.2 ± 0.3
InceptionV3 99.1 ± 0.5 98.5 ± 0.8 99.8 ± 0.3 98.5 ± 0.8 99.1 ± 0.5

Xception 98.8 ± 0.6 99.0 ± 1.0 98.6 ± 1.1 98.9 ± 1.1 98.8 ± 0.6
DenseNet121 99.3 ± 0.3 99.4 ± 0.2 99.2 ± 0.5 99.4 ± 0.2 99.3 ± 0.3
DenseNet169 99.3 ± 0.5 99.4 ± 0.6 99.3 ± 0.5 99.3 ± 0.7 99.3 ± 0.4
DenseNet201 99.2 ± 0.2 99.0 ± 0.4 99.4 ± 0.2 98.9 ± 0.4 99.2 ± 0.2

xDNN [53] 97.3 99.1 95.5 - 97.3
DenseNet201 [38] 96.2 96.2 96.2 96.2 96.2

Modified VGG19 [55] 95.0 95.3 94.0 94.7 94.3
COVID CT-Net [56] - - 85.0 ± 0.2 96.2 ± 0.1 90.0 ± 0.1

Contrastive Learning [28] 90.8 ± 0.9 95.7 ± 0.4 85.8 ± 1.1 - 90.8 ± 1.3

COVID19-CT [54]

SqueezeNet 87.3 ± 3.2 86.3 ± 6.1 86.5 ± 2.3 87.9 ± 6.3 86.5 ± 3.0
ShuffleNet 87.9 ± 2.6 84.5 ± 2.5 90.8 ± 3.9 85.4 ± 2.7 87.6 ± 2.8
ResNet18 90.3 ± 2.5 87.1 ± 4.1 93.1 ± 2.5 87.9 ± 4.9 90.1 ± 2.3
ResNet50 90.8 ± 1.9 90.2 ± 5.0 90.0 ± 3.6 91.4 ± 5.0 90.1 ± 1.9

ResNet101 89.8 ± 2.5 88.0 ± 3.7 90.5 ± 1.9 89.2 ± 3.8 89.3 ± 2.4
ResNeXt50 90.6 ± 2.2 87.4 ± 3.6 93.4 ± 3.4 88.2 ± 4.4 90.3 ± 2.2

ResNeXt101 90.9 ± 1.8 88.1 ± 3.5 93.1 ± 2.9 88.9 ± 4.0 90.6 ± 1.8
InceptionV3 89.4 ± 2.0 87.7 ± 2.5 90.0 ± 2.4 88.9 ± 2.4 88.8 ± 2.2

Xception 88.5 ± 2.6 87.3 ± 2.7 88.3 ± 4.7 88.7 ± 2.9 87.7 ± 2.9
DenseNet121 88.9 ± 1.2 87.6 ± 2.6 88.8 ± 1.4 88.9 ± 2.9 88.2 ± 1.0
DenseNet169 91.2 ± 1.4 88.1 ± 2.5 93.7 ± 1.2 88.9 ± 2.7 90.8 ± 1.4
DenseNet201 92.9 ± 2.2 91.3 ± 2.2 93.7 ± 3.4 92.2 ± 2.2 92.5 ± 2.4

DenseNet169 [54] 83.0 - - - 81.0
Decision function [57] 88.3 - - - 86.7

ResNet101 [58] 80.3 78.2 85.7 - 81.8
DenseNet121+SVM [59] 85.9 ± 5.9 - 84.9 ± 8.4 86.8 ± 6.3 -

DenseNet169 [60] 87.7 ± 4.7 90.2 ± 6.0 85.6 ± 6.7 - 87.8 ± 5.0
Contrastive Learning [28] 78.6 ± 1.5 78.0 ± 1.3 79.7 ± 1.4 - 78.8 ± 1.4

On the SARS-CoV-2 CT dataset, ResNet101 achieves the best overall performance
with respect to almost all evaluation metrics, with an average accuracy and F1-score
of 99.4%. The model also achieves an average sensitivity rate of 99.1% indicating that,
on average, only two COVID-19 images are falsely predicted as negatives. It is also
powerful enough to correctly identify all non-COVID-19 cases with only one false positive
resulting a specificity rate of 99.6%. The highest sensitivity score of 99.8% is achieved by
the InceptionV3 model, where only one COVID-19 image is falsely predicted as negative
on average. The SqueezeNet model obtains the lowest performance with respect to all
evaluation metrics with a fairly acceptable average accuracy and sensitivity scores of 95.1%
and 96.2%, respectively. Compared with SqueezeNet, the ShuffleNet architecture obtains a
satisfactory performance with approximately 2% improvement on average for all metrics.
Although the results obtained by these models are inferior compared with the rest of
models, but they are more computationally efficient, which matches their main objective
designs of balancing the computational costs and their performance at visual recognition
tasks. Comparing the various variants of ResNet and DenseNet, we observe that the deeper
variants from each architecture yield a slightly better performance. Moreover, the deeper
ResNet101 and ResNeXt101 show a marginal gain in performance compared with their
shallower counterparts. The details about class-wise results for each model are summarized
in the confusion matrices in Figure 9.
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Figure 9. Confusion matrices for the different deep CNN models. These results are the average counts of the five models
obtained by stratified 5-fold cross-validation on the SARS-CoV-2 CT dataset.

It is worth mentioning that on the SARS-CoV-2 CT dataset the inter-fold variations
are minimal and usually below one percent, showing the robustness of our fine-tuning
strategy. For some of the architectures like the DenseNet variants we observe a larger
confidence interval than their actual differences in recognition performance. This means
that the DenseNets and the deeper ResNet variants share a very similar performance and
are almost indistinguishable from each other. Overall, the results obtained by our models
are better than the recently published ones even when using the same network architectures.
We attribute this to the better transferability of the learned features when applying our fine-
tuning strategy. More specifically, the combination of the canvas approach to empirically
choose the suitable input size for each architecture, and using larger input resolution than
the standard CNN architectures. The chosen input size allows preserving the image ratios
and tiling the network filters appropriately across the input volume, whereas the larger
input size allows conveying more information.

On the COVID19-CT dataset, the overall performance with respect to all evaluation
metrics is inferior to that on the SARS-CoV-2 dataset. This can be attributed to the cross-
source heterogeneity of the CT images in the dataset. The non-COVID-19 CT images were
taken from different sources and show diverse findings which pose difficulty to distinguish
between COVID-19 and other findings associated with lung diseases due to the potential
overlap of visual manifestations (see Figure 8). Another reason is that the CT images in
the COVID19-CT dataset show strong variations in contrast, variable spatial resolution,
and other visual characteristics which could affect the model’s ability to extract more
discriminative and generalizable features.

Our models achieved fairly good performance compared with the recently published
work using the exact network architectures. Here, we see that DenseNet201 outperformed
all other architectures. The model achieved average accuracy and sensitivity scores of
92.9% and 93.7%, respectively. It also identified all COVID-19 cases, with only four images,
on average, being falsely predicted as non-COVID-19. DenseNet169 achieved the second
best average accuracy of 91.6% and a very high sensitivity identical to the best model. The
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DenseNet121 and Xception models achieved nearly identical results with respect to all
evaluation metrics. We can observe that small networks such as ResNet18 achieved com-
parable results to those of other deeper models, whereas the SqueezeNet and ShuffleNet
models performed at a similar level of accuracy. The variants of the ResNeXt models have
comparable results and performed as well as the different ResNet variants. For detailed
analysis and full understanding of the numbers of correct and misclassified cases for each
individual model, see the confusion matrices presented in Figure 10.
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Figure 10. Confusion matrices for the different deep CNN models. These results are the average counts of the five models
obtained by stratified 5-fold cross-validation on the COVID19-CT dataset.

It is also worth mentioning that for the COVID19-CT dataset the inter-fold variations
grow substantially due to the small size of the dataset. During the stratified 5-fold cross-
validation, the training set consists of about 600 images only, and the test fold has less than
200 images, which has to produce statistical fluctuations. Metrics considering the overall
performance, such as the accuracy, have less inter-fold variation. However, we observed
stronger variations in metrics that tested the bias towards one of the classes, such as the
specificity. The standard deviation of the specificity indicates that the different folds tend
to encourage the model to focus more on COVID-19 or more on non-COVID-19 cases. This
phenomenon occurs even though for a stratified 5-fold cross-validation the distribution of
classes in each fold represents the class distribution of the entire dataset, and it seems to
originate from the small number of images only.

5.5. Visual Explanations

This subsection provides visual explanations to make our models more transparent.
We start with a 2D projection of the learned features using t-SNE [14], and then present the
localization maps for highlighting the COVID-19-associated regions using Grad-CAM [15].

5.5.1. The t-SNE Visualization

To understand how the deep neural networks represent the CT images in the high-
dimensional feature space, we applied the t-SNE algorithm to visualize these features. For
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each image in the SARS-CoV-2 dataset we first extracted the 2048-dimensional feature
vector from the penultimate layer of the InceptionV3 model. Next, we applied t-SNE to
map the features onto a 2D space and then visualize the embeddings of training and test
representations. Figure 11 clearly shows two well-separated clusters of the CT images of
COVID-19 and non-COVID-19 classes. The clear and wide margin between the two classes
shows how nicely the CT images are separated in feature space. This indicates that the
distributions of training and test features are quite similar to each other, indicating good
generalization capabilities of our models.

40 20 0 20 40

60

40

20

0

20

40

60

80

Figure 11. Visualization of the t-SNE embeddings for the entire SARS-CoV-2 CT dataset. We clearly
see two different clusters representing COVID-19 (red for training and blue for test samples) and
non-COVID-19 (yellow for train and green for test samples) classes.

We also repeat the same procedure for the COVID19-CT dataset. The feature vectors
are extracted from the penultimate layer of the DenseNet169 model. The length of the
feature vectors is 1664 dimensions. We again apply t-SNE to map the features onto a
2D space to explore and visualize them. Figure 12 shows two clusters representing CT
images for the COVID-19 and non-COVID-19 classes. Even though the classes are fairly
distinguishable with a clear decision boundary, however, we can see that some CT images
are misclassified, and more specifically the non-COVID-19 CT images from the test set.
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Figure 12. Visualization of the t-SNE embeddings for the entire COVID-19 CT dataset. As in Figure 11,
we can see two different clusters representing COVID-19 and non-COVID-19 classes.

5.5.2. The Grad-CAM Visualization

In order to make our models more transparent and visually interpret the results, we
provide the Grad-CAM localization maps generated by using different models. We utilized
the CT images from COVID-19 class from the test set for each dataset, and highlight the
important regions considered for the prediction. Figure 13 shows examples of CT images
from the SARS-CoV-2 CT dataset and their localization maps. Interestingly, in most of the
cases, our InceptionV3 model correctly classified them as COVID-19 cases and highlighted
the regions of abnormalities in the CT scans, which are important for the model’s decision.

Figure 13. Grad-CAM visualizations for examples of CT images from the SARS-CoV-2 dataset. Our
InceptionV3 model correctly classified them as COVID-19 and localized the most relevant regions
used for its decision. The first, third, and fifth columns show CT images with COVID-19 findings,
whereas the second, fourth, and sixth columns represent their corresponding localization maps
generated by Grad-CAM.

In a similar way, we considered classifying the test CT scans from the COVID-19
dataset by the DenseNet169 model, and highlight the important regions considered for
predictions. We present samples of CT images and their localization maps in Figure 14.
We can also see that our model is capable of detecting the COVID-19-related regions as
annotated (small square in some images) by expert radiologists.
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Figure 14. Grad-CAM visualizations for sample CT images from the COVID19-CT dataset. Our
DenseNet169 model correctly classified them as COVID-19 cases and highlighted the most relevant
regions, as shown in the corresponding localization maps.

A wide variety of typical and atypical chest CT abnormalities of COVID-19 patients
have been reported in various studies [61,62]. In order to investigate the ability of our
models to identify COVID-19 cases outside the considered datasets and localize their CT
findings, we tested our models on external CT images extracted from these two publications,
as they feature typical findings of COVID-19 pneumonia marked by specialists. To make
sure that none of the extracted images were unintentionally included in our datasets,
specifically the COVID19-CT dataset, we used the model trained on the SARS-CoV-2
dataset. First, the InceptionV3 model was used to classify the extracted CT images. The
model was able to correctly classify the given CT images as COVID-19. Second, in order
to interpret the model’s generalization capabilities, we applied the Grad-CAM technique
to visualize the regions of abnormalities that are considered. By assessing the different
CT images in Figure 15, we can see that the model accurately localizes the disease-related
regions. Even more interesting is the fact that the model ignores any specific marks in the
images such as the letters and only localizes the COVID-19-related regions. These further
experiments prove the success of our models to learn distinguishable visual features related
to COVID-19, and to correctly classify CT images outside the datasets on which they are
trained and tested.

Figure 15. Examples of CT images taken from these two publications [61,62]. The CT images were
correctly classified as COVID-19 cases, and the abnormal regions are accurately detected as in the
localization maps.

In order to investigate the capacities of the different models to accurately localize
identical or similar important regions, we employed the model with the lowest accuracy,
i.e., SqueezeNet, which was fine-tuned on the SARS-COV-2 dataset to classify the unseen
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CT images taken from [61,62]. Moreover, we provide the Grad-CAM localization maps for
a direct comparison. Figure 16 illustrates CT images, which represent the first two rows in
Figure 15, and their corresponding localization maps. For most of the cases, both models
looked exactly at similar regions representing the COVID-19 manifestations. However, for
some images, SqueezeNet looked at irrelevant regions, such as the top left corner.

Figure 16. Grad-CAM visualizations for the same CT images in the first two rows of Figure 15. The
CT images were correctly identified by SqueezeNet as COVID-19 cases with relevant localization of
the disease-related regions.

Although we trained our models using CT images where both lungs are visible in
the scans, we tested them on some external CT scans where only one lung is visible. The
CT scans were extracted from the paper [61] and show different CT manifestations of
COVID-19 marked by red squares or white arrows. Our models were able to classify them
correctly as COVID-19 cases. Intriguingly, when applying Grad-CAM we can see from
Figure 17 that all regions of abnormalities are accurately localized. This also proves the
potential of our models to detect COVID-19 abnormalities in CT images outside the dataset
used for training.

Figure 17. Example of annotated CT scans with different manifestations of COVID-19 taken from [61],
and their corresponding localization maps. Our models were able to identify them as COVID-19
cases and accurately localize their COVID-19-associated regions.

For a comprehensive analysis of our visual explanations, we include some cases
wherein the models failed to localize the exact COVID-19-associated regions. Figure 18
illustrates examples of CT scans that were correctly identified by our models as COVID-19
cases, but with which our models failed to localize the most relevant regions associated
with COVID-19 as marked in some CT images. These failure behaviors can be attributed in
some cases to focusing on similar findings or subtle density of manifestations found in the
early days of infection. Nevertheless, in some cases the models only localized the findings
in one lung and failed to highlight the disease-related regions in the other lung.
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Figure 18. CT scans and their Grad-CAM localization maps showing cases in which the model failed
to localize the most relevant COVID-19 regions.

6. Conclusions

We proposed different deep learning based approaches for automated COVID-19
detection using chest CT images. The most advanced deep network architectures and
their variants were considered, and extensive experiments were conducted on the two
datasets with the largest numbers of CT images available so far. Moreover, we investigated
different configurations and determined a custom-sized input for each network to achieve
the best performance. The resulting networks showed significantly improved performance
for detecting COVID-19. Our models achieved state-of-the-art performance with average
accuracies of 99.4% and 92.9%, and sensitivity scores of 99.8% and 93.7% on the SARS-
CoV-2 CT and COVID19-CT datasets, respectively. This indicates the effectiveness of
our proposed approaches and the potential for using deep learning for fully automated
and fast diagnosis of COVID-19. For better interpretability of the results, we provided
visual explanations for decisions made by our models. We explored and visualized the
learned features using the t-SNE algorithm, where the resulting visualizations showed well-
separated clusters for COVID-19 and non-COVID-19 cases. We also assessed our models in
localizing the abnormal regions in the CT images that are relevant to COVID-19. Moreover,
we tested our models on external CT images from different publications, and our models
were able to detect all COVID-19 cases and accurately localize the COVID-19-associated
regions as marked by expert radiologists.
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