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Abstract: IoT platforms have become quite complex from a technical viewpoint, becoming the
cornerstone for information sharing, storing, and indexing given the unprecedented scale of smart
services being available by massive deployments of a large set of data-enabled devices. These
platforms rely on structured formats that exploit standard technologies to deal with the gathered
data, thus creating the need for carefully designed customised systems that can handle thousands of
heterogeneous data sensors/actuators, multiple processing frameworks, and storage solutions. We
present the SCoT2.0 platform, a generic-purpose IoT Platform that can acquire, process, and visualise
data using methods adequate for both real-time processing and long-term Machine Learning (ML)-
based analysis. Our goal is to develop a large-scale system that can be applied to multiple real-world
scenarios and is potentially deployable on private clouds for multiple verticals. Our approach
relies on extensive service containerisation, and we present the different design choices, technical
challenges, and solutions found while building our own IoT platform. We validate this platform
supporting two very distinct IoT projects (750 physical devices), and we analyse scaling issues within
the platform components.

Keywords: platform virtualisation; Internet of Things; ambient intelligence

1. Introduction

The Internet of Things (IoT) [1] is the general term applied to all networks of small
sensing devices that are capable of sharing data and collaborating to achieve a common
goal. It is built under a paradigm of integrating a variety of objects into a communication
network (eventually across the Internet), bringing what once were proprietary solutions and
protocols into a much more open and standard-compliant architecture. The differentiating
factor between proprietary sensing solutions and the IoT concept is the potential of the
latter to integrate an ever-increasing set of devices and/or services. One key player that
benefits greatly from this paradigm is the industrial sector, which is being remodelled into
a technological and data-centric world called Industry 4.0 [2]. The underlying complexity
of the industrial sector demands high-performance platforms capable of handling a high
number of simultaneous connections, storing and processing the generated data.

Previously, we developed an IoT platform named Smart Cloud of Things (SCoT)v1 [3–5].
This was developed in close collaboration with Telecom providers, providing a service in-
frastructure implemented in a telecommunication framework. The platform provided a rich
service execution environment that was built upon ETSI standards. This results in the facilitated
orchestration of services and devices and integrated (graphical) portals for end customers.

As SCoTv1 was used in the deployment of IoT scenarios, it became evident that the
European Telecommunications Standards Institute (ETSI) IoT standards were too complex
and limited for the realisation of larger scenarios, which became commonplace in the
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intervening years. This led to several evolutions in our platform [5,6]. The first evolution
was replacing the complex ETSI IoT standards with the agile Eclipse IoT. The second
evolution was the addition of a modular data gateway service that allows persistent
storage into multiple different storage solutions.

Nevertheless, these evolutions retained severe drawbacks from the initial design: lack of
flexibility and vertical and horizontal scaling. This paper presents the latest iteration of the
SCoT platform. The previous iterations were monolithic, which limited the scalability of the
platform, an issue that became self-evident when the SCoTv1 was (tentatively) used for the de-
ployment of two large IoT scenarios: Smart Green Homes (http://www.ua.pt/smartgreenhomes/
accessed on 1 October 2021) and PASMO (https://www.it.pt/Projects/Index/4508 accessed
on 1 October 2021). Smart Green Homes aims to create IoT platforms and services that collect
and process data to identify anomalies and increase heating equipment’ lifetime, as well as its
efficiency. PASMO is an experimental platform for smart mobility applications and services,
focusing on automotive mobility. These projects rely on hundreds of IoT sensors (in one of them,
we used 750 physical devices) deployed on the customers’ locations, gathering data for several
months, over a wide range of product manufacturers, networks, and scenarios. Even if not
reaching the millions of devices aimed in these platforms, these already provided environments
rich enough for assessing the limitations of SCoTv1. Both projects are described with more detail
in Section 4.

Solutions such as cloud computing, containerisation, and container orchestration
can eliminate most of the limitations associated with traditional deployments and can be
used to develop flexible IoT platforms. Integrating the aforementioned software solutions
potentially allows deploying IoT platforms quickly and with new and improved features.
Thus, the main contribution of this work is to describe the deployment of the SCoT 2.0
platform, which is based on containers (instead of a single monolithic service as SCoTv1)
and several innovations associated with scaling concerns. In particular, we describe in
detail the modular data gateway, which can store any data into a persistent storage solution
(see Section 3) and lessons learned when deploying large scale IoT scenarios.

This paper is organised as follows. Section 2 exposes previous and theoretical back-
ground information relevant to this work. Section 3 describes in detail the implementation
of the architecture described in this paper. In Section 4, we describe the IoT scenarios that
are currently being supported by the proposed platform. Finally, Section 5 presents our
conclusions and future work that we aim to pursue.

2. State of the Art

The construction of an effective and functional IoT platform requires some key macro-
scopic components [7], as depicted in Figure 1.

Data
Acquisition

Data
Visualisation

Data Sources
Data Storage Data

Processing

Data Mining

External
Components

Figure 1. Key components that compose an IoT platform.

Data Acquisition is the component responsible for retrieving data that will be processed
next. It achieves this by connecting sources with the remaining architecture, often providing
authentication and authorisation mechanisms.

The following component, named Data Storage, is responsible for the persistence of all
the necessary data acquired previously, and then the Data Processing component controls
the transmission between storage and the upper components [8].

http://www.ua.pt/smartgreenhomes/
https://www.it.pt/Projects/Index/4508
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The Data Mining component shall process the data to identify important features and
discover patterns based on them. The pipeline implementation is crucial to the platform
since it may limit the system ability to scale correctly [9,10].

There are two main approaches to Data Processing, which we describe next with greater
detail: Batch Processing and Real-Time (or Stream) Processing.

Finally, the Data Visualisation component shows valuable information [11], and it
typically adapts to each scenario, the users, and purpose of the system.

In the following subsection, we detail the available solutions for each of the key blocks
described previously and comment on some implementation aspects in different (often
commercial) solutions.

2.1. Data Acquisition

The first key component is Data Acquisition, which is the component that connects
the sensors and actuators to the platform, filling the gap between hardware and the
processing frameworks (through remote and heterogeneous networks). Usually, it is
implemented as a multi-protocol broker. The authors describe in detail the different data
acquisition platforms [12,13]. The most relevant alternatives are described in Table 1.

Table 1. IoT Messages brokers review.

Broker Advantages Disadvantages

Mosquitto Message Queuing Telemetry Transport (MQTT) Message Broker; Lightweight Protocol limitation
RabbitMQ Multi-protocol broker; Easy to scale Limited features for IoT
Hono Multi-protocol broker; Queues with different semantic Computationally heavy

Although Mosquitto is a highly used broker in IoT scenarios due it being fast and
lightweight, it only supports the MQTT protocol. The other two brokers support several
communication protocols, which enables the connection of heterogeneous devices.

2.2. Data Storage

The majority of IoT scenarios produce data that are better perceived as time series [14–17]
and better processed using techniques developed for sequential series of points. Time Series
Database (TSDB) has become a common storage solution for such scenarios.

A TSDB is optimised for storing a sequence of values (a pair composed by the time
and the value). In this sense, time-series data can be defined as “time series is a collection of
temporal data objects” [18]. In many cases, the time-series repositories will utilise compres-
sion algorithms to manage the data efficiently. Although it is possible to store time-series
data in other types of databases, the design of these systems usually imposes unnatural
relations that are not well supported within the internal model of the underlying system.
This leads to a loss of performance or data repetition. Most importantly, TSDB have ad-
ditional features, such as allowing processing data in alternative manners, sometimes
including more advanced mathematical expressions. Those databases are built for dealing
with data that change over time. Some of the most used are represented in Table 2.

Table 2. Time-series databases review.

TS Database Advantages Disadvantages

InfluxDB Fast storage; Time-series data retrieval Limited scalability
TimescaleDB SQL scalability; Easy interpretation Large time-based queries
OpenTSDB Scalability; Storage as a server Hadoop knowledge
Redis Wide variety of data types; Open source No joins operations or conventional queries
MongoDB BSON document as a unit; Horizontal scalability Non-indexed queries; Hardware requirements
Apache Cassandra Fault-tolerant; Linear scalability No unanticipated queries
MapR Database High-performance; Analytic capabilities Non-indexed queries
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Several authors have proposed the use of Blockchain technology as the means to
develop storage solutions for IoT [19–21]. The authors defend that data storage based
on Blockchain tend to be more secure than the remaining storage solution. However,
these solutions require substantial computational power. As such, they do not tend to be
used widely.

2.3. Data Processing

The processing pipeline is crucial for the execution of large scale scenarios since it tends
to be the major bottleneck of the IoT platform. The processing pipeline can be deployed
with two different strategies: Batch Processing and Real-Time (or Stream) Processing.

Batch Processing follows a strategy where data are processed as one large batch,
creating the need to provide random access to all the individual pieces of data. There are
several frameworks for batch processing [22]; in Table 3, we detail the most common ones.

Table 3. Batch Processing frameworks review.

Framework Main Characteristics Useful Scenarios

Hadoop MapReduce [23] Independent clusters Large amounts of data
Hadoop HDFS [24] Intermediate results Shared repository of data
Google Dremel [25] Reduces the CPU overhead Multiple features

Real-Time Processing, often called Stream Processing, requires the continuous avail-
ability of computing and network resources. There are two types of data streams: bounded
and unbounded. Unbounded streams have a start but no defined end. They do not termi-
nate and provide data as the data are generated. Bounded streams have a defined start and
end. There are also several frameworks for stream processing; the most common ones are
described in Table 4).

Table 4. Stream Processing frameworks review.

Framework Main Characteristics Useful Scenarios

Apache Spark [26] Supports Lambda architecture Applications with diverse data sources
Apache Storm [27] Unbounded streams of data Real time analytics
Apache Flink [28] Unbounded and bounded data Fault-tolerant applications
Apache Samza [29] Multiple streams Fault tolerance and buffering
Apache Druid [30] Real-time analytics on large datasets Clusters with several nodes

2.4. Data Visualisation

Data Visualisation [31] is a service that presents the acquired data in a graphical
representation. Effective visualisation helps end-users to analyse and reason about data
and related patterns. It makes complex data more accessible, understandable, and usable.
When dealing with data that include thousands or millions of data points, automating
the process of creating a visualisation, at least in part, allows a common user to better
understand the underlying patterns in the data.

Processing, analysing, and communicating these data present ethical and analytical
challenges for data visualisation [32]. Moreover, this block provides an accessible way to
see and understand trends, outliers, and patterns in data. Considering some of the most
used tools for Data Visualisation, several platforms are described in Table 5.

2.5. Containerisation

In this subsection, we discuss the usage of containerisation and microservices applied
to IoT scenarios. Containers enable developers to define and build their software environ-
ments and then run them on top of various resources in a portable, reproducible way [33].
Microservices architecture allows the development of a distributed platform as a set of
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independent components that work together. This architecture is not novel, but when
applied in cloud systems, it increases the platform scalability and reliability [34].

Table 5. Time-series databases review.

TS Database Advantages Disadvantages

Grafana Several time-series data storage; Allow notifications and alerts Full-text data querying not permitted
Kibana Data querying and analysis; Several data representations Work only with Elasticsearch
Graphite Highly scalable; Render on demand Specific database
Prometheus Multi-dimensional data model; Flexible query language Not viable for anomaly detection

The authors of [35] proposed a modular and scalable architecture based on lightweight
virtualisation for Industrial Internet of Things (IIoT) scenarios. In the proposed architecture,
each component has embedded docker, applications (divided in small services), and
implemented inside containers. By adopting the proposed architecture, reliability can be
achieved through the application of orchestration rules that can ensure service recovery
in case of a failure, and system resilience can be improved by including redundancy at
different layers.

In [36], the authors state that given the nature of IoT scenarios, the inherent ap-
plications should be distributed, secure, and support heterogeneity. They propose an
IoT platform based on the microservice models. This platform is leveraged on a SAVI
cloud, a two-layer academic cloud, including a core in Toronto and seven smart edges
across Canada.

2.6. IoT Platforms

Before detailing our SCoT2.0 IoT platform, it is relevant to analyse existing solutions
and services. As previously stated, this platform is an evolution over previous SCotv1 [4,5],
and as such, most of the background analysis is already presented on them. Nevertheless,
this section briefly summarises the key lines described in previous works.

Amazon Web Services (AWS) IoT [37,38] are a set of cloud services available through
AWS that connect IoT devices to other devices and/or AWS cloud services. AWS IoT
provides device software that can help customers integrate IoT devices into AWS IoT-based
solutions. The AWS private cloud provides on-demand cloud computing platforms and
APIs to individuals on a metered pay-as-you-go basis.

ThingWorx [39,40] is an IoT platform that provides the necessary services to bind the
automation, optimisation, control, and monitoring into a single framework. The platform
provides the tools to map our application design into a working model. The platform is
a collection of modules that deliver the flexibility, capability, and agility establishment
required to implement IoT applications.

ThingSpeak [41] is an open data platform for IoT that enables the development of
IoT applications. It provides a middle-layer that integrates the acquired data with a
variety of third-party platforms, systems, and technologies, including other leading IoT
platforms, such as ioBridge, Arduino, and the numerical computing software MATLAB
from MathWorks. This allows the customers to have access to a well-known third-party for
the tasks of analysing and visualising the acquired data with ease.

Google Cloud IoT [42] allows the customers to develop and deploy their IoT ap-
plications on the services provided by the Google Cloud Platform. It runs on the same
infrastructure that Google uses internally for its end-user products. This enables the
customers to only worry about the IoT application and rely on the Google services for scal-
ability, reliability, and even for advanced machine learning capabilities and an integrated
software stack that allows predictive maintenance scenarios.

Microsoft Azure IoT [43] follows a similar strategy to Google Cloud IoT; it also offers
a cloud computing service that relies on the cloud services provided by Microsoft. One of
the main differences is the possibility of using preconfigured solutions.
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The Bosch IoT Suite [44] is a set of cloud services and software packages for the devel-
opment of IoT applications. It is available as Platform as a Service (PaaS) for customers,
who can quickly build and implement cloud-based and highly scalable IoT applications.

The previously mentioned platforms are some of the most used to build IoT appli-
cations. These platforms have two main advantages: I) the platforms rely on the parent
company cloud infrastructure (leading to increase scalability and reliability), and II) the
customers can connect to third-party services (usually part of the parent company) to access
several advanced features, such as persistent storage, data analytics, and data visualisation.
Several authors have shown the positive impact of cloud-based solutions [45,46] as the
basis of an IoT platform.

However, these platforms offer the bare-bones for IoT devices (through a multi-
protocol broker) and some type of persistence. Since its conception, the SCoT platform
intends to go a little further. Our proposal for an IoT platform also has a focus on scalability
and reliability but provides data representation agnostic storage (the usage of smart parsers)
and easy integration with data mining and visualisation services (without relying on a
parent company’s external services).

SCoT is a platform developed to deal with massive IoT scenarios. It is an evolution
over our previous solution, named SCoTv1 [3–5], that aimed to develop a generic platform
for the integration of IoT scenarios in telecommunication environments. Therefore, it
implements functions related to device management, service integration, and applications
under a telco service provision model.

After long experience with this previous implementation, and drawing from the
experience of supporting different projects, sensor types, and scenarios, it was possible to
identify the following limitations:

• Monolithic architecture—there was no redundancy available, or the redundancy
was limited by the inherent construction centred in service layers with common
service functions.

• Difficult to manage—it is challenging to add new services or to debug issues. In par-
ticular, scalability and performance issues.

• Under-performing in unexpected high traffic scenarios—infrastructure might not be
able to handle a high number of connections or data objects being passed. Objects
were duplicated and processed by a large number of service functions, and an error
could propagate to further layers without being noticed.

• Difficult to redeploy the same platform—the services were deployed mostly manually
and do not allow redeploying the same infrastructure quickly and automatically,
which was already cumbersome for telecom operations but impossible to use in other
IT operation scenarios.

• Possible conflicts between services in the same machine—One malfunctioning ser-
vice can affect other services running in the same machine (e.g., a memory leak,
data corruption).

Although these issues do not question the basic design paradigm for the IoT platform,
cumulatively, they bring major roadblocks for the widespread usage of IoT. This work aims
to smooth these roadblocks by developing an improved IoT platform and demonstrating
its usefulness.

3. Scot Architecture and Implementation

In this section, we describe the relevant implementation architectural details regarding
the proposed improved IoT platform (SCot2.0) and present some lessons learned from
devising, building, and deploying these types of platforms.

As stated in the previous section, the redesign of the SCoT platform should optimise
resource usage and provide an adaptable platform capable of dealing with massive and
dynamic IoT scenarios. The select way to optimise resource usage was through a careful
division of the monolithic platform into microservices that can be easily deployed into
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individual containers. The proposed solution tries not only to eliminate these limitations
but also to bring new benefits such as:

• Distributed architecture—Implemented using a multi-node distributed platform,
which allows the distribution of the workload amongst the available workers and
making it fault-tolerant by keeping track of the nodes’ health;

• Service replication with load balancing—The proposed implementation allows the
replication of any service to improve scalability. Furthermore, the incoming traffic is
distributed amongst all replicates to maximise the performance;

• Easier to scale the infrastructure and/or applications—This implementation facilitates
the scaling operations of either the cluster or the services of an application, allowing a
near-zero downtime;

• Excessive work in updating the platform—The fully custom implementation brought
large challenges to code base maintenance as types of software evolve, and multiple se-
curity bugs become known. Keeping the whole platform updated requires meaningful
proprietary effort.

The SCoTv1 platform was redesigned in terms of software implementation and some
of its modules, as depicted in Figure 2. SCoTv2 is now based on three key services
from the Eclipse Stack (Hono, Ditto, and Kapua), further extending with custom ser-
vices. These components were chosen since they cover most of the initial requirements,
and they provide a high level of integration between them. They are part of the Eclipse
IoT (https://iot.eclipse.org/ accessed on 1 October 2021) initiative that is well known and
heavily used in this area. This approach allows the system to be much easier to update
while maintaining essential performance functions fully under the control of the platform
owners. The platform is deployed within a Docker Swarm consisting of three manager
nodes and five worker nodes. The three manager nodes allow one to fail without bringing
the platform down. Only the persistence services are maintained outside of the swarm,
the persistence databases, and an NFS server for shared configurations. This allows the
swarm to move the services as it sees fit since each server is stateless. Stateless, in this
context, means that the data persistence is managed externally.

It is also important to mention that both the broker (Hono) and the digital twin
service (Ditto) have user credentials and access policies. Each sensor/gateway has its own
access credentials, and the users that have access to them can also be controlled using
different policies.

Eclipse Hono (https://www.eclipse.org/hono/ accessed on 1 October 2021) is an IoT
message broker that provides remote service interfaces for connecting large numbers of
IoT devices to a back end and uniformly interacting with them regardless of the commu-
nication protocol. Hono collects telemetry data from these devices through Advanced
Message Queuing Protocol (AMQP), MQTT, Constrained Application Protocol (CoAP), or
Hypertext Transfer Protocol (HTTP) and discloses it through an API to an AMQP network,
which is inherently distributed. It supports two data paths for events and telemetry, plus
a control path. We deployed the suite based on containers in an infrastructure providing
support for a wide range of orchestration environments.

Eclipse Ditto (https://www.eclipse.org/ditto/ accessed on 1 October 2021) imple-
ments a software pattern called “digital twins”. A digital twin is a digital representation
of a physical “Thing”, e.g., sensors and actuators. One advantage is the simplification of
IoT applications since it decouples the application from the physical IoT device. Similar
to the Hono framework, the Ditto framework can be deployed with a range of containers
orchestration environments.

The connection between the Eclipse Ditto and Hono is not trivial. There are two
types of connections that must be developed in order to have access to the data (incoming
connection) and be able to send commands (outgoing connection) to the physical device.
The incoming connection requires a mapping function that converts the physical device
raw data into the JSON format supported internally by the Ditto component. The outgoing
connection simply redirects the JSON sent to the digital twin to the physical device.

https://iot.eclipse.org/
https://www.eclipse.org/hono/
https://www.eclipse.org/ditto/
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Figure 2. Redesign of the SCoT’s architecture to support dynamic IoT scenarios.

As stated in [47], there is an inherent complexity and heterogeneity of IoT devices;
as such, defining incoming mappings for each physical device is quite taxing and requires
human intervention. We developed two distinct approaches.

Initially, we developed a service that automatically created an incoming mapping
for each new device based on a template database. However, we discovered that this
approach has several disadvantages, as the number of active connections overloads the
Ditto capability. Furthermore, whenever a device publishes any new type of information,
it is necessary to add a new template into the database.

As an alternative to the previous approach, we then developed an automatic mapping
function that analyses the JSON raw data, flattens it, and automatically generates the JSON
message that is supported by the Ditto component (see Listing 1). The automatic incoming
mapping is derived from the work presented here [48], where semi-structured formats are
parsed with an EAV (entity-attribute-value) model. Another advantage is that this mapping
function can be defined at the tenant level and not for each device individually, decreasing
the number of active connections. This alternative has been shown to be scalable, and our
implementation is currently supporting two large IoT scenarios (see Section 4).

Listing 1: Pseudocode extract from the ditto incoming mapping

function mapToDittoProtocolMsg ( headers , textPayload ,
bytePayload , contentType ) {

l e t rv = { } ;
t r y {

l e t j sonData ;
i f ( contentType == ‘ ‘ a p p l i c a t i o n / json ’ ’ ) {

jsonData = JSON . parse ( textPayload ) ;
} e lse {

l e t payload = Di t to . asByteBuf fer ( bytePayload ) ;
jsonData = JSON . parse ( payload . toUTF8 ( ) ) ;

}
l e t s tack = [ [ jsonData , ‘ ‘ ’ ’ ] ] ;
while ( s tack . length ) {

l e t tmp = stack . pop ( ) , root = tmp [ 0 ] , p r e f f i x = tmp [ 1 ] ;
f o r ( l e t key in root ) {

l e t value = root [ key ] ;
i f ( ! ! value && value . c o n s t r u c t o r === Object ) {

l e t new_preff ix ;
i f ( p r e f f i x ) {
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new_preff ix = p r e f f i x . concat ( ‘ ‘ . ’ ’ , key ) ;
} e lse {

new_preff ix = key ;
}
s tack . push ( [ value , new_preff ix ] ) ;

} e lse {
l e t new_preff ix ;
i f ( p r e f f i x ) {

new_preff ix = p r e f f i x . concat ( ‘ ‘ . ’ ’ , key ) ;
} e lse {

new_preff ix = key ;
}
rv [ new_preff ix ] = { ‘ ‘ p r o p e r t i e s ’ ’ : { ‘ ‘ value ’ ’ : value } } ;
}

}
}

} catch ( e ) {
l e t byteBuf = Di t to . asByteBuf fer ( bytePayload ) ;
rv = { ‘ ‘ raw ’ ’ : { ‘ ‘ p r o p e r t i e s ’ ’ : { ‘ ‘ value ’ ’ : byteBuf . toBase64 ( ) } } }

}
return Dit to . bui ldDittoProtocolMsg ( ‘ ‘ { } ’ ’ , headers [ ‘ ‘ device_id ’ ’ ] ,
‘ ‘ th ings ’ ’ , ‘ ‘ twin ’ ’ , ‘ ‘ commands ’ ’ , ‘ ‘ modify ’ ’ , ‘ ‘/ f e a t u r e s ’ ’ , headers , rv ) ;
}

Furthermore, we also instantiated a RabbitMQ cluster to provide real-time access to
the data stream, besides the access also provided at the level of the Digital Twin.

Eclipse Kapua (https://www.eclipse.org/kapua/ accessed on 1 October 2021) is used
to manage and integrate devices and their data to provide a solid foundation for IoT
services for any IoT application. In short, it is responsible for the device management,
registration, and authentication.

The proposed platform also includes custom destined services. These include a Data
Gateway that connects to several databases.

As stated in [47], IoT scenarios are inherently complex due to the data heterogeneity.
It becomes rather difficult to have a single database model to store the data and provide
a meaningful structure for Data Processing components. This is one of the focuses of
our platform, we developed a Data Gateway that uses a smart parser to transform the
data and store it correctly in the instantiated databases. Three different databases (with
replicated data) are used in our current deployment: Apache Cassandra, PostgreSQL, and
InfluxDB. Each one of them is a mature representation of NoSQL, Relational, and Time-
Series databases, respectively. Depending on the scenario’s requirements, the customer can
retrieve data from the appropriate database. This approach was selected since the storage’s
space is relatively cheap, and the use of the adequate database facilitates data processing
tasks and integration with additional services.

The Data Gateway bridges the Hono framework with the Data Storage and the real-
time broker that are themselves exposed to services. This service was designed to scale
vertically and horizontally, as depicted in Figure 3. The Gateway is a parallel construct,
with differentiated processing workers and a queue for each database backend. Each
worker consumes messages from the broker and stores them into the respective database
(horizontal scaling), applying transformations required to make the data compatible with
the database. Furthermore, there can be more than one gateway instantiated, as well as
more than one worker per database per gateway, achieving high levels of parallelism
and scalability. The ingress portion of the gateway constitutes a consumer at the AMQP
network used after Hono.

https://www.eclipse.org/kapua/
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Figure 3. High-level architecture of the Data Gateway service.

Since the Data Gateway is designed to just be a consumer in the AMQP network used
after HONO, horizontal scaling is achieved by requesting additional replicas that can be
hosted in any node. If N replicas are requested, then N AMQP consumers are created.
Since every Data Gateway subscribes the same queues, the messages are load-balanced
automatically. Vertical scaling is achieved by increasing the number of workers (processes)
on each replica that connects and stores data on each data storage system. It begins by
creating D different queues, one for each data storage system, and then instantiates k
processes for each worker, passing them their respective data storage system queue to
consume from.

The number of workers is always equal to D × k + 1, where D is the number of
underlying data storage systems and k is the configured number of workers per data
storage system. The extra one process is the dispatcher that subscribes to the AMQP
network and feeds messages to the worker queues.

The schema of the Relational and NoSQL databases was based on previous work [48],
where the structure is derived from implicit data structures. The InfluxDB has a unique internal
structure; we had to develop a recursive flat parser to implement a generic storing method.
This parser is capable of flattening any JSON document (similar to the parser defined for the
automatic mapping Listing 1) and guessing variable types, names, and other metadata from the
names used by sensors. The flattened JSON is then parsed into individual components and
inserted into the InfluxDB as individual streams. As long as the properties have meaningful
names, direct categorisation is possible. In other cases, properties of the data series can expose
the real semantics and allow automatic categorisation.

Finally, as previously stated (in Section 2), the Data Mining component is a key compo-
nent in the platform. However, in previous work, we already detailed the most important
details regarding their components [6]. The inner workings of this component is out of the
scope of this work.

4. IoT Scenarios

In this section, we describe with some detail the two IoT projects that are currently
being supported by the proposed platform and have been used to evaluate its (horizontal)
scalability. It is important to mention that the current deployment of the platform was
deployed using Docker Swarm containerisation.

The first, named Smart Green Homes (SGH) (https://www.ua.pt/pt/smartgreenhomes/
accessed on 1 October 2021), is a joint cooperation between the University of Aveiro and
Bosch with the objective of developing smart solutions for thermotechnology. One of the
areas of this project is identifying the comfort temperature of the residents. To achieve this,
several volunteers fitted their houses’ with multiple environmental and presence sensors. All
previously mentioned sensors are publishing data into the proposed platform.

The second project is named PASMO [49–51]; the main objective is the design, field
implementation, and provision of a platform for intelligent mobility, which is open to
participative experimentation of companies that can collaborate to test (technology) and
validate (market) equipment, protocols, processes, applications, standards, and services.
One scenario explored by this project is the development of Intelligent Transportation

https://www.ua.pt/pt/smartgreenhomes/
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Systems (ITS) where the traffic conditions and the weather are monitored continuously.
Furthermore, notifications related to the traffic conditions are sent to users of the platform.
To this end, multiple traffic and environmental sensors are deployed alongside relevant
road junctions in the region of Aveiro.

Currently, there are more than 750 physical devices registered within the proposed
platform. The large majority are the sensors associated with the previously mentioned
projects, meaning that they are highly active devices that publish periodically. These
projects generate on average 15 messages per second, comprising more than 50 GB of un-
compressed data points. It is important to mention that the number of messages per second
varies greatly during the day. The PASMO project monitors traffic conditions, meaning
that at the beginning and the end of the day, there is a considerable burst of messages.

The Data Acquisition, Data Gateway, and Data Visualisation services all reside within
a Docker Swarm consisting of three manager nodes and five worker nodes. The three
manager nodes allow one to fail without bringing the entire swarm down. The manager
nodes have 4 CPUs, 8 GB of RAM, and 32 GB of storage each, while the worker nodes have
4 CPUs, 16 GB of RAM, and 40 GB of storage each.

In terms of storage, the NFS used in the platform to provide persistence has 32 GB available
with 1.56 GB currently in use. The Postgres and InfluxDB data stores have both 8 CPUs, 16 GB
of RAM, and 160 GB of storage. While InfluxDB is using only 3.20 GB of storage, Postgres is
using 48.70 GB. Cassandra is running in a four-node cluster, and each node has 4 CPUs, 16 GB
of RAM, and 100 GB of storage. All four nodes use 46.88 GB of disk space due to a replication
factor of three, allowing a node to fail without losing any of the data. It is worth noting that
while the memory load of every node discussed so far is in the 2% to 7% range, the cassandra
nodes use around 32%. Thus, InfluxDB uses the least amount of resources, while comparatively,
Postgres needs a lot more storage and Cassandra a lot more memory. A summary of the loads
of each machine is depicted in Table 6.

Table 6. Specifications and loads of the servers used to deploy our platform.

CPU Memory Disk

Cores Load (%) Total (GB) Load (GB) Total (GB) Load (GB)

manager-0 4 1.86 8 7.03 32 3.57
manager-1 4 1.67 8 6.04 32 2.68
manager-2 4 3.36 8 6.86 32 4.35
worker-0 4 1.87 16 3.79 40 3.50
worker-1 4 1.70 16 3.03 40 1.43
worker-2 4 1.60 16 3.72 40 3.82
worker-3 4 2.28 16 6.94 40 3.33
worker-4 4 1.65 16 4.07 40 8.52

nfs-server 4 1.42 8 2.98 32 1.56
postgres 8 0.71 16 1.99 160 48.70
influxdb 8 1.28 16 4.12 160 3.20
cassandra-0 4 1.63 16 31.85 100 9.50
cassandra-1 4 1.94 16 32.29 100 13.16
cassandra-2 4 1.95 16 31.49 100 10.98
cassandra-3 4 2.18 16 32.07 100 13.24

Once the platform was deployed with a stable release of the Data Gateway, the only
downtime was caused by the misconfiguration of one or more components. This occurred
three times in the span of a year, and the major cause was mainly related to logging not
being properly rotated, which led to disk space issues. However, one of the downtime
incidents was related to expired certificates, which led to the Hono components being
unable to communicate with one another.
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The platform is being used by two large-scale IoT projects; this heavily limits the evalu-
ation we can perform on it without interfering in the projects. Nevertheless, to demonstrate
the capabilities of the current deployment, we place three probes within the platform:
bridge, ditto, and sensor. The latency values were measured simultaneously with the
previously mentioned IoT projects running. The probe within the bridge measures the time
that a message from a sensor takes to reach the bridge. The communication path for this
probe is MQTT→ AMQP. Similarly, the probe in Ditto measures the time a message from
a sensor takes to reach the digital twin. The communication path for this probe is MQTT
→ AMQP→WebSockets (WS). Finally, the last probe measures the time that a command
message issue in the digital twin takes to reach the physical sensor. The communication
path for this probe is HTTP → AMQP → MQTT. The results are presented in Table 7
and give an idea of the expected performance for the platform.

Table 7. Latency of different probes placed within the proposed platform.

Probe Latency (Seconds)

Bridge 0.05± 0.02
Ditto 0.05± 0.02

Sensor 0.15± 0.01

We also developed a virtual sensor that sends messages at a fixed rate of 100 messages
per second. Four different configurations were deployed with one, two, four, and eight
virtual sensor. Each sensor sent 10 K messages, and the previously mentioned probes
store the latency of the messages. We only used two probes: bridge and ditto. The
communication path is similar to the one described previously. We did not use the sensor
probe since the control channel was being heavily used by the IoT projects.

In Figure 4, we can see the latency at the bridge level. The latency increases linearly
with the number of messages (the number of messages is growing exponentially) when
the sensors send less than 800 messages per second. However, when the virtual sensors
are sending 800 messages per second (see Figure 4b), the platform reaches its maximum
capacity given the current deploy.

(a) (b)
Figure 4. Latency at the bridge level. Due to the scaling issues (a) only shows from 100 to 400 msg/s
while (b) shows from 100 to 800 msg/s.

Similarly, in Figure 5, we can see the latency at the ditto level. The latency at the ditto
level is considerably greater than at the bridge level. This is explained by the execution of a
mapping function (see Listing 1) within the connection between ditto and the bridge. In our
current deployment, there is a single mapping function per tenant. As stated previously,
this limits the number of open connection in the ditto component, increasing the stability
of the service. However, for this test, a single mapping function (and connection) is being
used to process all the messages from the sensors. This increases the latency greatly.
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(a) (b)
Figure 5. Latency at the ditto level. Due to the scaling issues (a) only shows from 100 to 400 msg/s
while (b) shows from 100 to 800 msg/s.

As previously stated, these experiments were performed on the platform, while it was
being used by the IoT projects. This limits the amount of perturbation we can inject into
the platform to extract performance metrics. Nevertheless, our evaluation shows that the
platform in its current state can support less than 800 messages at the bridge level and less
than 200 messages at the ditto level. That performance level is sufficient for the currently
deployed project. As discussed in Section 3, given the implementation of the platform as
microservices, it is possible to scale the platform whenever higher levels of performance
are necessary.

5. Conclusions

The establishment of cloud computing, allied with the evolution of containerisation,
orchestration solutions, and the complementary Software Configuration Management
tools, has changed the way software solutions are projected and deployed. Having this
set of technologies in mind, it is possible to build robust supporting platforms that offer
excellent performance and new features, such as fault tolerance, load balancing, and easy
infrastructure replication for the most different scenarios.

This paper describes the latest iteration of our IoT platform devised as a robust soft-
ware architecture able to handle large-scale data acquisition, processing, and visualisation,
targeting Big Data scenarios. The platform was developed based on independent services
that can be deployed as containers in a private cloud. The solution allows customers to
integrate several sources and obtain relevant information only by connecting their sen-
sors. Some aspects were evaluated to verify its effectiveness, such as the design, storage
capacity, and scalability. The real scenarios deployment has proven that the system is
scalable and able to process the necessary amount of data, even while relying upon many
open-source components.

The platform is being actively used by two large-scale IoT projects. It was dimen-
sioned to support the performance requirements from the projects. Regardless, some
limitations will be addressed in future work. First, the platform was deployed using docker
swarm since one initial evaluation has shown that it was faster at deploying and recovering
from errors than Kubernetes. However, the docker swarm mode is no longer being main-
tained (https://www.mirantis.com/blog/mirantis-acquires-docker-enterprise-platform-
business/ accessed on 1 October 2021). We already started to research how to properly
migrate our platform from docker swarm to Kubernetes while taking advantage of some
advanced features from the latter. Second, the Hono and Ditto versions are considerable
outdated at this point. To maintain the platform (due to the use cases we are supporting)
and keep the current APIs stable, we are still using outdated versions of these services. The
next iteration of the platform will update these services and adjust the custom component
to have a seamless integration and allow for continuous software updates. Finally, the ML

https://www.mirantis.com/blog/mirantis-acquires-docker-enterprise-platform-business/
https://www.mirantis.com/blog/mirantis-acquires-docker-enterprise-platform-business/
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is becoming an integral part of most IoT projects, and, as such, we intend to include more
services dedicated to this area.
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