
sensors

Article

Automatic Lung Segmentation on Chest X-rays Using
Self-Attention Deep Neural Network

Minki Kim and Byoung-Dai Lee *

����������
�������

Citation: Kim, M.; Lee, B.-D.

Automatic Lung Segmentation on

Chest X-rays Using Self-Attention

Deep Neural Network. Sensors 2021,

21, 369. https://doi.org/10.3390/

s21020369

Received: 10 December 2020

Accepted: 5 January 2021

Published: 7 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science and Engineering, Kyonggi University, Gyeonggi-do 16227, Korea;
mkmk0612@kgu.ac.kr
* Correspondence: blee@kgu.ac.kr; Tel.: +82-31-249-9676

Abstract: Accurate identification of the boundaries of organs or abnormal objects (e.g., tumors) in
medical images is important in surgical planning and in the diagnosis and prognosis of diseases.
In this study, we propose a deep learning-based method to segment lung areas in chest X-rays.
The novel aspect of the proposed method is the self-attention module, where the outputs of the
channel and spatial attention modules are combined to generate attention maps, with each highlight-
ing those regions of feature maps that correspond to “what” and “where” to attend in the learning
process, respectively. Thereafter, the attention maps are multiplied element-wise with the input
feature map, and the intermediate results are added to the input feature map again for residual
learning. Using X-ray images collected from public datasets for training and evaluation, we applied
the proposed attention modules to U-Net for segmentation of lung areas and conducted experiments
while changing the locations of the attention modules in the baseline network. The experimental
results showed that our method achieved comparable or better performance than the existing medical
image segmentation networks in terms of Dice score when the proposed attention modules were
placed in lower layers of both the contracting and expanding paths of U-Net.

Keywords: deep learning; medical image; attention module; image segmentation; lung segmentation

1. Introduction

Various studies on medical imaging using deep learning that combine medical imag-
ing with image classification, detection, and segmentation have been conducted recently [1].
For example, ChexNet [2], which was developed by a Stanford University research team,
demonstrated faster and more accurate identification of 14 chest X-ray-detectable diseases
compared to specialists. In January 2020, DeepMind proposed an artificial intelligence
model for breast cancer diagnosis. The model outperformed existing breast cancer diag-
nosis models by decreasing the false positive and false negative ratios by 3.5% and 8.1%,
respectively, thus showing a lower breast cancer misdiagnosis rate than that of doctors [3].
Image segmentation is invaluable because it can distinguish specific interest areas by draw-
ing boundary lines in an input image and identifying diseases by segmenting organs and
tumors in medical images. For instance, Li et al. recently proposed a method that automati-
cally identifies cardiomegaly by the cardiothoracic ratio, which is determined automatically
using the image segmentation results of the lung and heart [4]. In such automatic disease
identification systems, the performance of disease diagnosis is dependent on the image
segmentation performance.

Deep learning is a type of feature learning that extracts and learns features from
input images. Several researchers have constructed deep networks with considerable
depths to extract meaningful features. In the ImageNet Large Scale Visual Recognition
Challenge 2015, ResNet [5] triumphed with a top-five test error of 3.567% in the image
classification division by using a network structure with a 152-network depth, which is
eight times deeper than that of VGGNet [6]. By applying the residual module to a deep
network, ResNet achieved a high top-five error performance that was 3.7% higher than
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that of VGGNet. However, a deeper network has more learning parameters, resulting in a
lower learning speed and higher risk of overfitting. To address this problem, an attention
module is being researched [7]. An attention module serves to highlight the values of
important features, which are elusive during judgment, by emphasizing important features
and removing features unnecessary for learning.

In this study, we propose a deep learning-based method for segmentation of lung
areas from chest X-ray images. The novelty of the proposed approach is the self-attention
module and its variant (e.g., X-attention module and Y-attention module), which makes
use of the channel and spatial attentions that are extracted from the input feature maps.
The proposed attention modules were applied to the standard U-Net [8] for validation.
U-Net is a deep neural network structure that is frequently used in segmentation of medical
images of various modalities such as X-rays, Magnetic Resonance Imaging (MRI), and
Computed Tomography (CT). We conducted experiments to investigate the performance
of the proposed deep learning-based lung area segmentation method.

In the next section, related works on lung image segmentation are introduced. Section 3
describes the proposed attention modules in detail. In Section 4, the experimental results
obtained through a performance comparison of the proposed method with an existing
medical image segmentation network are analyzed. Finally, the paper is concluded in
Section 5.

2. Related Work

Several studies have been conducted on lung segmentation using conventional image
processing techniques such as edge detection, threshold, and clustering [9]. However,
the image processing methods have relatively simple algorithms and exhibit poor seg-
mentation performance when the input image contains noise. With the development of
deep learning, lung segmentation using convolutional neural networks is being actively
researched. Currently, researchers are attempting to enhance lung segmentation perfor-
mance not only by developing complex image segmentation network structures but also by
using various techniques such as attention modules. In particular, the attention mechanism
has demonstrated significant performance improvements in many deep learning-based
tasks. Therefore, our review focuses on attention-based approaches for segmentation.

Attention U-Net [10] performed better than U-Net through the addition of an attention
module with a simple structure between the contracting and expanding paths of the existing
U-Net structure. Gusztav et al. [11] extended Structure Correcting Adversarial Network
(SCAN) [12], which is the first attempt to use adversarial learning for lung segmentation
on chest X-rays, by adopting Attention U-Net and Focal Tversky loss [13] for the generator
network and its corresponding loss function, respectively. Furthermore, XLSor [14] used
CC-Net [15] (which is an image segmentation network based on Criss-Cross Attention
Module) as the backbone network and generated additional learning data using the image-
to-image translation technique. XLSor is a state-of-the-art deep learning model for lung
segmentation on chest X-ray images; thus, it has been used as an object of comparison for
many lung image segmentation networks.

Since its introduction in SENet [16], channel attention has attracted significant research
interest and proved its potential in improving the performance of deep neural networks.
As examples of recent proposals, the Effective Channel Attention [17] module can learn
effective channel attention by avoiding reduction in channel dimensionality while capturing
cross-channel interaction in an extremely lightweight manner. The channel attention
module proposed by DANet [18] exploits spatial information at all corresponding positions
to model the channel correlations. The feature pyramid attention (FPA) module of Pyramid
Attention Network (PAN) [19] fuses different scale context information through a pyramid
structure to produce pixel-level attention for high-level features. It is similar to our attention
modules in that both channel and spatial attentions are utilized to extract important features
better. However, there are several differences in the network instantiation. For instance,
we added the expanding path in the intermediate convolutional layers of the pyramid
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structure and adopted a residual learning scheme. In addition, our attention modules
can be located in any of the layers in the segmentation networks. However, the FPA
module is treated as the center block between the encoder–decoder structure. In the
Recurrent Saliency Transformation Network [20], the segmentation probability map from
the previous iterations is repeatedly converted into spatial weights that are, in turn, applied
in the current iteration. This process enables multi-stage visual cues to be incorporated
toward more accurate segmentation as well as joint optimization between a coarse-scaled
network and a fine-scaled network. In particular, the saliency transformation function for
adding spatial weights to the input image is based on a recurrent neural network.

A common characteristic across existing studies on lung segmentation is the absence
of learning data wherein the contour of the lung is hidden or the lung shape is deformed.
Consequently, existing methods achieve low segmentation performances for chest X-ray
images containing hidden lung contours or deformed lung shapes.

3. Proposed Self-Attention Modules
3.1. X-Attention Module

The structure of the X-attention module is shown in detail in Figure 1. The X-attention
module focuses on the important features required for segmentation of lung areas by
combining the features extracted through channel attention and spatial attention for the
input feature map Finput ∈ RC × H × W . The channel attention highlights the areas of the
input feature maps corresponding to “what” in the learning process by readjusting the
features between the channels of the input feature map. The core aspect of the channel
attention in the X- and Y-attention modules is borrowed from the squeeze-and-excitation
block [16]. However, for the rescaling step, the output of the spatial attention is used instead
of the original input feature map. To calculate the channel attention, the input feature map
(Finput) is compressed through global average pooling (GAP). The fully connected (FC) layer
has been generally used to compress features. However, GAP was proposed to solve the
problem of overfitting as well as the use of a large number of learning parameters, which
are the common disadvantages of the FC layer. GAP is now increasingly used instead of
the FC layer. Moreover, it can create compressed features that use global information more
effectively because it uses the mean value of each channel of the input for compression.
The compressed feature map (∈RC × 1 × 1) then passes through a multilayer perceptron
(MLP), which consists of one hidden layer, to calculate the importance of each channel.
The number of neurons of the hidden layer is C

r × 1 × 1, where r is a hyper-parameter to
control a learnable parameter’s overhead. The output of the MLP is passed through batch
normalization (BN) and the rectified linear unit function (ReLU), which is an activation
function. The process of computing the channel attention map Fchannel ∈ RC×1×1 is shown
in Equation (1).

Fchannel = ReLU
(

BN
(

MLP
(
GAP

(
Finput

))))
= ReLU

(
BN

(
W1

(
W0

(
MLP

(
GAP

(
Finput

))))))
,

(1)

where W0 ∈ RC/r × C and W1 ∈ RC × C/r.
The spatial attention highlights the part of the feature maps corresponding to “where”

in the learning process by combining the features extracted through multiple convolution
layers. The input feature map (Finput) can generate feature maps of various scales by
passing through 3 × 3 convolution layers consecutively. The intermediate feature maps
are then transformed into the scale of the input feature map through up-sampling and
are subsequently added together. For building the network for the spatial attention,
we adopted the architecture of the Feature Pyramid Network (FPN) [21]. The FPN has
been proven effective in extracting local information because it allows the network to learn
with features of low to high levels through a structure for extracting and utilizing multiple
feature maps of various scales. By using this structure, the spatial attention can effectively
extract location information about important areas having important features that are
required for segmentation. As the next step, the spatial attention map Fspatial ∈ RC×H×W
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is multiplied by the channel attention map Fchannel via element-wise multiplication. This
multiplication generates the final attention map MX ∈ RC×H×W of the X-attention module
through the sigmoid function (σ), which is an activation function (see Equation (2)).

MX
(

Finput
)
= σ

(
Fspatial Fchannel

)
(2)
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Figure 1. Structure of the X-attention module.

3.2. A Variant of the X-Attention Module (Y-Attention Module)

In general, feature maps at shallow layers encode fine details, whereas feature maps
at deeper layers carry more global semantic information. Therefore, we propose the Y-
attention module to effectively utilize global features in input images. The proposed
Y-attention module is a modified version of the X-attention module that accommodates the
global context from a deeper layer. The key difference between the X-attention module and
the Y-attention module is in the feature maps where the channel attention is extracted. The
Y-attention module receives two feature maps, Finput ∈ RC×H×W and F′input ∈ RCd×Hd×Wd ,
as input. Finput and F′input, which is an output of the deeper layer, are different feature maps
of different scales. As F′input contains global context information, it is used as an input to
the channel attention. In addition, Finput is used as an input of the spatial attention that can
extract various local information because it is an output of the shallower layer. Note that as
F′input and Finput are different feature maps, they may have a different number of channels.
In this case, it is adjusted to the same number of channels as that of Finput through MLP,
which is used in the channel attention, to enable element-wise multiplication between
attention maps. Finally, the attention map MY ∈ RC×H×W of the Y-attention module is
generated through the sigmoid activation function (σ) (see Equation (3) and Figure 2).

MY
(

Finput, F′ input
)
= σ

(
Fspatial ⊗ F′channel

)
(3)

Once the attention maps (e.g., MX
(

Finput
)

and MY
(

Finput, F′ input
)
) are successfully

generated, the final refined feature maps are computed using a residual learning method
(see Equations (4) and (5) and Figure 3). The residual learning scheme can realize improved
performance without increasing the number of learnable parameters through a simple
change of the deep learning network structure.

Foutput = MX
(

Finput
)
⊗ Finput + Finput (4)
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Foutput = MY
(

Finput, F′ input
)
⊗ Finput + Finput (5)
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4. Results and Discussion
4.1. Datasets and Deep Neural Network Architecture

To assess the validity of the proposed attention module, experiments were conducted
by applying it to U-Net, which is commonly used in the medical image segmentation field.
U-Net was used in this experiment with ResNet101 as the backbone network. In addition,
experiments were conducted while changing the position at which the attention module is
placed in the U-Net structure (see Figure 4). According to the applied position, the attention
modules are expressed as X1 − Y4. For the implementation of U-Net and the attention
module, the PyTorch framework was used.

We used X-ray images collected from three public datasets (the Montgomery dataset [22],
the Japanese Society of Radiological Technology (JSRT) dataset [23], and the Shenzhen
dataset [24]). The Montgomery dataset—published by the state health department of Mont-
gomery, Alabama, in the U.S.—comprises a total of 138 images: 80 images of patients with
tuberculosis and 58 images of people without disease. The JSRT dataset (released by the
Japanese Society of Radiological Technology) comprises 154 images of patients with lung
nodules and 93 images of people without disease. Lastly, the Shenzhen dataset contains
X-ray images that have been collected from Shenzhen No. 3 Hospital of Guangdong Medi-
cal College, Shenzhen, China. The dataset contains 326 normal images and 336 abnormal
images showing various manifestations of tuberculosis.

In order to investigate the generalization capability of the proposed method, we used
the datasets independently. For each dataset, data were randomly split into three subsets—
training (70%), validation (10%), and testing (20%). For the final evaluation, we applied
five-fold cross-validation on the dataset: for each fold, we measured the corresponding
performance metric and the final result was the averaged result incorporating the standard
deviation of the five evaluations.
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Prior to training and evaluation, images were resized to 512 × 512 pixels. The input
images were not normalized but the brightness of the images was adjusted through his-
togram equalization. The lung segmentation result was also post-processed by removing
areas other than the lung (the part excluding the largest two areas) to improve the image
segmentation performance. The image segmentation performance was evaluated using the
Dice score. In addition, the sensitivity and positive predictive value (PPV) were measured
based on the image segmentation results. The corresponding equation is Equation (6),
where TP, FP, and FN indicate the number of true positive, false positive, and false negative
pixels, respectively.

Dice = 2·TP
(TP+FP)+(TP+FN)

Sensitivity = TP
TP +FN

PPV = TP
TP+FP

(6)

4.2. Experimental Results and Discussion

The hyper-parameter values set for network training were as follows. The mini-batch
size was set to four and the initial learning rate was set to 0.01. The learning rate was
decreased by a factor of 10 when the validation set accuracy ceased to improve. Those
values were empirically set. For the loss function, the mean squared error loss was used,
and initial parameters that were trained in advance with ImageNet were used to accelerate
the learning convergence. The whole network was optimized using the stochastic gradient
descent function and the number of iterations for training was set to 10,000. However, we
applied early stopping to avoid overfitting. We did not apply data augmentation to any of
the deep learning models used in this study to observe the effects of the proposed attention
modules. The reduction ratio used in the channel attention was set to 0.5 for both the X-
and Y-attention modules. For training and testing, we used a single NVIDIA Titan-XP
Graphics Processing Unit (GPU).

The number of learnable parameters in both the X- and Y-attention modules is very
small compared to the baseline network (e.g., U-Net). For instance, the Y-attention module
requires only five 3 × 3 filters to be learned. As a result, applying these attention modules
in several places does not significantly increase the training time. Training the base U-Net
required approximately four hours, whereas with the U-Net equipped with two X-attention
modules and two Y-attention modules, approximately 1.5 to 2.5 h were required for training,
depending on the amount of training data. The inference time was less than 1.4 s per chest
X-ray image and the effect of adding attention modules was negligible.

We conducted several lung segmentation experiments using chest X-rays while chang-
ing the locations of the proposed attention modules in the U-Net to assess the effectiveness
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of the attention modules. Tables 1–3 (the bold and underlined is best results) show the Dice
score, sensitivity, and positive predictive value of the network structure according to the
location of the attention modules, respectively. Note that U-Net + X(i) + Y(j) indicates the
combination of the X- and Y-attention modules with U-Net (i, j ∈ {1, 2, 3, 4}). Compared
to the cases where the X- and Y-attention modules were applied separately, their combined
application showed slightly improved Dice scores. When only the X-attention module was
applied, a small performance gain was observed when it was applied at the X(1) and X(2)
positions compared to when it was applied at the X(3) and X(4) positions. This may be
attributed to the fact that the attention modules at the X(1) and X(2) positions deal with
feature maps in coarse scale and, therefore, help extract features for local image details. The
same patterns appear with the Y-attention module; application of the Y-attention module
at shallow layers performed slightly better than those at deeper layers.

Table 1. Comparison of Dice scores according to the location of the attention modules.

Configurations
Datasets

Montgomery JSRT Shenzhen

U−Net + X(1) 0.967 ± 0.002 0.959 ± 0.003 0.950 ± 0.001
U−Net + X(2) 0.967 ± 0.002 0.957 ± 0.002 0.949 ± 0.001
U−Net + X(3) 0.964 ± 0.002 0.956 ± 0.002 0.947 ± 0.002
U−Net + X(4) 0.962 ± 0.001 0.954 ± 0.001 0.947 ± 0.003
U−Net + Y(1) 0.964 ± 0.002 0.962 ± 0.002 0.950 ± 0.003
U−Net + Y(2) 0.960 ± 0.004 0.960 ± 0.002 0.947 ± 0.002
U−Net + Y(3) 0.959 ± 0.005 0.958 ± 0.002 0.947 ± 0.002
U−Net + Y(4) 0.957 ± 0.002 0.957 ± 0.008 0.947 ± 0.002

U−Net + X(1)+X(2) 0.970 ± 0.002 0.967 ± 0.001 0.950 ± 0.001
U−Net + X(3)+X(4) 0.965 ± 0.001 0.966 ± 0.001 0.947 ± 0.003

U−Net+ X(1) + X(2) + X(3) + X(4) 0.970 ± 0.002 0.964 ± 0.003 0.947 ± 0.003
U−Net + Y(1)+Y(2) 0.969 ± 0.002 0.966 ± 0.003 0.951 ± 0.001
U−Net + Y(3)+Y(4) 0.966 ± 0.002 0.964 ± 0.003 0.947 ± 0.001

U−Net + Y(1)+Y(2) + Y(3)+Y(4) 0.968 ± 0.001 0.962 ± 0.001 0.950 ± 0.001
U−Net + X(1)+X(2) + Y(1)+Y(2) 0.982 ± 0.002 0.968 ± 0.002 0.954 ± 0.002

U−Net + X(3)+X(4) + Y(3)+Y(4) 0.972 ± 0.005 0.965 ± 0.001 0.949 ± 0.001

Table 2. Comparison of sensitivity according to the location of the attention modules.

Configurations
Datasets

Montgomery JSRT Shenzhen

U−Net + X(1) 0.971 ± 0.001 0.961 ± 0.001 0.949 ± 0.001
U−Net + X(2) 0.969 ± 0.001 0.960 ± 0.001 0.948 ± 0.001
U−Net + X(3) 0.966 ± 0.002 0.959 ± 0.001 0.948 ± 0.001
U−Net + X(4) 0.986 ± 0.001 0.958 ± 0.002 0.947 ± 0.001
U−Net + Y(1) 0.968 ± 0.001 0.959 ± 0.001 0.949 ± 0.001
U−Net + Y(2) 0.968 ± 0.001 0.959 ± 0.001 0.949 ± 0.001
U−Net + Y(3) 0.967 ± 0.001 0.959 ± 0.001 0.947 ± 0.001
U−Net + Y(4) 0.964 ± 0.002 0.958 ± 0.001 0.946 ± 0.001

U−Net + X(1)+X(2) 0.969 ± 0.002 0.960 ± 0.001 0.948 ± 0.001
U−Net + X(3)+X(4) 0.966 ± 0.001 0.959 ± 0.001 0.947 ± 0.001

U−Net+ X(1) + X(2) + X(3) + X(4) 0.969 ± 0.002 0.961 ± 0.002 0.947 ± 0.001
U−Net + Y(1)+Y(2) 0.971 ± 0.001 0.962 ± 0.001 0.949 ± 0.001
U−Net + Y(3)+Y(4) 0.966 ± 0.002 0.958 ± 0.001 0.948 ± 0.001

U−Net + Y(1)+Y(2) + Y(3)+Y(4) 0.969 ± 0.002 0.959 ± 0.001 0.949 ± 0.001
U−Net + X(1)+X(2) + Y(1)+Y(2) 0.973 ± 0.001 0.963 ± 0.001 0.952 ± 0.001
U−Net + X(3)+X(4) + Y(3)+Y(4) 0.969 ± 0.001 0.959 ± 0.001 0.949 ± 0.001
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Table 3. Comparison of positive predictive values according to the location of the attention modules.

Configurations
Datasets

Montgomery JSRT Shenzhen

U−Net + X(1) 0.971 ± 0.001 0.966 ± 0.001 0.956 ± 0.001
U−Net + X(2) 0.969 ± 0.001 0.965 ± 0.001 0.955 ± 0.001
U−Net + X(3) 0.965 ± 0.001 0.964 ± 0.001 0.955 ± 0.001
U−Net + X(4) 0.965 ± 0.002 0.965 ± 0.001 0.954 ± 0.001
U−Net + Y(1) 0.969 ± 0.001 0.965 ± 0.001 0.954 ± 0.002
U−Net + Y(2) 0.967 ± 0.001 0.966 ± 0.001 0.954 ± 0.001
U−Net + Y(3) 0.965 ± 0.001 0.965 ± 0.001 0.953 ± 0.001
U−Net + Y(4) 0.965 ± 0.001 0.965 ± 0.001 0.952 ± 0.001

U−Net + X(1)+X(2) 0.970 ± 0.001 0.968 ± 0.001 0.956 ± 0.001
U−Net + X(3)+X(4) 0.969 ± 0.001 0.966 ± 0.001 0.956 ± 0.001

U−Net+ X(1) + X(2) + X(3) + X(4) 0.968 ± 0.001 0.966 ± 0.001 0.953 ± 0.001
U−Net + Y(1)+Y(2) 0.970 ± 0.001 0.966 ± 0.001 0.956 ± 0.001
U−Net + Y(3)+Y(4) 0.968 ± 0.001 0.965 ± 0.001 0.958 ± 0.003

U−Net + Y(1)+Y(2) + Y(3)+Y(4) 0.969 ± 0.001 0.966 ± 0.001 0.956 ± 0.001
U−Net + X(1)+X(2) + Y(1)+Y(2) 0.974 ± 0.001 0.971 ± 0.001 0.960 ± 0.001
U−Net + X(3)+X(4) + Y(3)+Y(4) 0.967 ± 0.001 0.967 ± 0.001 0.956 ± 0.001

When the network performance was compared by applying the attention module
at various positions, the best segmentation performance was obtained when it was ap-
plied at the X(1) + X(2) + Y(1) + Y(2) position, irrespective of datasets used. With the
Montgomery dataset and the JSRT dataset, the segmentation performance varies by up to
2.5% and 1.4%, respectively, depending on the locations of the X- and Y-attention modules,
whereas the performance gain was marginal with the Shenzhen dataset. The performance
improvement observed at the X(1) + X(2) + Y(1) + Y(2) position can be attributed to the
fact that when the attention module is applied at the X(i) + Y(i) (i ∈ {1, 2, 3, 4}) posi-
tion, the attention map extracted through X(i) is used as the input of the Y(i) attention
module. The fine features can be highlighted by applying the attention modules consecu-
tively rather than by applying X(i) and Y(j) (i, j ∈ {1, 2, 3, 4}) separately. Furthermore,
as the image segmentation must generate results with the same size as the input image,
the X(i) + Y(i) (i = 1, 2) structure showed good performance. In general, initial layer
features are typically more general whereas the latter layer features exhibit greater levels
of specificity. Therefore, by locating attention modules in the initial layers, deep neural
networks can take advantage of feature recalibration to improve the discriminative perfor-
mance. This finding is consistent with the results of the empirical investigations conducted
using SENet. Figure 5 illustrates examples of the chest X-rays and actual lung regions
used for evaluation, as well as the lung segmentation images of three configurations that
showed the best performance in the experimental results. On comparison of the Dice
scores, the networks applying the proposed attention module achieved comparable or
better performances than the other deep learning-based approaches (see Figure 6). When
the Montgomery dataset or the JSRT dataset was used, the proposed method outperformed
both standard U-Net and Attention U-Net. In the case of XLSor, however, both approaches
showed similar segmentation performances but the proposed method worked relatively
more stably. In the case of the Shenzhen dataset, although both XLSor and the proposed
method achieved better performances than the standard U-Net and Attention U-Net, their
performance gain was marginal. We conjectured that this result was attributed to high
variability of lung segmentation masks due to the different lung shapes and borders in the
Shenzhen dataset compared to the other two datasets [25]. In particular, the inclusion of
X-ray images with deformed lungs or ambiguous cardiac silhouette as shown in Figure 7
will decrease the learning ability of deep learning models. The experimental results shown
in Figure 8 also support this hypothesis.
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Moreover, the network that applied the proposed attention module exhibited a deeper
structure than the other networks because it uses U-Net based on ResNet and also performs
residual learning for each attention map. A deep network may require a significantly longer
learning time; however, important features can be effectively extracted in the learning
process, thereby resulting in better performance when compared to existing networks.
Figure 9 illustrates the segmentation results for the position (X(1) + X(2) + Y(1) + Y(2))
that exhibited the highest performance in the experiments and the segmentation results
of the existing medical image segmentation networks. The networks that applied XLSor
and the proposed attention module show relatively similar shapes to the lung area of the
ground truth as compared to U-Net or Attention U-Net. Another observation is that the
segmentation masks produced by our method are smooth with little noise. One possible
reason is that the X- and Y-attention modules learned what and where to emphasize or
suppress effectively, enabling them to provide accurate pixel-level attention information.

As observed in the aforementioned results, the proposed method showed good seg-
mentation performance for chest X-ray images of normal lung shapes. However, deep
learning-based methods, including the proposed method, exhibit poor segmentation perfor-
mance for chest X-ray images with deformed lung shapes or lesions that obscure the border
of heart and diaphragm, which was demonstrated in a previous study [4]. For instance,
the chest X-rays of patients with pleural effusion do not have normal lung contours due
to abnormal fluid accumulation. Moreover, in the chest X-ray image of a patient with
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pneumothorax, the presence of several holes in the lung alters the lung shape. Thus, a low
segmentation performance is observed when chest X-ray images of these abnormal lung
regions are used for evaluation (see Figure 8). To address such rare cases and improve the
generalization capability of deep learning-based approaches, additional training datasets
from such cases need to be used.
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5. Conclusions

This study proposed X- and Y-attention modules that can improve the performance
of lung segmentation on chest X-ray images by highlighting fine features. The proposed
attention module is composed of channel and spatial attention and enables the effective
extraction of global and local features. The attention maps extracted through each attention
modules are multiplied with each other and used as input for the next layer. To verify the
validity of the attention module, experiments were conducted for various configurations
of the attention module by combining it with U-Net. The experimental results suggest
that the U-Net + X(1) + X(2) + Y(1) + Y(2) structure exhibits the highest segmentation
performance among the various structures. Moreover, it showed comparable performance
to XLSor, which is a state-of-the-art deep learning model for lung segmentation on chest
X-ray images, on all of three public datasets, thus validating the method. However, chest X-
rays with deformed lungs or ambiguous cardiac silhouette exhibited low lung segmentation
performance, which remains a topic to be explored in future work. In addition, we plan to
explore various tricks (including model tweaks, training refinements, data augmentation,
and so on) to improve the generalization capability of the proposed deep learning model.
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