
sensors

Article

2D Optimal Trajectory Planning Problem in Threat
Environment for UUV with Non-Uniform Radiation Pattern

Andrey A. Galyaev * , Pavel V. Lysenko and Victor P. Yakhno

����������
�������

Citation: Galyaev, A.A.;

Lysenko, P.V.; Yakhno, V.P. 2D

Optimal Trajectory Planning Problem

in Threat Environment for UUV with

Non-Uniform Radiation Pattern.

Sensors 2021, 21, 396. https://

doi.org/10.3390/s21020396

Received: 2 December 2020

Accepted: 5 January 2021

Published: 8 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Control Sciences of RAS, 117997 Moscow, Russia; pashlys@yandex.ru (P.V.L.);
vic_iakhno@mail.ru (V.P.Y.)
* Correspondence: galaev@ipu.ru

Abstract: Path planning is necessary in many applications using unmanned underwater vehicles
(UUVs). The main class of tasks is the planning of safe routes with minimal energy costs and/or
minimal levels of emitted physical and information signals. Since the action planner is on board
the UUV, the main focus is on methods and algorithms that allow it to build reference trajectories
while minimizing the number of calculations. The study is devoted to the problem of the optimal
route planning for a UUV with a non-uniform radiation pattern. The problem is stated in the form of
two point variational problem for which necessary and sufficient optimality conditions are proved.
Particular attention is paid to cases where optimality conditions are not met. These cases are directly
related to found specific forms of a radiation pattern. Sufficient optimality conditions are extended on
the class of two-link and multi-link motion paths. Software tools have been developed and computer
simulations have been performed for various types of radiation patterns.

Keywords: UUV path/trajectory planning; non-detection probability; non-uniform radiation pattern

1. Introduction

Various military and civil engineering applications that deal with the search of the
optimal trajectories for space, air, naval and ground vehicles cover control tasks with
various target functions, resource and control constraints. Examples of such tasks are:
minimizing the risk of detection by aircraft radars; minimizing the risk of detection of a
submarine by various sensors through different physical fields; minimizing cumulative
damage during the passage of contaminated areas, etc. Despite the large variety of con-
trolled mobile vehicles, the control tasks associated with them have common traits. First of
all, these are traditional mission planning tasks, which include setting a safe course taking
into account natural and artificial constraints (terrain, hydrology, weather conditions),
as well as maintaining stability on a given course. In addition, the problem of optimal
maneuvering in emergency situations (sharply changing weather conditions, etc.), as a
rule, is typical. The success of the mission is estimated by the value of a certain function
(optimization criterion), the minimization of which is the main task of the control system.
Classical optimization criteria are associated with minimizing the energy costs, time (veloc-
ity problem), or miss criterion. Recently, there has been interest in non-traditional criteria,
such as increasing the covertness of movement (when moving in a threat environment,
considering the map of potential threats). It has led to a new area of control problems
known as “trajectory/path planning in the threat environment.” The threat environment is
defined as a set of agents, called conflicting, that the controlled vehicle must avoid while
performing its main task [1–6].

The route planning problems are usually associated with path planning (PP) and
trajectory planning (TP) problems. The path planning task consists of determining the
points through which the UUV must pass to reach the prescribed destination from the
starting position, while describing the UUV’s movement over time is considered to be the
trajectory planning task [7]. The approach describing detection mechanisms given in [8–10]
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is used to formulate trajectory planning problem for UUV evading from detection. The
estimation of the integral level of the signal that is sent to the input of a spatially distributed
information and an observation system during the entire observation time is performed.
In literature such a system is called a sensor [10]. The estimation of the signal integral
level at the sensor input is fulfilled to solve the TP-problem with optimizing the control
law for a mobile vehicle that moves from a fixed starting point to a fixed end point of the
route during a given period of time. The UUV’s goal is an evasion from the detection
by an observer (group of observers) located in a given area. This approach corresponds
to the process of mobile vehicle detection based on an estimation of primary emitted
physical signals [6]. Therefore statements of such problems are based on the estimation of
physical signals emitted by the vehicle. The formalization of these problems can differ in
dependence of many parameters: physical nature of detection fields, classes of acceptable
control, the type of quality criteria, the number of detectors, the volume of information
available to conflicting parties. As a result, based on known data, a distribution map of
normalized or absolute levels of risks (threats) is created, as shown in Reference [11].

Similar approaches are used in Reference [2], where the problem of the automated path
planning of combat unmanned aerial vehicles (UAVs) in the presence of radar-controlled
surface-to-air missiles is considered and solved. A pre-built map of aircraft damage risks is
based on the interaction of three subsystems: the aircraft and its characteristics, the radar
and its capabilities, and the missile and its striking properties. Based on this map, the route
with the lowest risk of damage is found.

As mentioned above, on the one hand, there is a variety of mathematical criteria
describing the success of missions performed by mobile vehicles: the probability of rescue,
the motion time on the trajectory, the mathematical expectation of the time interval until
the first detection on the path, the path length [4,8–10,12–14]. On the other hand, despite
this variety there are too few analytical results available to realize optimal trajectories in TP
problems. In Reference [5], the optimal path consists of lines and circular arcs (2D Dubins
curves). In Reference [10] the optimal path is presented by circle or Legandre’s functions
arcs as well as in [15]. Indeed, numerical algorithms are well described in the literature.

At the initial stage, the mission planner is faced with one of two tasks:

• minimizing the integral risk for a given trajectory length;
• minimizing the length of the UUV motion path for a given value of the integral risk.

These problems are formulated as two-point problems of variations calculus or as
optimal control problems on the plane in the presence of coordinate, phase, and integral
constraints, and can be solved by one of the standard numerical methods that will set the
trajectory of the UUV as the projection on the horizontal plane from 3D-space. Planning the
UUV trajectory in the projection on a vertical plane is carried out using, for example,
a terrain map, on which the mission planner interactively chooses the depth-levels of
the trajectory, setting reference points for the beginning and end of the movement on
the specified depth. Horizontal movement on a given depth is carried out along a flat
trajectory obtained from solving the variational problems discussed above. The smooth
conjugation of the trajectories of adjacent depths can be performed by a polynomial or
spline approximation, taking into account the curvature constraint. An example of on-
board realization of mission-planner for a mobile underwater robot is described in [16].

A good summary of path planning algorithms for UUVs is given in Reference [7].
These algorithms include the shortest graph-based path algorithm known as A*, the arti-
ficial potential field algorithm, sequential quadratic programming and so on. Addition-
ally, an approach based on ant-colony behavior is often used [11,17]. In recent years, due
to the progress of neural networks, the deep learning and specifically deep reinforcement
learning approaches [18,19] are becoming more and more popular.

The present article deals with the problem of stealth intrusion of UUV into the pro-
tected area in the conditions of a network-centric counteraction of the opposite side,
equipped by the means of the detection of UUV. Following the work in Reference [6], the
signal emitted by a mobile vehicle has a non-uniform space pattern. The TP problem of
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UUV’s evasion from detection by stationary sonar system (SSS) is considered. In the case
of a passive mode of reception, the SSS detects UUV using a radiated signal generated by
UUV’s motion [20]. An indicator of the success of the object’s stealth intrusion into the area
is the integral risk of UUV detection on some assigned route [1,6]. When the TP problem is
solved, the maximal UUV invisibility is achieved by choosing such trajectory and the law
of velocity as time functions, which minimize the risk of detection. On the the other hand,
an indicator of the effectiveness of the detection by SSS is the probability of detection of a
moving UUV in the conditions of receiving a signal against random background noise of
the aquatic environment [21]. Therefore equal values of detection risk assigned to given
trajectory may match different values of detection probabilities depending on levels of a
random background acoustic noise.

The current article expands and continues research presented in the article [6]. The need
for new research emerged from a computer modeling of optimal UUV routes, conducted
by the authors of the article using software, specially developed for this purpose. It turned
out that for some types of radiation patterns the model trajectory has a sawtooth shape.
This means that the UUV moves, constantly changing its heading angle. Accordingly, it is
necessary to determine whether such trajectories are a feature of the developed numerical
scheme for implementing the algorithm, or whether such trajectories are actually locally
optimal in theory. A lot of new results have been revealed. It happens that the sawtooth
trajectory shape appears due to violation of sufficient optimality conditions for extreme
trajectories. In the current article new lemmas and theorems for the two-link and multi-link
optimal trajectories are proven, as well as a lot of modeling examples are developed to
illustrate all the obtained results. Additionally, special cases of radiation patterns leading
to degeneration of necessary and sufficient conditions are studied. Moreover, the current
research deals with the problem in a more general form, which allows studying of more
various types of physical signals compared to the previous article [6].

The proposed work has the following structure. Section 2 discusses two statements of
optimal TP problem as a two-pointed classical variation problem. The variables transforma-
tion, according to [22], is determined to reformulate the initial task to be more convenient
for the further solution form. In Section 3 necessary optimality conditions are derived.
Further in Section 4 sufficient optimality conditions are proved. Section 5 studies the condi-
tions of the degeneration of Euler-Lagrange equations. The radiation patterns satisfying
such conditions and the ones corresponding to zero Hessian are found. Section 6 proposes
the extension of sufficient optimality conditions onto the class of two-link trajectories.
Section 7 presents a number of examples, that illustrate and support analytical results
obtained in the paper. Last Section 8 concludes the article and suggests a direction for
future work.

2. Trajectory Planning Problem

The mobile vehicle moves on the plane in the detection region of the searching system,
presented by one observer that is called a sensor. Let us formulate the problem of finding the
optimal trajectories of the object as the variational problem with integral functional of object’s
detection by the sensor, which is called risk of detection, or, for simplicity, just risk [6,10].

2.1. About the Risk Functional

The risk depends on the instantaneous level of physical signal S(t), radiated by
the mobile vehicle and received by the sensor [6]. This signal is the function of the
characteristics of the mobile vehicle and the sensor

S =
(v

r

)µ
G(ϕ)γ(r, ϕ)g(β), (1)

where multiplier G(ϕ) is responsible for the diagram of the sensor antenna, g(β) is the
radiation pattern of the mobile vehicle in the direction toward the sensor which forms the
angle π − β with velocity vector, r is the current distance between sensor and evading
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vehicle, v—absolute instant velocity of the object, γ(r, ϕ)—signal saturation factor in the
physical medium of detection. The geometric meaning of angles ψ and ϕ is as follows.
Here ψ is the angle of rotation of object’s velocity vector and ϕ is the angle of rotation of
radius vector as shown in Figure 1a. Angle ψ− ϕ = β is the angle in triangle built from
radial vr and transversal vϕ velocities of the object, e.g., the angle between velocity vector
of the vehicle and its projection on radius vector as shown in Figure 1b. The exponent
µ characterizes the physical field used for detection. Depending on value µ this can be
magnetic, thermal, acoustic or electromagnetic fields. Further in the paper the case of µ > 1
will be considered.

(a) (b)
Figure 1. The mobile vehicle in the Cartesian plane with sensor S (a) and its velocity vectors ~v,~vr

and ~vϕ (b).

For simplicity let us consider the sensor antenna diagram to be homogeneous, so G(ϕ) ≡
1, and that there is no additional signal attenuation or gain in the environment, so γ(r, ϕ) ≡ 1.

The risk R is the integral value of the signal given by Equation (1), so the criterion of
optimization is a function of phase coordinates of the vehicle and its relative disposition to
the sensor:

R =
∫ T

0

(v
r

)µ
g(β)dt. (2)

The example of radiation pattern is presented in Figure 2. The axes X and Y are
oriented with the object in such a way that Y points to the upper side of the object, X-to the
right one, and angle β is counted counter-clockwise from axes X. Function g(β) itself is a
length of radius-vector for every β, thus g(β) > 0.

Figure 2. Radiation pattern of the mobile vehicle.

2.2. Mathematical Statement of the Problem

The task of the mobile vehicle is to pass from start point A to final point B with as
minimal risk on the trajectory as possible. The polar coordinate system (r, ϕ) in 2D space is
introduced to rewrite the optimal trajectory planning problem.
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As mentioned in the introduction, in [22] it was proven that for the problems of this
type there is a transformation of coordinates which leads the functional to the convenient
value for the next investigation form and to the coordinate space (ρ, ϕ), where ρ = ln r.
It occurs that in this coordinate space optimal trajectories are geodetic, e.g., presented as
straight lines. For the considered problem Equation (2) there is such a transformation too.

According to Lemma 1 [6] the original TP problem can be rewritten as the problem
with the functional Equation (3).

Problem 1. It is required to find the trajectory (ρ∗(t), ϕ∗(t)), which minimizes the functional

R(ρ(·), ϕ(·)) =
∫ T

0
S(ρ, ρ̇, ϕ, ϕ̇, t)dt =

∫ T

0

(
ρ̇2 + ϕ̇2

)µ/2
g
(

arctan
ϕ̇

ρ̇

)
dt −→ min

ρ(·),ϕ(·)
. (3)

with boundary conditions

ρ(0) = ρA, ρ(T) = ρB, ϕ(0) = ϕA, ϕ(T) = ϕB.

Written in this form, the initial problem is more convenient for analytical solution, as
the optimization functional depends only on the derivatives of coordinates.

3. The Necessary Optimality Conditions

First of all, the necessary conditions for extremal trajectory must be considered, e.g.,
the candidates for optimal trajectories are to be found. Due to the form of the Equation (3)
this functional has the number of the first integrals. For example, as was shown in [6],
Lagrangian S(ρ, ρ̇, ϕ, ϕ̇, t) remain its value S* along the extremal trajectory (ρ∗(t), ϕ∗(t)).

Additionally, in [6] the theorem about the necessary condition of optimality for the
trajectory was stated and proven. From Theorem 1 [6]

Theorem 1. Suppose that 0 < g1 < g(β) < g2 for all β ∈ [0, 2π] is a twice continuously
differentiated function of β, where g1, g2 are some constant values, and ρ̈(t), ϕ̈(t) exist and are
continuous functions of t. Then the extremal trajectory satisfies the following system of equations{

ρ̇ = const,
ϕ̇ = const.

(4)

It follows that the extremal trajectory, which can be the solution for Problem 1 can be
represented in the parametric form of logarithmic spiral

r(t) = rA exp
(

t
T0

ln
rB
rA

)
,

ϕ(t) = ϕA +
ϕB − ϕA

T0
t.

(5)

The explicit form of the UUV extremal trajectory equation on the plane is

r(ϕ) = rA exp
(

ϕ− ϕA
ϕB − ϕA

ln
rB
rA

)
. (6)

Next two lemmas define the velocity law of the vehicle on the extremal trajectory and
the risk value on it.

Lemma 1. The velocity law on the extremal trajectory Equation (6) is represented as follows

v(t) =
rA
T

exp
(

t
T

ln
rB
rA

)√
ln2 rB

rA
+ (ϕB − ϕA)

2. (7)

We need to reformulate Lemma 4 from Reference [6] as follows
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Lemma 2. The explicit dependence risk (3) from boundary conditions on the extremal trajectory
Equation (6) has the form

R∗ =

(
(ρB − ρA)

2 + (ϕB − ϕA)
2
)µ/2

Tµ−1 g(β∗) =
Lµ

Tµ−1 g(β∗), (8)

where β∗ = arctan
ϕB − ϕA
ρB − ρA

, and L =
√
(ρB − ρA)

2 + (ϕB − ϕA)
2 is the length of the straight

line segment between points A and B in the space (ρ, ϕ).

The proof of Lemma 2 remains valid as shown in Reference [6].

4. The Sufficient Optimality Conditions

Now let us prove that obtained above extremal trajectory given by Equation (6) is
the optimal solution to the Problem 1, e.g., it brings the strong minimum to the functional
Equation (3). The Hessian matrix shall be investigated for that cause.

Lemma 3. Let S(ρ, ρ̇, ϕ, ϕ̇, t) =
(

ρ̇2 + ϕ̇2
)µ/2

g(β), g(β) – thrice continuously differentiated
function of β, then Hessian matrix H equals

H =

(
H11 H12
H21 H22

)
where

H11 =
∂2S
∂ρ̇2 =

(
−2ϕ̇ρ̇(µ− 1)g′(β) + µ

(
ϕ̇2 + ρ̇2(µ− 1)

)
g(β) + g′′(β)ϕ̇2

)(
ϕ̇2 + ρ̇2

) µ
2 −2

,

H12 =
∂2S

∂ρ̇∂ϕ̇
=
((

ρ̇2 − ϕ̇2
)
(µ− 1)g′(β) + ρ̇ϕ̇

((
µ2 − 2µ

)
g(β)− g′′(β)

))(
ϕ̇2 + ρ̇2

) µ
2 −2

,

H21 =
∂2S

∂ϕ̇∂ρ̇
=
((

ρ̇2 − ϕ̇2
)
(µ− 1)g′(β) + ρ̇ϕ̇

((
µ2 − 2µ

)
g(β)− g′′(β)

))(
ϕ̇2 + ρ̇2

) µ
2 −2

,

H22 =
∂2S
∂ϕ̇2 =

(
2ϕ̇ρ̇(µ− 1)g′(β) + µ

(
ρ̇2 + ϕ̇2(µ− 1)

)
g(β) + g′′(β)ρ̇2

)(
ϕ̇2 + ρ̇2

) µ
2 −2

,

(9)

and the Hessian itself is the determinant of the matrix

det H =
(

ϕ̇2 + ρ̇2
)µ−2

(µ− 1)
(

g2(β)µ2 + g(β)g′′(β)µ− g′2(β)(µ− 1)
)

. (10)

Next theorem gives the sufficient condition of extremal trajectory optimality.

Theorem 2. Assume that the conditions of Theorem 1, Lemma 3 are satisfied, and the inequality
det H > 0 is valid for all values β. Then the optimal trajectory given by Equation (4) brings the
strong minimum to the risk functional Equation (3).

Proof. If the Hessian matrix is positively defined then the Legandre conditions are fulfilled.
So second order minor is the same with Hessian itself and det H > 0 by the theorem
condition. Choose any first order minor H11 and H22 from Equation (9) and find its sign.
At least one of them is positive because both values are fixed on the optimal trajectory and
their sum equals

H11 + H22 = (ϕ̇2 + ρ̇2)
µ
2 −1(g(β)µ2 + g′′(β)) =

=

det H

µ(µ− 1)(ϕ̇2 + ρ̇2)
µ
2 −1

+ (ϕ̇2 + ρ̇2)
µ
2 −1
(

g′2(β)

(
1− 1

µ

)
+ (µ2 − µ)g2(β)

)
g(β)

> 0.

(11)

In a previous article [6] this theorem was considered for the particular case of µ = 2.
Of course, expression from Equation (11) equals the same from [6] after substituting this
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µ. Taking into account that µ > 1 leads to the statement that both values H11 and H22 are
strictly positive too.

The Jacobin conditions have the form

d
dt
(H11ρ̇ + H12 ϕ̇) = 0,

d
dt
(H21ρ̇ + H22 ϕ̇) = 0,

(12)

as Sρρ̇ = 0, Sϕρ̇ = 0, Sρϕ̇ = 0, Sϕϕ̇ = 0.
Using minors of the Hessian matrix from Equation (9), the summands of equations

from Equation (12) can be found

H11ρ̇ =
(
−2ϕ̇ρ̇2(µ− 1)g′(β) + µρ̇

(
ϕ̇2 + ρ̇2(µ− 1)

)
g(β) + g′′(β)ρ̇ϕ̇2)(ϕ̇2 + ρ̇2) µ

2−2, (13)

H12 ϕ̇ =
(

ϕ̇
(
ρ̇2 − ϕ̇2)(µ− 1)g′(β) + ρ̇ϕ̇2((µ2 − 2µ

)
g(β)− g′′(β)

))(
ϕ̇2 + ρ̇2) µ

2−2, (14)

H21ρ̇ =
(
ρ̇
(
ρ̇2 − ϕ̇2)(µ− 1)g′(β) + ρ̇2 ϕ̇

((
µ2 − 2µ

)
g(β)− g′′(β)

))(
ϕ̇2 + ρ̇2) µ

2−2, (15)

H22 ϕ̇ =
(
2ϕ̇2ρ̇(µ− 1)g′(β) + µϕ̇

(
ρ̇2 + ϕ̇2(µ− 1)

)
g(β) + g′′(β)ρ̇2 ϕ̇

)(
ϕ̇2 + ρ̇2) µ

2−2. (16)

Substituting Equations (13)–(16) to Equation (12), one can get

H12 ϕ̇ + H11ρ̇ =
(
(µ− 1)g′(β)

(
ρ̇2 ϕ̇− ϕ̇3 − 2ϕ̇ρ̇2

)
+ g(β)µρ̇

(
ϕ̇2(µ− 2) + ϕ̇2 + ρ̇2(µ− 1)

)
+

+ g′′(β)
(
−ρ̇ϕ̇2 + ρ̇ϕ̇2

))(
ϕ̇2 + ρ̇2

) µ
2−2

=
(
−(µ− 1)g′(β)ϕ̇

(
ρ̇2 + ϕ̇2

)
+ g(β)µρ̇(µ− 1)

(
ρ̇2 + ϕ̇2

))
∗

∗
(

ϕ̇2 + ρ̇2
) µ

2−2
=
(
−g′(β)ϕ̇ + g(β)µρ̇

)
(µ− 1)

(
ϕ̇2 + ρ̇2

) µ
2−1

= (µ− 1)Sρ̇,

H22 ϕ̇ + H21ρ̇ =
(

ρ̇(µ− 1)g′(β)
(

ρ̇2 + ϕ̇2
)
+ µg(β)ϕ̇

(
ρ̇2 + ϕ̇2(µ− 1) + ρ̇2(µ− 2)

))(
ϕ̇2 + ρ̇2

) µ
2−2

=

=
(
ρ̇g′(β) + µg(β)ϕ̇

)
(µ− 1)

(
ϕ̇2 + ρ̇2

) µ
2−1

= (µ− 1)Sϕ̇.

The Equation (12) takes the form

d
dt

Sρ̇ = 0,
d
dt

Sϕ̇ = 0,

which coincides with explicit form of Euler–Lagrange Equations (17) for considered Problem 1.
µ

ρ̇

ρ̇2 + ϕ̇2 S∗ − ϕ̇

ρ̇2 + ϕ̇2 (ln g(β))′S∗ = C1,

µ
ϕ̇

ρ̇2 + ϕ̇2 S∗ +
ρ̇

ρ̇2 + ϕ̇2 (ln g(β))′S∗ = C2.
(17)

Here C1, C2, S* are constant values, representing three first integrals of Euler–Lagrange
system. It means that the sufficient conditions of strong minimum of risk functional
Equation (3) are fulfilled [23].

Thus, positivity of the determinant of the Hessian matrix guarantees the logarithmic
spiral to be optimal solution of the problem. Theorem 2 allows for any g(β) to answer if
extremal trajectory (6) is optimal or not. Indeed, the sign of Hessian (10) depends on the
sign of the third multiplier, which depends only on the function g(β). If in conditions of
Theorem 2 det H ≤ 0, then sufficient optimality conditions are not fulfilled and the optimal
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trajectory may have a more complicated form and consist of several logarithmic spirals.
These cases are discussed in the paper further.

5. Degeneration of Euler–Lagrange Equations and Zero Hessian Cases

First of all the case of degeneration of Euler–Lagrange Equations (17) should be
considered. The thing is that both equations may coincide to each other for some radiation
pattern g(β) and some constant values C1, C2.

Lemma 4. The function g(β) = C| cos(γ− β)|µ, where tan γ =
C2

C1
, brings the Euler–Lagrange

system (17) to degeneration.

Proof. Let us multiply the first equation from system (17) by ρ̇, the second one by ϕ̇ and
then sum these two new equations up. Similarly, let us multiply the first equation from
system (17) by −ϕ̇, the second one by ρ̇ and then sum these two new equations up. A new
system of equations appears {

C1ρ̇ + C2 ϕ̇ = µS∗,
C2ρ̇− C1 ϕ̇ = S∗(ln g(β))′.

(18)

Dividing the second equation from system of Equations (18) on the first one can obtain

(ln g(β))′ = µ
C2ρ̇− C1 ϕ̇

C1ρ̇ + C2 ϕ̇
= µ tan(γ− β), (19)

where tan γ =
C2

C1
and is some constant value, tan β =

ϕ̇

ρ̇
and depends from vehicle

velocity direction. Integration of the right part of Equation (19) on β gives∫
µ tan(γ− β)dβ = µ

∫ sin(γ−β)
cos(γ−β)

dβ = µ
∫ d(cos(γ−β))

cos(γ−β)
dβ = µ ln | cos(γ− β)|+ C̃ (20)

with undefined constant of integration C̃. Now integrating left part of Equation (19) one
can obtain

ln g(β) = µ ln | cos(γ− β)|+ C̃. (21)

Using both parts of Equation (21) as powers for the exponent leads to the statement of
the Lemma, where C = exp C̃ and is some constant value.

According to Lemma 4 obtained special form of function g(β) degenerates Euler–
Lagrange equations only with one specific value of the parameter γ, that responds to
the direction associated with boundary conditions of the problem 1 expressed through
constants C1 and C2 when it is already solved.

Corollary 1. The function g(β) from Lemma 4 brings the Lagrangian of the functional (3) to
the form

S(ρ, ρ̇, ϕ, ϕ̇, t) = (C̃1ρ̇ + C̃2 ϕ̇)µ. (22)

Proof of Corollary 1 is given in Appendix I.
In addition to Theorem 1 the next theorem presents the form of extremal trajectories

now for the special type of radiation pattern from Lemma 4.

Theorem 3. All the curves satisfying equation C̃1ρ̇ + C̃2 ϕ̇ = C3 on the coordinate plane (ρ, ϕ)
with some constants C̃1, C̃2, C3 are extremal when g(β) satisfies Lemma 4.

Proof. It is enough to remember Corollary 1 to state that S is a constant on the extremal
trajectory locally in vicinity directions β where g(β) is continuously differentiated function.
Then from Equation (22) it follows the theorem’s statement.
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So, among the set of optimal paths leading from A to B that satisfy the Equation (22),
there is also the logarithmic spiral shown in Equation (6) with the same value of the risk func-
tion.

After analysis of degeneration of necessary optimality conditions it is time to consider
the sufficient conditions too. One of the interesting for research cases is the case of zero
Hessian (10)

g2(β)µ2 + g(β)g′′(β)µ− g′2(β)(µ− 1) = 0. (23)

Lemma 5. The function g(β) which nulls the Hessian (10) equals

g(β) = C| cos(β̃− β)|µ, (24)

where β̃ is an arbitrary constant.

Proof. Dividing of Equation (23) by g′(β)g(β) brings it to the form:

g′′(β)

g′(β)
µ− g′(β)

g(β)
(µ− 1) + µ2 g(β)

g′(β)
= 0. (25)

Introducing a new variable η =
g′(β)

g(β)
allows us to rewrite Equation (25) in a form

η′µ + η2 + µ2 = 0. (26)

Solving Equation (26) gives

η = µ tan(−β + β̃),

where β̃ is an arbitrary constant. After returning to function g(β) this equation becomes

g′(β)

g(β)
= µ tan(−β + β̃)

Addressing the proof of Lemma 4 and Equation (19) it is fair to state that

g(β) = C| cos(β̃− β)|µ.

Now comparing radiation pattern g(β) given by Lemma 4 and the one settled by
Lemma 5 we have the identity of both expressions at fixed γ and some value of β0. Numer-
ical modelling for the zero Hessian case will be held in Section 7.

6. Two-Link Trajectories

This section considers optimal trajectories for radiation patterns which do not satisfy
sufficient conditions from Section 4. For simplicity and analytical solvability of the problems
only two-link trajectories are considered. The risk on the optimal two-link trajectory passing
through points A, B, C is given by the next Lemma.

Lemma 6. The minimum value of risk on a two-segment trajectory that passes through the points
A, C, B in the time interval T is equal to

RACB =
1

Tµ−1

(
L1g1/µ(β1) + L2g1/µ(β2)

)µ
, (27)
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where
L1 =

√
(ρC − ρA)2 + (ϕC − ϕA)2,

L2 =
√
(ρB − ρC)2 + (ϕB − ϕC)2,

β1 = arctan
(

ϕC − ϕA
ρC − ρA

)
,

β2 = arctan
(

ϕB − ϕC
ρB − ρC

)
.

(28)

The proof of Lemma 6 is proposed in Appendix I.
Lemma 6 allows us to check the type of optimal trajectory. If the risk on the two-link

trajectory is less than on the logarithmic spiral directly connecting the points A, B, then
two-link trajectory is optimal.

As was stated in [22], in (ρ, ϕ) space logarithmic spirals are presented as straight
lines. Considering optimal two-link trajectories in (ρ, ϕ) space (Figure 3) allows to rewrite
Equation (27) in a simpler way.

0 ρ− ρ0

ϕ− ϕ0

L0

L1

L2

β0
β1

β2

Figure 3. The mobile vehicle in the (ρ, ϕ) coordinate system.

Corollary 2. The minimum value of risk on a two-segment trajectory that passes through the
points A, C, B in the time interval T can be represented as

RACB =
Lµ

0
Tµ−1

(
sin(β2 − β0)g1/µ(β1) + sin(β0 − β1)g1/µ(β2)

sin(β2 − β1)

)µ

, (29)

where
L0 =

√
(ρB − ρA)2 + (ϕB − ϕA)2,

β1 = arctan
(

ϕC − ϕA
ρC − ρA

)
,

β2 = arctan
(

ϕB − ϕC
ρB − ρC

)
,

β0 = arctan
(

ϕB − ϕA
ρB − ρA

)
.

(30)

The proof of Corollary 2 is given in Appendix I.
A few words should be said about the applicability of the formula (29). The expression

under parentheses must always be positive. Indeed, as shown in Figure 3, either an
inequality −π/2 + β0 ≤ β1 ≤ β0 ≤ β2 ≤ π/2 + β0 or an inequality −π/2 + β0 ≤ β2 ≤
β0 ≤ β1 ≤ π/2 + β0 is satisfied due to the geometry. Because g(β) > 0 in both cases this
expression is positive.
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According to proof of Lemma 6 the value of risk on two-link extremal trajectory equals

RACB(β1, β2, T1, T2) =
Lµ

1 (β1)

Tµ−1
1

g(β1) +
Lµ

1 (β2)

Tµ−1
2

g(β2). (31)

Problem 2. It is needed to find a quad (β∗1, β∗2, T∗1 , T∗2 ) that

(β∗1, β∗2, T∗1 , T∗2 ) = arg min
β1,β2, T1,T2, T1+T2=T≥0

RACB(β1, β2, T1, T2). (32)

Instead of solving the optimization Problem 2 of finding the minimum of RACB
(β1, β2, T1, T2) for four variables, we will solve two consecutive optimization Problem 3 for
pairs (T1, T2) and (β1, β2). This is possible because Lemma 6 found the unique pair T1 and
T2 that gives the minimum.

Problem 3. It is needed to find a quad (β∗1, β∗2, T∗1 , T∗2 ) that gives consecutive minimum of
RACB(β1, β2, T1, T2), so

RACB(β1, β2, T1, T2)→ min
β1,β2

(
min

T1,T2≥0, T1+T2=T

)
. (33)

Next theorem states a result about the structure of the optimal two-link trajectories.

Theorem 4. Optimal angles β∗1, β2* for two-link optimal trajectory do not depend on the direction
β0 between start and end points, are fully defined by radiation pattern g(β) and satisfy

(
g(β2)

g(β1)

)1/µ

= cos(β2 − β1) +
1
µ

sin(β2 − β1)
g′(β1)

g(β1)
,(

g(β1)

g(β2)

)1/µ

= cos(β2 − β1)−
1
µ

sin(β2 − β1)
g′(β2)

g(β2)
.

(34)

Proof. To prove this theorem an expression from (29) must be investigated. After omitting
non-dependable on β0 constants L0 and T the variable R̃ = Rµ can be considered

R̃ =
sin(β2 − β0)g1/µ(β1) + sin(β0 − β1)g1/µ(β2)

sin(β2 − β1)
. (35)

This formula should be minimized by β1 and β2, e.g.,
∂R
∂β1

= 0,

∂R
∂β2

= 0.
(36)

The first equation of System (36) leads to the expression

∂R
∂β1

=
(sin(β2 − β0)

1
µ g′(β1)g1/µ−1(β1)− cos(β0 − β1)g1/µ(β2)) sin(β2 − β1)

sin2(β2 − β1)

+
cos(β2 − β1)(sin(β2 − β0)g1/µ(β1) + sin(β0 − β1)g1/µ(β2))

sin2(β2 − β1)
= 0.

After simplifying the last equation becomes

∂R
∂β1

= g1/µ(β1) sin(β2 − β0)

1
µ sin(β2 − β1)

g′(β1)
g(β1)

+ cos(β2 − β1)

sin2(β2 − β1)
− g1/µ(β2)

sin(β2 − β0)

sin2(β2 − β1)
= 0.
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This equation may be presented as a product of two multipliers so one equation from
the next list of two equations is fulfilled

sin(β2 − β0) = 0,

g1/µ(β2) = g1/µ(β1)

(
cos(β2 − β1) +

1
µ

sin(β2 − β1)
g′(β1)

g(β1)

)
.

(37)

The first equation corresponds to the case of one-link extremal trajectory, so it does
not represent an interest.

Similarly the second equation of System (36) leads to the expression

∂R
∂β2

=
(cos(β2 − β0)g1/µ(β1) + sin(β0 − β1)

1
µ g′(β2)g1/µ−1(β2)) sin(β2 − β1)

sin2(β2 − β1)

−cos(β2 − β1)(sin(β2 − β0)g1/µ(β1) + sin(β0 − β1)g1/µ(β2))

sin2(β2 − β1)

After simplifying it becomes

∂R
∂β2

= g1/µ(β1)
sin(β0 − β1)

sin2(β2 − β1)
+ g1/µ(β2) sin(β0 − β1)

sin(β2 − β1)
1
µ

g′(β2)
g(β2)

− cos(β2 − β1)

sin2(β2 − β1)
= 0.

Again, a list of two equations is fair where at least one of them is fulfilled

sin(β0 − β1) = 0,

g1/µ(β1) = g1/µ(β2)

(
cos(β2 − β1)−

1
µ

sin(β2 − β1)
g′(β2)

g(β2)

)
.

(38)

The first equation corresponds to the case of one-segment trajectory, because it is
already explored.

The second equations of Lists (37) and (38) form a new System (34). The explicit
dependence β1, β2 from β0 is absent.

So, any optimal two-link trajectory for specific radiation pattern g(β) is constructed
from segments of two optimal directions β1* and β2*. Moreover, it can be shown, that
optimal multi-link trajectories are based on these segments as well.

The next lemma specifies a system of equations derived in Theorem 4, which allows
us to find optimal angles β1* and β2* that minimize a risk functional on two-link trajectory.

Lemma 7. Angles β∗1, β2* for optimal trajectory can be found from system cos(β2 − β1) = cos(ξ1 − ξ2),
g(β2)

g(β1)
=

∣∣∣∣cosµ ξ2

cosµ ξ1

∣∣∣∣, (39)

where 
ξ1 = arctan

1
µ

g′(β1)

g(β1)
,

ξ2 = arctan
1
µ

g′(β2)

g(β2)
.

(40)

The proof of Lemma 7 is proposed in Appendix I.
Let us ask the question of what value the risk will take in the case when the radiation

pattern corresponds to the case of zero Hessian.

Lemma 8. Radiation pattern g(β) = C| cos(β̃− β)|µ makes two-link trajectory risk a constant
value for any β1, β2 ∈ [−π/2 + β̃, π/2 + β̃].



Sensors 2021, 21, 396 13 of 24

Proof. Substituting this radiation pattern into Equation (29) and getting rid of the module
in function g(β) gives

R =
Lµ

0 Cµ

Tµ−1

(
sin(β2 − β0) cos(β̃− β1) + sin(β0 − β1) cos(β̃− β2)

sin(β2 − β1)

)µ

,

Simplifying this expression leads to the chain of equations

R =
Lµ

0 Cµ

Tµ−1

(
sin(β2−β0−β̃+β1)+sin(β2−β0+β̃−β1)+sin(β0−β1−β̃+β2)+sin(β0−β1+β̃−β2)

2 sin(β2−β1)

)µ

,

R =
Lµ

0 Cµ

Tµ−1

(
sin(β2 − β0 + β̃− β1) + sin(β0 − β1 − β̃ + β2)

2 sin(β2 − β1)

)µ

,

R =
Lµ

0 Cµ

Tµ−1

(
sin(β2 − β1) cos(β̃− β0)

sin(β2 − β1)

)µ

,

R =
Lµ

0 Cµ

Tµ−1 cosµ(β̃− β0) =

(
L0C

T
cos(β̃− β0)

)µ

T. (41)

From here it follows that R is a constant value for any β1, β2 ∈ [−π/2 + β̃, π/2 + β̃]
and depends only on boundary conditions L0, β0 and fixed time on route T. Moreover, the
function of radiation pattern from Lemma 4 makes expression from Equation (41) even
simpler, as in this case β̃ = β0

R =

(
L0C

T

)µ

T.

7. Examples and Illustration of the Results

The current article develops the analytical methods for the constructing of optimal
reference trajectories. However, in the first part of work [6] an explicit form criterion for the
PP problem for various noise conditions and two types of decision rules are given, based
on a comparison of threshold statistics. The real-world data describing these statistics
can be used for practical applications of research introduced in these articles. Detection
probabilities can be obtained through the calculation of the risk criterion. Certainly, practical
aspects make all the analytical models and estimations much more complicated, but still
the presented in the article research can be helpful for finding reference paths for UUVs.

Matlab scripts have been developed to simulate, validate numerically found analytical
solutions and support lemmas and theorems. Each of the examples below demonstrates
results for different chosen radiation patterns and illustrates one of the cases discussed
throughout the article. In each example the start point A has coordinates (50, 0) and end
point B—(0,100) on Cartesian plane, so ρ0 = ln 50, ϕ0 = 0. Sensor S is situated in the origin.

7.1. Example 1. Logarithmic Spiral

The first example considers a simple case of positive Hessian on the whole range
of β ∈ [0◦, 360◦] or β ∈ [0, 2π] (here and further in some examples angle β may be also
considered in degrees), or on the range of β ∈ [0◦, 180◦] or β ∈ [0, π] due to symmetry g(β),
with radiation pattern

g(β) = K1 + K2 cos2(β), (42)

where K1 = 0.25, K2 = 0.75. Radiation pattern described by Equation (42) was considered
in [6], but in the case of µ = 2, when det H = 1 and is constant due to Lemma 3. However,
now this is not the same case, as µ = 3.

Figure 4a shows a radiation pattern as a function of angle g(β) and Figure 4b—as a
curve on Cartesian plane in respect to the mobile vehicle, where g(β) is a length of the
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radius-vector. Figure 5 shows the dependence of the Hessian det H(β). As one can see, it is
positive for all angles, thus the sufficient condition of Theorem 2 is fulfilled, meaning that
logarithmic spiral AB is the optimal solution with minimal risk on trajectory risk on the
trajectory R = 0.5487.

(a) (b)
Figure 4. Radiation pattern as an dependence g(β) in polar coordinates (a) and on the Cartesian
plane (b).

Figure 5. Dependence of Hessian det H from β.

This fact is illustrated in Figure 6a,b. Figure 6a shows the surface of the risk above
(ρ− ρ0, ϕ− ϕ0) plane, e.g., the vertical axis is the value of risk on two-link trajectory with
fixed start and end points A and B and switch point C with coordinates (ρ− ρ0, ϕ− ϕ0).
Figure 6b illustrates the projection of this surface on the plane (ρ− ρ0, ϕ− ϕ0). The black
color shows the optimal trajectory AB, which is a line segment, as mentioned in [22].

(a) (b)
Figure 6. Optimal trajectory in (ρ− ρ0, ϕ− ϕ0, R− R0) space (a) and its projection on (ρ− ρ0, ϕ− ϕ0)

plane (b).

Figure 7 demonstrates the found optimal trajectory on Cartesian plane.
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Figure 7. Optimal trajectory on Cartesian plane.

7.2. Example 2. Two-Link Optimal Trajectory

The second example illustrates a case of two-link optimal trajectory. As in previ-
ous example, µ = 3. Radiation pattern is more complicated and, as shown in Figure 8,
is presented as an ellipse with cosine wave

g(β) =
1√

1 + 0.8 sin(β)
+ 0.3 cos(6β).

(a) (b)
Figure 8. Radiation pattern as an dependence g(β) in polar coordinates (a) and on the Cartesian
plane (b).

Figure 9 shows that, in contrast to Example 1, Hessian det H is not positive for all
β’s, that means that sufficient conditions are not satisfied. Both one-link AB and two-link
trajectories AC1B, AC2B are shown in Figures 10 and 11. A programming module in
Matlab has been developed to compute optimal β1*, β2* based on system of Equation (39)
from Lemma 7. Route points coordinates are found C1 = (ρC1 , ϕC1) = (4.012, 1.139),
C2 = (ρC2 , ϕC2) = (4.508, 0.428). Trajectories AC1B and AC2B are symmetrical in a sense of
angles β1* and β2*: β∗1 = 84.9836◦ corresponds to segments AC1 and C2B, β∗2 = 35.6791◦–to
segments C1B and AC2. The values of found risks on these trajectories are

RAB = 1.3459,
RAC1B = RAC2B = 0.9762.
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Figure 9. Dependence of Hessian det H from β.

(a) (b)
Figure 10. Optimal trajectory in (ρ− ρ0, ϕ− ϕ0, R−R0) space (a) and its projection on (ρ− ρ0, ϕ− ϕ0)

plane (b).

Figure 11. Optimal trajectory on Cartesian plane.

Obviously, the two-link paths are preferable in a sense of risk minimization by almost
37%. In this example a unique pair (β∗1, β∗2) is a solution of Problem 3.

7.3. Example 3. The Case of Null Hessian

The third example is devoted to the case of radiation pattern, described in Lemma 5
of Section 5, e.g., the function g(β) that nulls the Hessian. We choose in this example µ = 2.
The radiation pattern is presented on Figure 12 and has a form

g(β) = 25 cos2(γ + β), β ∈ [0, π/2],

where tan γ = 0.75, and g(β) = g(−β) = g(π − β).
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(a) (b)
Figure 12. Radiation pattern as an dependence g(β) in polar coordinates (a) and on the Cartesian
plane (b).

Figure 13 confirms the zeroing of Hessian for given radiation pattern at each of the
intervals β ∈ (0◦, 90◦), β ∈ (90◦, 180◦), β ∈ (180◦, 270◦), β ∈ (270◦, 360◦).

Figure 13. Dependence of Hessian det H from β.

Figure 14 demonstrates the validity of Lemma 8, as it is clear from the risk surface,
that risk values of all two-link trajectories lie on a plateau, e.g., they are constant. That
means that any two-link trajectory has the same risk value, which equals R = 34.9668.

(a) (b)
Figure 14. Optimal trajectory in (ρ− ρ0, ϕ− ϕ0, R−R0) space (a) and its projection on (ρ− ρ0, ϕ− ϕ0)

plane (b).

7.4. Example 4. The Case of Some Extremes of Risk Function

The fourth example considers a complex radiation pattern, shown in Figure 15. In this
example µ = 2.
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(a) (b)
Figure 15. Radiation pattern as an dependence g(β) in polar coordinates (a) and on the Cartesian
plane (b).

The peculiarity of this case and chosen radiation pattern can be observed in Figures 16–18
—the risk surface contains not only local minimums, but also local maximums, that can
be obtained from Theorem 4 and Lemma 8. Trajectories AC3B and AC4B are two-link
trajectories which pass through points C3 and C4 of the risk function local maximum on
variables (β1, β2) for Problem 3.

Figure 16. Dependence of Hessian det H from β.

(a) (b)
Figure 17. Optimal trajectory in (ρ− ρ0, ϕ− ϕ0, R−R0) space (a) and its projection on (ρ− ρ0, ϕ− ϕ0)

plane (b).

Route points coordinates are found: C1 = (ρC1 , ϕC1) = (3.9259, 1.1), C2 = (ρC2 , ϕC2) =
(4.5947, 0.4712). Optimal angles β1* and β2*: β∗1 = 89.28◦, β∗2 = 34.6145◦. The values of found
risks on these trajectories are RAB = 1.1583, RAC1B = RAC2B = 0.642, RAC3B = RAC4B = 0.93.
Thus, the gain in risk on two-link trajectory over straight path AB is approximately 80%.
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Figure 18. Optimal trajectory on Cartesian plane.

7.5. Example 5. Independence of Optimal Angle Values β1* and β2* from β0

The last example illustrates Theorem 4. A number of trajectories considered with
different end points Bi, i = 1 . . . 7 and the same start point A for a mobile vehicle with fixed
radiation pattern. Optimal two-link paths found using numerical algorithm and shown on
the plane (ρ− ρ0, ϕ− ϕ0) in Figure 19. It is clear that all of them consist of line segments
of two angles β1* and β2*-the optimal angles described in Theorem 4.

Figure 19. Some optimal two-link paths with different β0.

8. Conclusions

The article considers an optimal trajectory planning problem in a threat environment
for any type of a mobile vehicle. The main feature of the problem setting is the non-uniform
radiation pattern of the vehicle. The TP-problem is set as a variation’s calculus problem, and
then it is solved analytically. A series of lemmas and theorems is formulated and proved
in the paper. Necessary and sufficient optimality conditions for trajectory considered and
examined. Moreover, specific cases of radiation patterns, degenerating these conditions,
are studied. As well as simple one-link optimal trajectories, more complex two-link ones
are investigated. All analytical solutions are verified numerically and visualised in Matlab
programming modules.

The considered problem and the whole class of such TP problems are extremely
relevant to modern-warfare applications. Discussed mobile vehicle can be actualized in
practice as a UUV or UAV, for example. Obtained solutions can be helpful for design of
on-board real-time algorithms for route planning modules of these objects and modules
themselves. As shown in examples solving TP problem can significantly reduce the
risk value and provide more safety for UUV on the found optimal route in the threat
environment.
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Future work can be focused on complication and generalization of the mathematical
model and optimization functional of the problem. Current article studies search sys-
tem, that contains only one detection sensor. Increasing the number of sensors and their
processed frequencies presents an interesting and important challenge for applications.
Physical features of the signal carrying medium, such as attenuation factor, are also yet to
be considered.
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Appendix I. Proofs

Proof of Lemma 3. After calculating the first partial derivatives of S with respect to ρ̇, ϕ̇,

using equality β = arctan
(

ϕ̇

ρ̇

)
, one can get

Sρ̇ = (g(β)µρ̇− g′(β)ϕ̇)(ϕ̇2 + ρ̇2)
µ
2−1,

Sϕ̇ = (g(β)µϕ̇ + g′(β)ρ̇)(ϕ̇2 + ρ̇2)
µ
2−1.

(A43)

Then we can calculate the second partial derivatives of S with respect to ρ̇, ϕ̇ and obtain
Equation (9). Computing the determinant of the Hessian matrix gives Equation (10).

Proof of Corollary 1. The next chain of equations is valid

cos2(γ− β) =
1

1 + tan2(γ− β)
=

1

1 +
(

C2 ρ̇−C1 ϕ̇
C1 ρ̇+C2 ϕ̇

)2 =
(C1ρ̇ + C2 ϕ̇)2

(C1ρ̇ + C2 ϕ̇)2 + (C2ρ̇− C1 ϕ̇)2 =

(C1ρ̇ + C2 ϕ̇)2

(C2
1 + C2

2)(ρ̇
2 + ϕ̇2)

.

(A44)
From the last equation follows that

cosµ(γ− β) =
(C1ρ̇ + C2 ϕ̇)µ

(C2
1 + C2

2)
µ/2(ρ̇2 + ϕ̇2)µ/2 . (A45)
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So the lagrangian S of the functional (3) for the function g(β) form Lemma 4 takes
a form

S =
(

ρ̇2 + ϕ̇2
)µ/2

g(β) = C

(
(C1ρ̇ + C2 ϕ̇)2

C2
1 + C2

2

) µ
2

= (C̃1ρ̇ + C̃2 ϕ̇)µ. (A46)

Proof of Lemma 6. According to Lemma 2 the values of risk on each segment are

R∗AC = S1T1 =
Lµ

1

Tµ−1
1

g(β1),

R∗CB = S2T2 =
Lµ

2

Tµ−1
2

g(β2),
(A47)

where notations are introduced as follows

S1 =

(
L1

T1

)µ

g(β1),

S2 =

(
L2

T2

)µ

g(β2),

L1 =
√
(ρC − ρA)2 + (ϕC − ϕA)2,

L2 =
√
(ρB − ρC)2 + (ϕB − ϕC)2,

β1 = arctan
(

ϕC − ϕA
ρC − ρA

)
,

β2 = arctan
(

ϕB − ϕC
ρB − ρC

)
.

(A48)

The restriction on times T1 > 0 and T2 > 0 has a linear form

T1 + T2 = T. (A49)

Now the sum of R∗AC + R∗CB must be minimized by T1, T2. Let us find optimal values
of T1 and T2 by solving next optimization problem

R∗AC + R∗CB =
Lµ

1 g(β1)

Tµ−1
1

+
Lµ

2 g(β2)

Tµ−1
2

→ min
T1,T2,T1+T2=T

. (A50)

Using the condition of Equation (A49), Equation (A50) takes a form

RACB(T2) = R∗AC + R∗CB = Lµ
1 (T − T2)

1−µg(β1) + Lµ
2 T1−µ

2 g(β2). (A51)

The necessary condition of extremum of the function described by Equation (A51) is
equality to zero of its derivative on variable T2:

−
Lµ

1 g(β1)

(T − T2)µ +
Lµ

2 g(β2)

Tµ
2

= 0. (A52)

Due to the fact, that Equation (A51) presents a continuous, differentiable function
RACB(T2), T2 ∈ [0, T] with lim

T2↓0
RACB(T2) = +∞ and lim

T2↑T
RACB(T2) = +∞, Equation (A52)

states condition of the minimum of RACB(T2), e.g., its unique solution is the arg min(RACB(T2)):

T2 =
T

1 + L1
L2

(
g(β1)
g(β2)

)1/µ
. (A53)
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Thus T1 and T2 are 
T2 = T

L2g1/µ(β2)

L2g1/µ(β2) + L1g1/µ(β1)
,

T1 = T
L1g1/µ(β1)

L2g1/µ(β2) + L1g1/µ(β1)
.

(A54)

After substituting Equations (A54) into the first two equations of system (A48), the
final expressions for signals S1 and S2 can be obtained

S1 =
(

L1
T1

)µ
g(β1) =

(
L1g1/µ(β1)+L2g1/µ(β2)

Tg1/µ(β1)

)µ
g(β1) =

1
Tµ

(
L1g1/µ(β1) + L2g1/µ(β2)

)µ
; (A55)

S2 =
(

L2
T2

)µ
g(β2) =

(
L1g1/µ(β1)+L2g1/µ(β2)

Tg1/µ(β2)

)µ
g(β2) =

1
Tµ

(
L1g1/µ(β1) + L2g1/µ(β2)

)µ
. (A56)

As one can see, Equation (A55) is similar to Equation (A56), e.g., values of signal are
equal on two segments of the optimal trajectory.

The whole risk RACB on the full trajectory:

RACB = S1T1 + S2T2 = S1T =
(

L1g1/µ(β1)+L2g1/µ(β2)

Tg1/µ(β1)

)µ
= 1

Tµ−1

(
L1g1/µ(β1) + L2g1/µ(β2)

)µ
. (A57)

Proof of Corollary 2. From triangles in Figure 3 the equations follow{
L1 cos β1 + L2 cos β2 = L0 cos β0,
L1 sin β1 + L2 sin β2 = L0 sin β0,

(A58)

From the first equation L1 can be expressed

L1 =
L0 cos β0 − L2 cos β2

cos β1
. (A59)

Substituting Equation (A59) into the second equation of the system (A58) gives

L2(sin β2 cos β1 − cos β2 sin β1) = L0(sin β0 cos β1 − cos β0 sin β1),

which allows us to find L2

L2 =
L0 sin(β0 − β1)

sin(β2 − β1)
. (A60)

After substituting Equation (A60) into Equation (A59) one gets

L1 =
L0 sin(β2 − β0)

sin(β2 − β1)
. (A61)

Using Equations (A60) and (A61) Equation (27) can be rewritten in the form of Equa-
tion (29).

Proof of Lemma 7. Let us multiple one equation from system (34) by another(
cos(β2 − β1) +

1
µ

sin(β2 − β1)
g′(β1)

g(β1)

)(
cos(β2 − β1)−

1
µ

sin(β2 − β1)
g′(β2

g(β2)

)
= 1

This equation leads to the chain of expressions

cos2(β2 − β1) + sin(β2 − β1) cos(β2 − β1)
1
µ

(
g′(β1)
g(β1)

− g′(β2)
g(β2)

)
− sin2(β2 − β1)

1
µ2

(
g′(β1)
g(β1)

g′(β2)
g(β2)

)
= 1,
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tan(β2 − β1) =

1
µ

(
g′(β1)
g(β1)

− g′(β2)
g(β2)

)
1 + 1

µ2
g′(β1)
g(β1)

g′(β2)
g(β2)

,

tan(β2 − β1) = tan(ξ1 − ξ2), (A62)

where new variables ξ1 and ξ2 are used
ξ1 = arctan

1
µ

g′(β1)

g(β1)
,

ξ2 = arctan
1
µ

g′(β2)

g(β2)
.

(A63)

From tangent functions in Equation (A62) it is easy to go to cosine functions

cos(β2 − β1) = cos(ξ1 − ξ2). (A64)

Now instead of multiplying let us divide one equation from system (34) by another

(
g(β2)

g(β1)

)2/µ

=
cos(β2 − β1) +

1
µ sin(β2 − β1)

g′(β1)
g(β1)

cos(β2 − β1)− 1
µ sin(β2 − β1)

g′(β2)
g(β2)

. (A65)

This equation leads to the chain of expressions

(
g(β2)

g(β1)

)2/µ

=
1 + 1

µ tan(β2 − β1)
g′(β1)
g(β1)

1− 1
µ tan(β2 − β1)

g′(β2)
g(β2)

,

(
g(β2)

g(β1)

)2/µ

=
1 +

(
1
µ

g′(β1)
g(β1)

)2

1 +
(

1
µ

g′(β2)
g(β2)

)2 .

Using variables ξ1 and ξ2 introduced in Equation (A63), the last equation can be
rewritten as (

g(β2)

g(β1)

)2/µ

=
1 + tan2 ξ1

1 + tan2 ξ2
.

This equation can be transformed to

g(β2)

g(β1)
=

∣∣∣∣cosµ ξ2

cosµ ξ1

∣∣∣∣. (A66)

Equations (A64) and (A66) form the statement of the Theorem.
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