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Abstract: In this paper, asynchronous complex histogram (ACH)-based multi-task artificial neural
networks (MT-ANNs), are proposed to realize modulation format identification (MFI), optical signal-
to-noise ratio (OSNR) estimation and fiber nonlinear (NL) noise power estimation simultaneously
for coherent optical communication. Optical performance monitoring (OPM) is demonstrated with
polarization mode multiplexing (PDM), 16 quadrature amplitude modulation (QAM), PDM-32QAM,
as well as PDM-star 16QAM (S-16QAM) for the first time. The range of launched power is −3 to
−2 dBm with a fiber link of 160–1600 km. Then, the accuracy of MFI reaches 100%. The average root
mean square error (RMSE) of OSNR estimation can reach 0.37 dB. The average RMSE of NL noise
power estimation can reach 0.25 dB. The results show that the monitoring scheme is robust to the
increase of fiber length, and the solution can monitor more optical network parameters with better
performance and fewer training data, simultaneously. The proposed ACH MT-ANN has certain
reference significance for the future long-haul coherent OPM system.

Keywords: optical performance monitoring; fiber nonlinear; multi-tasking artificial neural networks

1. Introduction

With the development of optical fiber communications, optical performance monitor-
ing (OPM) is essential to ensure high-quality services and reliable optical networking for
long-distance coherent optical systems [1–3]. As transmission distance and transmission
power increase, distortion caused by fiber nonlinearity (NL) noise and gaussian random
white noise are the main limiting factors for optical transmission and cannot be ignored
in long-distance larger-capacity optical networks [4–7]. Therefore, it is essential to realize
optical signal-to-noise ratio (OSNR) estimation and nonlinear noise power estimation in
order to accurately ensure the quality of optical signals and transmission links for future
long-distance larger-capacity flexible and transparent optical communications in an elastic
optical network [8–10].

In recent years, deep learning (DL) technologies that include a convolutional neural
network (CNN), deep neural network (DNN), and recurrent neural network (RNN) have
been widely used in OPM due to their self-learning ability [11,12]. The OPM based on DL
can be divided into two aspects: single task (ST) and multi-task (MT) OPM. (1) ST OPM:
The artificial neural networks (ANN) and DNN scheme based on asynchronous histograms
(AHs) have been proposed for estimating OSNR in an optical network [13,14]. In order
to estimate the NL noise power characteristic of a long-distance optical network, several
NL noise-power monitoring methods using a high-speed, coherent receiver based on ST
machine learning (ML) and ST long short-term memory (LSTM) have been reported in
simulation results [15–18]. (2) MT OPM: MT-CNN extracts features from eye diagrams
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(EDs) to achieve an OSNR estimation and MFI [19,20]. As the OSNR decreases, EDs become
less obvious. The MT-ANNs, combined with amplitude histograms, were proposed to
obtain a better feature database compared to EDs, which have high complexity and limited
features [21]. A monitoring scheme based on Stokes axes combined with MT-DNN was
proposed to realize the OSNR estimation and MFI [22]. A simple MT-DNN OPM with AHs
was used for a joint OSNR estimation and MFI from a directly detected polarization mode
multiplexing (PDM) and higher modulation format (64-QAM) signals to meet more optical
network systems and simplify the construction cost [23].

At the same time, a simple and efficient joint OSNR and NL estimation scheme
based on training sequence was proposed at the expense of communication capacity [24].
Some low-complexity MFI or OSNR estimation schemes characterized by the cumulative
distribution function of the received signal amplitude have also been proposed [25–28].
In our previous research work, MT-DNN was proposed for joint OSNR estimation, MFI
and bit rate identification (BRI) to enrich the OPM parameters [29,30]. In summary, these
methods more or less have the following disadvantages: (1) To our knowledge, these
proposed MT-DL-based OPM methods are mainly focused on the OSNR estimation for
short-distance or back-to-back transmission without considering the effects of fiber NL
noise. (2) The existing NL noise-power estimation technologies are based on a single-task
ML and very complex LSTM. ST OPM is difficult to meet the requirements of multiple
parameters monitoring, and space of LSTM grows exponentially with symbol sequence
length [31]. (3) NL noise power estimation is only proposed and demonstrated by ST-DL
and large sampling data. (4) The previous OPMs are focused on the QAM modulation
format, without considering other modulation formats, such as the star-QAM, which is
usually utilized in long-haul optical packet switching communications. Therefore, an
efficient simultaneous NL noise power and OSNR estimation scheme based on the DL
network is needed for future optical communication systems.

In our paper, asynchronous complex histograms (ACHs) with MT-ANN were de-
signed to realize NL noise power estimation, OSNR estimation and MFI for the higher
modulation format optical network link simultaneously. First, the ACHs containing richer
channel impairment information were obtained with low-speed analog-to-digital convert-
ers (ADCs). Then, the MT-ANN, based on ACHs, was carried out on a long-distance
coherent optical fiber transmission system with few training data and low-speed ADCs.
The launched optical power range of each channel was −3.0 to +2.0 dBm, and the range
of transmission distance was 160–1600 km. The MFI accuracy of PDM-S-16QAM, PDM-
16QAM and PDM-32QAM could reach 100%. The average RMSE for the OSNR estimation
was 0.37 dB. The average RMSE of the NL estimation was 0.25 dB. Therefore, this designed
ACH-MT-ANN scheme provides a reference for MT OPM for future long-distance optical
communications.

The remainder of this paper is structured as follows. The proposed ACH theoretical
model and the ACH-based MT-ANN structure model are derived in Section 2. Section 3
introduces the system simulation settings and results. Finally, Section 4 summarizes
this paper.

2. Operation Principle
2.1. Asynchronous Complex Histograms

The principle of ACHs is shown in Figure 1. ACHs are statistical histograms of
complex data after sampling. At the receiving end of the coherent system, the detected
signal is divided into I/Q signals. The data are sampled periodically, and the sampling
period is Tsampling. One symbol period is Tsymbol. There is no relationship between the
sampling period Tsampling and the symbol period Tsymbol. The length of the sampled data
is N. Ii and Qi at the same sampling time are combined together, as shown in Equation (1).

DataACH = Ii + jQi(i = 1, 2, . . . , N) (1)
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where j represents the imaginary part of a complex number. DataACH represents the plural
database of an ACH. The two collected signals Ii + jQi are combined according to the real
and imaginary parts of the complex numbers to form the complex axis information of
the ACHs. Then, the collected complex information is statistically classified to obtain the
statistical histogram shown in Figure 1, where the upper horizontal axis is the plural axis
information of Ii + jQi. The bottom horizontal axis is the bin number of Ii + jQi, which is
the statistical point of each complex number information. The vertical axis is the number
of occurrences; that is, the distribution of each complex number. The AHs contain only
the amplitude information of the data [14,15]. Taking PDM-S-16QAM as an example, the
complex signal contains two amplitude values [32]. The amplitude of PDM-S-16QAM
divides the complex data in the ACHs graph into two parts, L1 and L2, as shown in Figure 1.
Then, the phase information of L1 and L2 are respectively counted in the phase database of
the corresponding area. That is, the phase information in the range of amplitudes L1 and L2
is all counted to form ACHs. Thus, ACHs contain more transmission impairment informa-
tion (amplitude and phase information) compared to traditional asynchronous histograms.
Figure 2a–c are constellation diagrams of different modulation formats (PDM-S-16QAM,
PDM-16QAM and PDM-32QAM). Figure 2d–f show ACHs with different modulation for-
mats (PDM-S-16QAM, PDM-16QAM and PDM-32QAM). Figure 2a show the constellation
of PDM-S-16QAM. Figure 2d show the ACH of the PDM-S-16QAM signal through the
transmission link. For different modulation formats, the amplitude and phase of the signal
are different. Therefore, the plural axes of the ACHs are not consistent.
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Figure 1. ACHs sampling principle of the PDM-S-16QAM optical network.
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Figure 2. (a–c) Constellation diagram of different modulation formats: (a) S-16QAM, (b) 16QAM and
(c) 32QAM. (d–f) ACHs with different modulation formats: (d) PDM-S-16QAM, (e) PDM-16QAM
and (f) PDM-32QAM.
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Figure 3 is diagram of the ACHs in the PDM-S-16QAM system. The respective
OSNRs of Figure 3a–c are 21 dB, 25 dB and 30 dB. For the 1000 km PDM-32QAM optical
network transmission link, the ACHs are shown under different optical fiber input powers.
Figure 4a–c are ACHs with −3 dBm, −1 dBm and 2 dBm input fiber power, respectively.
As can be clearly seen from Figures 2–4, ACHs depend on the modulation format, OSNR
and NL. Therefore, ACHs can be used to monitor MFI, OSNR and NL.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 12 
 

 

Figure 2. (a–c) Constellation diagram of different modulation formats: (a) S-16QAM, (b) 16QAM 
and (c) 32QAM. (d)–(f). ACHs with different modulation formats: (d) PDM-S-16QAM, (e) PDM-
16QAM and (f) PDM-32QAM. 

Figure 3 is diagram of the ACHs in the PDM-S-16QAM system. The respective OS-
NRs of Figure 3a–c are 21 dB, 25 dB and 30 dB. For the 1000 km PDM-32QAM optical 
network transmission link, the ACHs are shown under different optical fiber input pow-
ers. Figure 4a–c are ACHs with −3 dBm, −1 dBm and 2 dBm input fiber power, respec-
tively. As can be clearly seen from Figures 2–4, ACHs depend on the modulation format, 
OSNR and NL. Therefore, ACHs can be used to monitor MFI, OSNR and NL. 

   
(a) (b) (c) 

Figure 3. ACHs with different OSNRs in the PDM-S-16QAM system: (a) OSNR value is 21 dB, (b) 
OSNR value is 25 dB and (c) OSNR value is 30 dB. 

   
(a) (b) (c) 

Figure 4. Collected ACHs of the PDM-32QAM system: (a) the optical fiber input power is −3 dBm, 
(b) the optical fiber input power is −1 dBm and (c) the optical fiber input power is 2 dBm. 

2.2. Asynchronous Complex Histogram MT-ANN 
With the help of multi-task deep learning algorithms, ACH MT-ANNs can achieve 

three tasks simultaneously. As shown in Figure 5, the input data are the collected ACHs, 
which are 150 × 1 arrays. The number of neurons in the input layer and shared layer is 150 
and 200, respectively. The hidden shared layer of MT-DNN uses sigmoid to activate neu-
rons. In the output layer, continuous output tasks (OSNR estimation and NL noise power 
estimation) use direct output functions. The classification output task (MFI) uses the Soft-
max function. Different activation functions and neurons are used to accomplish different 
tasks. 

OPM includes three tasks, namely MFI for three modulation formats identification, 
OSNR and NL noise power estimation. The loss function L of MT-ANN is shown in Equa-
tion (2). Among them, L1, L2 and L3 are the loss functions of OSNR estimation, MFI and 
NL noise power estimation, respectively. λ1, λ2 and λ3 are the weights of these three tasks, 
respectively. Then, Equations (3) and (4) are expressions of L1, L2 and L3 functions. 

1 1 2 2 3 3L L L Lλ λ λ= + +  (2)

( )2
1

1 ˆ ˆlog (1 ) log 1
m

i i i i
i

L y y y y
m =

 = − + − −  
  (3)

Figure 3. ACHs with different OSNRs in the PDM-S-16QAM system: (a) OSNR value is 21 dB, (b)
OSNR value is 25 dB and (c) OSNR value is 30 dB.
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2.2. Asynchronous Complex Histogram MT-ANN

With the help of multi-task deep learning algorithms, ACH MT-ANNs can achieve
three tasks simultaneously. As shown in Figure 5, the input data are the collected ACHs,
which are 150 × 1 arrays. The number of neurons in the input layer and shared layer is
150 and 200, respectively. The hidden shared layer of MT-DNN uses sigmoid to activate
neurons. In the output layer, continuous output tasks (OSNR estimation and NL noise
power estimation) use direct output functions. The classification output task (MFI) uses
the Softmax function. Different activation functions and neurons are used to accomplish
different tasks.

OPM includes three tasks, namely MFI for three modulation formats identification,
OSNR and NL noise power estimation. The loss function L of MT-ANN is shown in
Equation (2). Among them, L1, L2 and L3 are the loss functions of OSNR estimation, MFI
and NL noise power estimation, respectively. λ1, λ2 and λ3 are the weights of these three
tasks, respectively. Then, Equations (3) and (4) are expressions of L1, L2 and L3 functions.

L = λ1L1 + λ2L2 + λ3L3 (2)

L2 = − 1
m

[
m

∑
i=1

yi log ŷi + (1− yi) log(1− ŷi)

]
(3)

L1 = L3 =
1
m

m

∑
i=1

(yi − ŷi)
2

(4)
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where yi is the actual output, and ŷi is the predicted output of MT-ANN. L2 is the cross-
entropy loss function, and L1 and L3 are the mean square error (MSE) functions [23].
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3. System Setup and Results
3.1. System Setup

The commercial software Virtual Photonics Inc. (VPI) Transmission Maker was used to
build the long-distance, multi-channel coherent optical transmission system. The length of
the sequence used was 215 − 1. Then, 3 widely used optical signals (PDM-S-16QAM/PDM-
16QAM/PDM-32QAM) were digitally generated, respectively. An optical switch was used
to select the transmission signal of the optical link. The bandwidth of the transmission
system was 10 Gbaud. Figure 6 is a block diagram of the OPM (MFI, OSNR estimation and
NL noise power estimation) based on the ACH-MT-ANN for a long-distance, optical-fiber
transmission system, in which the range of the transmitted power of each channel is−3.0 to
+2.0 dBm. The modulated optical signal was sent to the fiber link, and each span included
80 km of standard single-mode fiber (SSMF) and an erbium-doped optical fiber amplifier
(EDFA). The parameters of the system are shown in Table 1. The reference OSNR of PDM-
S-16QAM, PDM-16QAM and PDM-32QAM varied within the range of 21–28 dB in steps of
1.0 dB. The total length of the transmission fiber varied from 160 km to 1600 km. At the
receiver, an optical bandpass filter (OBPF) with 50 GHz bandwidth was used to filter the
optical signal, which was then detected by the coherent receiver. The ACHs were obtained
by low-speed ADCs sampling. Then, the ACHs were input into the ACH MT-ANNs. The
OPM parameters can be input into the data recovery module, which has a reference value
for data recovery. In our design, the ACH MT-ANN was built on the MATLAB platform.
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In terms of the measurement of NL power, the optical signal was divided into two C1
and C2 optical signals by the BS. After C1 passed through the optical switch, the optical
signals were marked as A and B signals. A and C2 are signals with and without non-
linearity, respectively. At the receiving end, the coherent receiver obtained the digital
signals of A and C2, respectively. After the dispersion equalization, the signal containing
the dispersion and the signal without the dispersion were obtained, respectively. Then, the
NL noise power of the measured channel was obtained by Wiener filter decorrelation [33],
as shown in Equation (5). Different nonlinear powers were obtained by adjusting the
transmission distance and transmission power.

|Hr(k, n)|2 = max

(
|X(k, n)|2 − γ

∣∣N̂(k, n)
∣∣2

|X(k, n)|2
, β

)
(5)

where |X(k, n)|2 and
∣∣N̂(k, n)

∣∣2 are the power spectral estimates of noisy speech and
additive noise signals, respectively (k and n are the time and frequency indices), γ is the
noise overestimation factor and β is the spectral floor parameter. In order to train MT-ANN,
20,000 sets of data were collected for each modulation format, corresponding to different
OSNR, linewidth, launched power and span. The entire collection set was randomly
divided into a training data set (70%) and a test data set (30%).

Table 1. The key parameters of the system.

Modulation Format: 16QAM, S-16QAM and 32QAM

Signal Bandwidth: 10 Gbaud

Sampling Rate: 40 GSa/s

SSMF

Length: 80 km
Loop: 2–20

Attenuation: 0.2 × 10−3 dB/m
Dispersion: 16 × 10−6 s/m2

PMD (Polarization mode dispersion) Coefficient: 0.1 × 10−12/31.62 s/(m1/2)
Nonlinear Index: 2.6 × 10−20 m2/W

Waveguide: 1550 nm

Laser Linewidth: 1 × 105 Hz

3.2. Performance Discussion of OPM Based on Different ACHs Parameters

As shown in Figure 7a, when the sampling rate was increased from 2 GSa/s to
40 GSa/s, the RMSE for NL noise estimation of PDM-32QAM was reduced from 0.58 dB to
0.2 dB. At the same time, for PDM-16QAM and PDM-S-16QAM, the RMSE was reduced
from 0.28 dB to 0.1 dB and from 0.25 dB to 0.1 dB. The RMSE for the OSNR of PDM-
32QAM was reduced from 1.18 dB to 0.27 dB. At the same time, for PDM-16QAM and
PDM-S-16QAM, the RMSE was reduced from 0.78 dB to 0.17 dB and from 0.75 dB to
0.16 dB. When the electronic sampling rate increased, the inherent fluctuations of the ACHs
decreased accordingly, resulting in a decrease in NL noise estimation and OSNR estimation
monitoring errors. The results show that the NL noise RMSE could also reach 0.5 dB, and
the OSNR was 1.1 dB when the sampling rate was reduced to one fourth (10 Gsa/s) of
the signal bandwidth. In order to study the impact of the ACHs with a different data bin
number on OPM results, the data bin number of the ACHs was changed to reflect changes
in the OPM results. Figure 7b shows the trend of monitoring results (MFI, OSNR estimation
and NL noise estimation) with the bin number of points in ACHs. The horizontal axis is
the bin number of the ACHs required for training (30–200). The blue vertical axis is the
RMSE results of OSNR estimation and NL noise estimation. The red vertical axis is the
recognition accuracy of an MFI. As the bin number of ACHs increased, the RMSE results of
NL noise power gradually decreased. When the bin number of the ACHs was greater than
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80, the RMSE result of NL noise power changed little. When the bin number of ACH points
was equal to 80, the monitoring results of the RMSE of the OSNR estimation appeared to
be better. Considering the influence of the two parameters of epochs and ACHs on the
training complexity, the bin number of the ACHs was set to 80 to obtain the monitoring
performance.
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In previous studies, MT-ANNs combined with AHs were proposed to achieve the
OSNR estimation and MFI. The NL noise estimation schemes were demonstrated based on
the ST-DL with the high-speed sampling signals. The AHs were not used to estimate the NL
noise. In order to demonstrate the monitoring performance of the ACH MT-ANNs, in this
paper, an AH MT-ANN for NL OPM was proposed and compared with the ACH MT-ANN
for PDM-32QAM. Figure 8a is a comparison of NL noise power and the OSNR estimation
performance between the general AH MT-ANN and the proposed ACH MT-ANN for
PDM-32QAM. Although the training efficiency of the OSNR estimation based on ACH
MT-ANN was lower than that of AH MT-ANN, the OSNR estimation performance was
closer to about 0.24 dB. Taking the 0.4 dB RMSE result as the standard for NL noise power
estimation, the epochs for training based on the ACH monitoring network were reduced
by 50% compared to the AH monitoring network. Figure 8b shows the RMSE result of
OSNR and NL noise power with the number of AH and ACH training data. The RMSE
standard of NL noise power and OSNR is 0.4 dB. Thus, the NL noise power estimation only
requires about 1000 ACHs compared to 6000 AHs. OSNR estimation requires 2800 ACHs,
and OSNR estimation requires 2400 AHs. In order to meet the optimal OSNR estimation
and NL noise power estimation performance simultaneously, the maximum amount of
training data for ACHs and AHs is the standard. Therefore, ACHs require 2800 training
data, which is better than 6000 training data for AHs. The amount of training data was
increased by 53.3%, with a 0.4 dB RMSE standard of NL noise power and an OSNR.

3.3. Discussion of ACH MT-ANN Parameters

In the MT-ANN, learning efficiency affects the monitoring results. If the learning effi-
ciency is changed, the effect will be reflected in the monitoring results of OSNR estimation,
MFI and NL noise power estimation. As shown in Figure 9a, the horizontal axis is the
learning efficiency. The blue vertical axis is the RMSE of OSNR estimation and NL noise
estimation. The red vertical axis is the monitoring accuracy of MFI. When the learning
efficiency was greater than 0.5, the results of OPM (OSNR estimation, MFI and NL noise
power estimation) changed little. The monitoring accuracy of MFI reached 100%. The
RMSE of the OSNR was about 0.4 dB. The RMSE of NL noise power was about 0.21 dB.
Therefore, the learning efficiency was set to 0.8 in the MT-ANN. Figure 9b shows the
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trend of OPM with epochs for PDM-S-16QAM, PDM-16QAM and PDM-32QAM. When
epochs were greater than 170, the RMSE of the OSNR changed little (about 0.38 dB) for
the PDM-32QAM system. When epochs were greater than 110, the RMSE of NL noise
power changed little (about 0.29 dB). When epochs were 170, the average RMSE of NL
noise power and OSNR could reach 0.25 dB and 0.48 dB, respectively.
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3.4. Discussion of Nonlinear Monitoring versus System Parameters

Figure 10a shows the estimated NL noise power for a PDM-32QAM optical fiber
communication system with an 800 km transmission distance. The laser linewidth was
100 kHz, and the launched power was−2 dBm, 0 dBm and 2 dBm. When the OSNR ranged
from 21 to 28 dB, the absolute errors tested were less than 0.6 dB in the PDM-32QAM
system. For different OSNRs, the estimation error was almost unchanged. Then, in order
to test the stability and reliability of NL noise power estimation, the tolerance of NL noise
power estimation to linewidth and the transmission length were studied. The linewidth of
the laser (40 kHz and 100 kHz) and the transmission length (from 400 km to 1600 km) were
changed. It can be seen from Figure 10b that the increase of 1.0 dB in transmitted power will
result in an increase of NL noise power of about 3.0 dB. The power is proportional to the
cubic power of the transmitted power [34]. In the PDM-32QAM system, the transmission
length and laser linewidth were 5 span (400 km) and 100 kHz, 10 span (800 km) and
100 kHz, 15 span (1200 km) and 40 kHz, 20 span (1600 km) and 100 kHz. The tested RMSE
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was 0.24 dB, 0.28 dB, 0.36 dB, 0.23 dB. The RMSE of each training was not exactly the same,
but in our method the error was within 1.0 dB.
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3.5. Results and Discussion of MFI, OSNR and NL Noise Distortion Estimation

The three modulations (PDM-S-16QAM, PDM-16QAM and PDM-32QAM) were se-
lected as a reference to illustrate the performance of ACH MT-ANNs. The three mixed
signals were sent into the MT-ANN to estimate the monitoring performance. Table 2 shows
the recognition accuracy of the three modulation formats in the case of epochs greater
than 300. The monitoring accuracy of MFI could reach 100%. Figure 11 shows the OSNR
estimation, NL noise power estimation and MFI results for PDM-S-16QAM, PDM-16QAM
and PDM-32QAM in the ACH MT-ANN. Figure 11a shows the OSNR estimation for all
signals. The horizontal axis is the true OSNR. The vertical axis is the OSNR estimated by
RMSE. The monitoring interval of OSNR was 1 dB. The monitoring range of OSNR was
21–28 dB. The RMSE of the OSNR was counted for all signals. The average RMSE of the
OSNR was 0.37 dB for the PDM-S-16QAM, PDM-16QAM and PDM-32QAM signals. The
RMSE of the OSNR was still within 1 dB. Figure 11b shows the RMSE of the NL noise
power for PDM-S-16QAM, PDM-16QAM and PDM-32QAM in the ACH MT-ANN. The
horizontal axis is the actual NL noise power. The vertical axis is the NL noise power by
RMSE. The estimation range of NL noise power was −60 dBm to −32 dBm. The RMSE of
NL was counted. The RMSEs of the NL noise power were 0.25 dB for the PDM-S-16QAM,
PDM-16QAM and PDM-32QAM signals.

Table 2. The MFI recognition accuracy of the three modulation formats (PDM-S-16QAM, PDM-16QAM and PDM-32QAM).

Identified Modulation Format

PDM-S-16QAM PDM-16QAM PDM-32QAM

Actual Modulation Format
PDM-S-16QAM 1908 (100%)
PDM-16QAM 1928 (100%)
PDM-32QAM 2164 (100%)
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4. Conclusions

In this paper, we propose an OPM (MFI, OSNR estimation and NL noise power
estimation) scheme based on the ACH MT-ANN for three commonly used modulation
signals (PDM-S-16QAM, PDM-16QAM and PDM-32QAM). ACHs contain richer channel
impairment information (amplitude and phase impairment information) compared to
the AHs and can be obtained with low-speed ADCs. In the demonstration system, we
conduct research from the data bin number of ACHs, the learning efficiency of MT-ANN
and epochs. The performance of the ACH MT-ANN is optimized. The monitoring accuracy
of MFI is 100%. At the same time, the OSNR estimation range is 21–28 dB for all signals.
The average RMSE of the OSNR can reach 0.37 dB. By adjusting the transmission power of
the optical network and the length of the fiber link, the NL noise power is measured. The
estimation range of NL noise power is −60 to −32 dBm. The average RMSE of NL noise
power can reach 0.25 dB for all signals. At the same time, the effect of the OSNR is studied
on NL noise power estimation. The average RMSE of NL noise power is less than 0.6 dB. It
is accurate to compare the estimated NL noise power with the reference NL noise power.
For a different OSNR, the estimation error is almost unchanged. In the ACH MT-ANN, the
results of NL noise power monitoring are compared under different linewidths to study
the effect of laser linewidth on NL noise power estimation. The average RMSE of NL noise
power is less than 0.4 dB. Due to its low cost and easy implementation, the proposed OPM
solution has the potential for usage in next-generation larger-capacity coherent optical-fiber
transmission systems in the elastic optical network.
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