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Abstract: In turning, the wear control of a cutting tool benefits product quality enhancement, tool-
related costs` optimisation, and assists in avoiding undesired events. In small series and individual 
production, the machine operator is the one who determines when to change a cutting tool, based 
upon their experience. Bad decisions can often lead to greater costs, production downtime, and 
scrap. In this paper, a Tool Condition Monitoring (TCM) system is presented that automatically 
classifies tool wear of turning tools into four classes (no, low, medium, high wear). A cutting tool 
was monitored with infrared (IR) camera immediately after the cut and in the following 60 s. The 
Convolutional Neural Network Inception V3 was used to analyse and classify the thermographic 
images, which were divided into different groups depending on the time of acquisition. Based on 
classification result, one gets information about the cutting capability of the tool for further machin-
ing. The proposed model, combining Infrared Thermography, Computer Vision, and Deep Learn-
ing, proved to be a suitable method with results of more than 96% accuracy. The most appropriate 
time of image acquisition is 6–12 s after the cut is finished. While existing temperature based TCM 
systems focus on measuring a cutting tool absolute temperature, the proposed system analyses a 
temperature distribution (relative temperatures) on the whole image based on image features. 

Keywords: Tool Condition Monitoring; turning; Convolutional Neural Network; Deep Learning; 
Industry 4.0; thermography; tool wear; Inception V3 
 

1. Introduction 
The evolution of the machining industry is based on automation, modern smart sys-

tems, unmanned machining, dynamic autonomous control of processes, etc. One of the 
keystones of this transition is the digitalisation of manufacturing, which is called Industry 
4.0—the fourth industrial revolution [1]. Despite all the technological innovations, many 
decisions in individual or small series production are still made by humans. One example 
is the assessment of tool wear and the decision to change the cutting tool, which is usually 
left to the machine operator. There is no easy way for a machine operator to determine 
tool wear. One needs to rely on experience and visual inspection of the cutting edge of the 
cutting tool at the end of the cut. One also monitors the sound of the process (vibrations), 
the roughness of the workpiece surface, the colour (temperature) of the chips, the dimen-
sional accuracy of the workpiece, etc. 

Researchers are often confronted with the question of how to determine tool wear 
with the TCM System (Tool Condition Monitoring System). By introducing a reliable 
smart system that makes decisions instead of humans, it is possible to eliminate any error 
in judgement that may occur due to the human factor (e.g., inexperience). Several ad-
vantages can be obtained by monitoring the wear of a cutting tool. The condition of the 
cutting tool is one of the main factors affecting the quality of the final product [2] therefore 
the tool wear prediction is critical for product quality control [3]. However, not only the 
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quality of the product is affected by the wear of the cutting tool. The financial aspect is 
also needs to be taken into account. Optimal costs can be achieved only if the cutting tool 
is changed at the right time—just before the quality of the machined surface does not meet 
the requirements due to the worn cutting tool. Replacing precipitately is related directly 
to the higher cost of a new cutting tool and additional changeover time. The use of a worn 
cutting tool has a negative effect on both the quality of the product and the machine tool 
load. TCM systems are crucial for cost-optimised manufacturing and play a fundamental 
role in Industry 4.0 [4] in the contest of error minimization and productivity maximization 
[5]. Since the cutting tool is clamped and heats up considerably during turning, various 
indirect systems without contact with the cutting insert are suitable methods for tool wear 
monitoring. Different sensors can be used, for example, sensors for measuring cutting 
forces, acoustic emission, vibration, temperature, motor current/power, sound, surface 
roughness. On the other hand, there are various possibilities for the tool wear dimensional 
measurement, such as Imaging Technology, which, however, usually lead to machine 
downtimes and, thus, to longer manufacturing times [6]. It is possible to determine the 
tool wear of the cutting tool during turning using a neural network, where the inputs may 
be; for example, cutting speed, feed rate, depth of cut and rake angle [7]; cutting speed, 
feed rate, depth of cut, and three force components [8]; cutting speed, feed rate, time, the 
width of cut, and the force ratio of the cutting force to the thrust force [9]; cutting force, 
acoustic emission, and vibration sensor signals [10]. 

The main focus was on studies that involve the analysis of temperatures during ma-
chining. What has already been researched: correlations between cutting speed, cutting 
temperatures, and consequent secondary hardening during hard turning of T15 HSS 
(High Speed Steel) [11]; determination of the optimal cutting parameters considering min-
imum flank wear and tool temperatures for turning a silicon carbide particulate reinforced 
Al 7075 matrix composite [12]; the effect of vibration and cutting zone temperature on 
surface roughness and tool wear [13]; a mathematical model of a milling tool’s flank wear 
based on the acquisition of the real-time cutting force and temperature [14]. Another ap-
proach is the Machine Vision method, which analyses the image of the cutting tool during 
turning [15] or face milling process [16]. Tool breakage detection can be done using Deep 
Learning methods that analyse the characteristics of the current [17] or forces [18] of a 
milling machine spindle, or forces during turning. Automatic prediction of the remaining 
life of a cutting edge is possible using image recognition with the special software Neural 
Wear [19]. A useful study for TCM systems investigated the relationships between ma-
chining parameters (cutting speed, feed rate, depth of cut), response parameters (flank 
wear and surface roughness), and sensorial data (cutting force, vibrations, acoustic emis-
sions, temperature, and motor current). Using the statistical model ANOVA (analysis of 
variance) and the RSM (Response Surface Methodology)-based optimisation approach, it 
was shown that the cutting force is the most reliable and current is the less reliable sensor 
data. The temperature and the cutting speed are by far the most related parameters [20]. 
A similar approach, based on ANOVA, has been used to analyse the correlations between 
cutting parameters, surface roughness [21], and various vibrations [22]. An automated 
burr and slot measurement was developed on the basis of computer vision software and 
scanning electron microscope images [23]. 

Unlike other authors who typically classify cutting tool wear according to the degree 
of wear and the location where the wear occurs, Mamledesai et al. [24] introduced the 
TCM, which classifies cutting tool wear according to a tool change policy. The system 
detects whether a tool produces a conforming or non-conforming part. The method used 
is based on Machine Vision, Convolutional Neural Network (CNN), and Transfer Learn-
ing (TL). Brili et al. [25] were able to use a thermal IR (infrared) camera to monitor the 
cutting process successfully. Furthermore, thermographic images of chips were analysed 
with the CNN, a well-known Machine Vision model. This system sorts tools into 3 classes 
according to the wear level: no wear, low wear, and high wear. The cutting tool wear is 
determined during a turning process, which is achieved by mounting an IR camera to the 
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revolver and taking images. The said images do not exhibit the cutting tool, because it is 
being obstructed by the emerging chips.  

The literature review demonstrates the usage of various approaches different from 
TCM. In the recent review paper on indirect Tool Condition Monitoring systems [4], nei-
ther thermography nor the IR camera are mentioned. In this work, a completely new ap-
proach for TCM for a turning tool is presented: A system that determines whether the 
cutting tool is suitable for further machining or not, based on the thermographic image of 
the cutting tool after the cut has been finished. The thermographic image made with the 
IR camera combines two approaches: Computer Vision and temperature measurements. 
Thermographic images were taken immediately after the end of the cut and then in the 
next 60 s. A Deep Learning method, more precisely a Convolutional Neural Network In-
ception V3, is used to analyse the images and classify them into 4 different classes: no, 
low, medium, and high tool wear.  

The existing temperature based TCM systems have focused on the absolute cutting 
tool temperature measurement, the proposed system based on the cutting tool tempera-
ture distribution (relative temperatures) is diverse. The whole thermographic image is an 
input to the Neural Network and the tool wear is categorised based on the features of the 
image. Furthermore, a use of Deep Learning for the analysis of thermographic images in 
the field of TCM is a novelty compared to existing research. By using feature-based 
method analysing relative temperature differences instead of absolute temperature meas-
urement, the temperature dependent TCM system becomes more universal and robust.  

This paper is structured as follows: Section 2 presents the experimental setup and the 
CNN network used in this work; Section 3 reports the Results and Discussion, which de-
scribes the conclusions of the work; Section 4, Future work, presents topics that will be 
studied in the future. 

2. Materials and Methods 
The work presented in this paper has two main objectives: (I) To prove that thermo-

graphic images of cutting tools after the turning process are suitable for determining tool 
wear, and (II) to find out when is the best time to take cutting tool thermographic images 
with the IR camera. 

The cutting tool has the highest temperatures and the largest temperature gradients 
immediately after the turning process. Over time, the temperature differences disappear. 
The idea of the work is not to measure the absolute temperatures of the cutting tool, but 
the whole thermographic image, especially the temperature differences are observed at 
different areas of the cutting tool. Therefore, it is important to verify how long after turn-
ing it is possible to control the tool wear with the IR camera. 

The work presented in this paper was divided into the following steps: (I) Experi-
ment: Acquisition of thermographic images of the cutting tools (Big Data processing); (II) 
Training a CNN model: Thermographic images were divided into different groups (de-
pending on the time of acquisition), and a Convolutional Neural Network was trained on 
each group; (III) Testing the model: The trained model was tested on unknown images; 
(IV) Determination of the optimal time for image acquisition. 

2.1. Experiment 
The turning process is affected by various factors, which are a consequence of ma-

chine properties, tools, mount type, cutting parameters, and external disturbances. Some 
of the mentioned factors can be corrected, while others are unsusceptible to any control 
efforts to set them straight.  

The input parameters were held constant during the execution of the experiment. 
The control parameter was varied (cutting tool wear). Thermographic images of the cut-
ting tool were monitored for each wear level. Every tool insert made 13–15 cuts. The num-
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ber of cuts was determined and conditioned with getting the maximum quantity of im-
ages made by an individual insert. Simultaneously, it was assured that any significant 
change in the insert wear level during each image series was avoided.  

2.2. Categorising Tool Wear Levels 
Practically wise, the result is paramount—successful machining with the equipment 

and product in mind. Although scientists often turn their focus to the cutting tool wear 
type and its causes, wear levels were inspected, and, consequently, the cutting tool’s ade-
quacy for further machining was estimated. The main aim was to develop an intelligent 
system that determines the state of the cutting tool automatically based on its wear level 
(no, low, medium, and high wear). The system’s mission is the recognition of a worn insert 
which is not suitable for further machining, where the type of wear is not essential.  

It is imperative to think about another aspect—the difference between coarse and fine 
machining. The former happens at the first stage of cutting, where the majority of the 
material gets removed. Here, the surface finish is not the main concern, nor is the dimen-
sional precision. Fine machining, on the other hand, is usually performed as the last ma-
chining operation (where additional operations, e.g., grinding or honing are not required), 
after which the final surface finish is achieved.  

The same insert wear criteria do not apply to both coarse and fine machining. An 
insert with low wear can still be adequate for coarse machining, but is not suitable where 
strict dimensional tolerances and low roughness are required. Table 1 depicts the appro-
priate tool for each machining type, depending on the tool wear.  

Table 1. Classes of tool wear depending on the type of turning and according to workpiece’s diam-
eter deviation (Nikaki’s method [26]). 

 Insert Suitable for Workpiece’s Diameter 
Deviation  Rough Turning Fine Turning 

No wear YES YES ΔD < 0.02 mm 
Low wear YES YES/NO 1 0.02 mm ≤ ΔD < 0.04 mm 

Medium wear YES NO 0.04 mm ≤ ΔD < 0.07 mm 
High wear NO NO 0.08 mm ≤ ΔD 

1 Depending on the product requirements. 

The wear of inserts was determined before the experiment was executed, i.e., based 
on two methods: Empirically (an expert’s diagnosis backed by their knowledge and expe-
rience) and Niakiev’s method [26] (indirect tool wear estimation by measuring the work-
piece’s diameter). Both methods are discussed in detail in the paper [25]. Criteria for work-
piece’s diameter deviation by Niaki’s method (Table 1) was determined regarding to the 
dimensional requirements, the diameter of the workpiece, and the type of cutting insert, 
considering that toolmaking is characterized by narrow tolerances. Workpiece’s diameter 
was measured after each cut at three different locations of the workpiece using a microm-
eter. The mean value of the three measurements was calculated. An expert’s assessment 
was determined before each cut. 

2.3. Wear Monitoring and Image Acquisition Time 
The state of a cutting tool was recorded with an IR camera, which, alongside the 

standard image output, also captures temperatures on the object’s surface. The camera 
that has been used was a Flir (Flir Systems, Inc., Wilsonville, OR, USA) model E5, with the 
following specifications: resolution 120 × 90 pixels, maximum image capture rate 9 Hz. 
This camera is considered to be a low-tier model. Although faster cameras with higher 
resolution are also available, it was found that the mentioned model already satisfies the 
given requirements. Its resolution is adequate for discerning tool wear based on thermo-
graphic images. The mid-range computer (Asus with AMD Ryzen CPU and 8 GB of RAM) 
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took seven seconds to process one image. The aforementioned frame rate of 9 frames per 
second was more than enough because of the relatively long image processing time, as 
well as the nature of the observed phenomena. One of the research objectives was picking 
the most suitable equipment possible, which was sufficiently good to fulfill its purpose. 
Implementing such a system in the industry, it is desirable for it to be economically feasi-
ble so that investment in the monitoring system pays off in less than a year.  

During the turning process chips obstruct the cutting tool. It is known that a chip 
absorbs the most heat generated by cutting [27]. It consumes approximately 70% of the 
heat with a cutting speed of 100 m/min. Residual heat dissipates to the tool (20%) and the 
workpiece (10%) [28]. Due to the high-temperature deviations during the turning (espe-
cially prominent at the first few cuts), it is sensible to set the IR camera’s colour scale ac-
cording to the temperature of the heated object shown on the screen. Consequently, a 
thermographic image of the turning process portrays the temperature distribution better 
in the chips. Peripheral objects in the image are displayed in a uniform colour. The second 
limitation for efficient tool state monitoring is that chips obstruct the cutting knife. The 
task of the research was to confirm the possibility of making predictions about the tool 
(the insert) based on thermographic images. Therefore, image acquisition is possible only 
after the turning is complete, where there is no more contact between the tool and the 
workpiece. 

Now a question arises: at which point in time after the turning is the temperature 
distribution distinguishable enough to infer about the cutting tool wear? 

The image database has been divided into several smaller sets, depending on their 
acquisition time (Figure 1). Later, images were classified using the CNN taken from the 
following datasets: (a.) all images—60 s, (b.) 0–6 s after machining, (c.) 6–12 s after ma-
chining, (d.) 0–12 s after machining. 

 
Figure 1. Thermographic image datasets, according to the time of their acquisition. 

The cutting insert starts to cool right after the turning. The temperature gradient 
evens out proportionally with the time since turning up to the point when the image is 
captured. It was concluded that significant representations from the image get lost after a 
certain amount of time has passed. This is the reason why all the images were tested after 
turning (at most 60 s since the end of machining), as well as the initial few images after 
each cycle.  

2.4. Experimental Setup 
The machining parameters were set before the beginning of the experiment (Table 2). 

These were held constant, i.e., parameters did not change during the model training. The 
model of intelligent cutting tool wear monitoring works by learning decision-making at 
constant conditions. The only input variable is the wear degree of the used cutting tool.  

Workpiece material chemistry, equipment used in the experiment and the cutting 
tool geometry are presented in the Table 3, Figures 2 and 3, respectively.  
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Table 2. Experimental Setup. 

Experimental Setup Parameter Basic Experiment 

Cutting parameters 

Cutting speed 100 m/min 
Feed rate 0.2 m/min 

Cutting depth 0.25 mm 
Cooling without 

Workpiece material 

Material Type Alloy Steel 
Producer SIJ Metal Ravne (Slovenia) 
Mat. No. 1.7225 

Hardness Rockwell C 27.8 HRC 
EN 42CrMo4 

Yield strength ≥900 N/mm2 

Cutting tool 

Type KNUX 160410L11 

Producer Sanstone (Zhuzhou Yifeng Tools Co., Ltd., Hunan, 
China) 

Material Carbide insert with CVD coating 
Shape and Insert Included An-

gle 
Parallelogram 55°  

Geometry Negative 
Corner Radius 1.0 mm 

Cutting Edge Length 16 mm 
Relief angle 0° 

Lathe 
Producer Okuma (Okuma Corporation, Aichi, Japan) 

Type CNC (Computer Numerical Control) Lathe LC 30 

Table 3. Chemical compositions (in weight %) of the workpiece material (according to the manu-
facturer’s specifications; SIJ Metal Ravne, Slovenia). 

 Chemical Composition % 
Mat. No. C Si Mn Cr Mo Ni V W 

1.7225 0.41 0.20 0.75 1.05 0.23 - - - 

 
Figure 2. Experimental equipment: (a) Workpiece and IR camera, mounted closely against the cutting tool. (b) The cutting tool. 
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Figure 3. Cutting tool KNUX 160410L11. 

2.5. Convolutional Neural Network 
Thermal images were classified using a Deep Learning method, more specifically: a 

Convolutional Neural Network. Why is a Convolutional Neural Network better for image 
recognition than a Classical Neural Network? The input to a Neural Network is a Table, 
where each row represents one input data with multiple parameters/variables (columns). 
Typically, 3 to 8 input variables are used [29], for example: number of revolutions, ma-
chining time, and cutting force [30]; material of the tool, the sharpening mode, the nominal 
diameter, the number of revolutions, the feed rate and the drilling length [31], depth of 
cut, cutting speed, and feed to the tooth [32]. A study using 20 input variables to predict 
tool life has shown that slightly more inputs are also possible, even if Fully Connected 
Neural Networks are used [19]. 

In the case of image recognition, each pixel represents one input variable for a grey-
scale image, and three input variables for a colour image in RGB (Red Green Blue). Thus, 
a colour image with a resolution of 120 × 90 pixels is an input file (one row in a Table) with 
32,400 variables. A database consists of 9153 thermal images. Using a Classical Neural 
Network the input would be a Table of size 32,400 × 9153, which is too much data for a 
network with fully connected layers. However, the image could be used as an input, but, 
in this case, the features would have to be defined (with a feature extraction) that would 
represent the input to the Neural Network. So, personal perception would affect the effi-
ciency of the system. Convolutional layers can reduce the input dimension. Based on the 
feature extraction method, convolutional neural networks find the best local features and 
focus on them. That is why CNN can compute such a large input.  

Since the development of a CNN is a very complex process, the Transfer Learning 
method is often used in Deep Learning. Meaning, a Neural Network is used, with an al-
ready optimised structure and filters. Only the last few layers of the CNN need to be un-
altered on specific images. Different categories of images were defined, and the CNN 
learned on the learning database which images belonged to each class. 

The type of Convolutional Neural Network used in this study was Inception V3. The 
optimal architecture (Figure 4) and values of the Inception V3 filters were developed over 
several years by researchers Szegedy and others [33]. It is freely available, and can be 
found at www.tensorflow.org (accessed on 10 September 2019) under the Tutorials, Im-
ages, Image Classification tab. 
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Figure 4. Architecture of Inception V3 [25]. 

3. Results and Discussion 
In Section 2.2., how the thermographic images were sorted into distinct sets accord-

ing to the time they were taken is presented. The results of each classification are pre-
sented in the form of a confusion matrix. The results of classifications are compared by 
the parameter Accuracy, however, Recall and Precision values were also taken into con-
sideration [25]. 

Initially, the CNN was trained on images from the “training” set, and later the net-
work was tested on the “test” set—images that the Neural Network had not seen yet. The 
sizes of training and test sets are given in Table 4.  

Table 4. Number of thermographic images for training and testing. 

 Training set Test set 
All images (60 s) 8273 880 

0–6 s after machining 920 80 
6–12 s after machining 920 80 
0–12 s after machining 1840 160 

3.1. Complete Image Set (60 s) 
Firstly, all of thermographic images were classified. The results are depicted in the 

confusion matrix in Table 5. 

Table 5. Confusion matrix for the tool wear classification for all images. 

  ACTUAL    

  No Wear  Low Wear  
Medium 

Wear  High Wear Sum Precision 

PREDICTED 

No wear 216 0 4 0 220 98.2% 
Low wear 0 220 0 0 220 100% 

Medium wear 4 0 210 4 218 96.3% 
High wear 0 0 6 216 222 97.3% 

 Sum 220 220 220 220 Accuracy: 97.95%  Recall 98.2% 100% 95.5% 98.2% 
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After a brisk inspection of Table 5, it is evident that the CNN managed to classify 862 
images correctly out of the total 880 images. Subsequently, the analysis of 18 false predic-
tions was performed (Figure 5). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. (a) “No wear”, but classified as “medium wear” (images belong to the turning series 9, 11, and 12—only images 
taken from the last series of turning were classified falsely, because the insert was not completely new); (b) “Medium 
wear”, but classified as “no wear” (images belong to the series 1 and 5—especially the first series of turning with medium 
insert wear, when it was not yet heated); (c) “Medium wear”, but classified as “high wear” (images belong to the series 9, 
10, and 11); (d) “High wear”, but classified as “Medium wear” (images belong to the series 2 and 12). 

After inspection of the false predictions it was concluded that the CNN classified 
images from early—initial turning series into a lower wear severity class than it should. 
On the other hand, it classified images from later series (11th, 12th, etc.) into a wear level 
category that was too high. Abnormalities during a visual inspection were not observed.  

Additional probabilistic analysis for four images of an insert with a “high wear” that 
were classified as “medium wear” was performed, which was derived from the Softmax 
layer (Table 6). The analysis showed similar probabilities between the actual and false 
classes. Furthermore, the Neural Network’s second most probable guess always contained 
the correct class for each image.  

Table 6. Probabilities of high wear insert images to be of some class. 

 Image 1 Image 2 Image 3 Image 4 
Medium wear 0.51866305 0.6532518 0.5108754 0.5324518 

High wear 0.47833866 0.33923936 0.480641 0.44897473 
Low wear 0.002657221 0.0071650357 0.008182266 0.018294167 
No wear 0.000341077 0.000343807 0.0003013296 0.00027929 
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3.2. Other Classifications 
Here, confusion matrices for the remaining categories are presented as follows: 0–6 s 

after machining (Table 7), 6–12 s after machining (Table 8), 0–12 s after machining (Table 9). 

Table 7. Confusion matrix for the tool wear classification for images taken 0–6 s after machining. 

  ACTUAL    

  No Wear  Low Wear  
Medium 

Wear  High Wear Sum Precision 

PREDICTED 

No wear 19 0 1 0 20 95.0% 
Low wear 0 20 0 0 20 100% 

Medium wear 1 0 19 1 21 90.5% 
High wear 0 0 0 19 19 100% 

 Sum 20 20 20 20 Accuracy: 96.25% 
 Recall 95.0% 100% 95.0% 95.0% 

Table 8. Confusion matrix for the tool wear classification for images taken 6–12 s after machining. 

  ACTUAL    

  No Wear  Low Wear  
Medium 

Wear  High Wear Sum Precision  

PREDICTED 

No wear 20 0 0 0 20 100% 
Low wear 0 20 0 0 20 100% 

Medium wear 0 0 20 0 20 100% 
High wear 0 0 0 20 20 100% 

 Sum 20 20 20 20 Accuracy: 100% 
 Recall 100% 100% 100% 100% 

Table 9. Confusion matrix for the tool wear classification for images taken 0–12 s after machining. 

  ACTUAL   
  No Wear  Low Wear  Medium Wear  High Wear Sum Precision  

PREDICTED 

No wear 39 0 1 0 40 97.5% 
Low wear 0 40 0 0 40 100% 

Medium wear 1 0 39 1 41 95.1% 
High wear 0 0 0 39 39 100% 

 Sum 40 40 40 40 
Accuracy: 98.16% 

 Recall 97.5% 100% 97.5% 97.5% 

The performance of the model is represented most intuitively by accuracy [34], so all 
four classifications were compared by this evaluation indicator (Figure 6) . 

 
Figure 6. Accuracy for different classifications. 

90% 92% 94% 96% 98% 100%

0-6 seconds after machining

All images (60 seconds)

0-12 seconds after machining

6-12 seconds after machining
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Figure 6 shows the accuracies of classifications for each dataset. The exceptional 100% 
accuracy was achieved for images in the category “6–12 s after machining”. That includes 
the moment when a cutting tool just leaves the workpiece, with the temperature gradient 
on the insert still clearly visible. 

The Neural Network reached highly accurate predictions on the other datasets as 
well, namely 96.25% or more. 

One crucial piece of information is hidden in the fact that the CNN did not make any 
predictions at the extremes of a diagonal in the confusion matrix. The model managed to 
avoid classifications of the “no wear” inserts into “high wear” class, and vice-versa. This 
information is very significant from a practical point-of-view, because such an error could 
represent high risk for damage and waste in the work process. It is assumed that, with an 
expansion of the training dataset, it is possible to enhance the classification’s accuracy 
additionally. 

The analysis of the false classifications points to the incorrect predictions for at most 
two subsequent images. Most often, there was only one. If the algorithm was set in a way 
that it analyses, e.g., three subsequent images and determines the wear based on three 
identical classifications in a row, all false decisions could have been eliminated. 

3.3. Discussion 
The proposed study addresses the question of whether the condition of the cutting 

tool can be monitored using an IR camera. Thermographic images are analysed using 
Deep Learning, more specifically a Convolutional Neural Network. A turning tool was 
monitored for 60 s after the cut finished. The images were divided into different groups 
depending on the time of acquisition. The conclusions are as follows; 
• The cutting tools were successfully divided into groups according to their suitability 

for further machining, also taking into account the type of machining (fine/rough).  
• The proposed method was confirmed to be suitable for the TCM system.  
• The tool can be monitored immediately after cutting or a few seconds later (e.g., when 

the tool turret is in home position). 
• The accuracy for classifying the thermographic images ranged from 96.25% (0–6 s 

after machining) to 100% (6–12 s after machining). 
The results are more than encouraging compared to similar studies: 85% accuracy for 

37 tools that were divided into two groups GO or NO GO, according to the conformity of 
the part produced [24]; 5%, 10.7%, and 22% errors for estimated tool wear for milling tools 
[35]; 80% and 93% accuracy for tool breakage prediction using the Backpropagation Neu-
ral Network and CNN, respectively [17]; 6.7% absolute mean relative error between image 
processing systems based on an Artificial Neural Network and the commonly used opti-
cally measured VB index (Flank wear) [36]. Proposed smart system based on CNN and 
thermographic images is more accurate than other similar TCM systems. 

The presented smart system for Tool Condition Monitoring and defining the suita-
bility of the turning tool for further machining has shown high potential for industrial use 
due to its high accuracy, relatively low investment cost, and direct applicability of the 
decisions made. In line with the idea of Industry 4.0, decisions are shifted from humans 
to intelligent systems. 

4. Future Work 
The intelligent model for cutting tool wear and defect monitoring determines the tool 

state based on the thermographic image. The information crucial for the end-user (the 
machine operator) is whether the tool in question is still adequate for the type of intended 
machining or if it needs to be replaced. In the future, the aim is to develop a system that 
would serve recommendations to the operator about the cutting tool change. An algo-
rithm will be constructed which will reduce the possibility of random false classifications 
of the cutting tool wear.  
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Additional experiments will enable the expansion of the training dataset. The trained 
model will be tested on a new workpiece material and at altered machining parameters 
(cutting speed, feed rate, cutting depth, cutting tool). The research will be extended to the 
use of cooling/lubrication fluids, which is commonly used in industry. This way, the ro-
bustness of the trained model on unfamiliar conditions can be studied. 
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TCM Tool Condition Monitoring 
VB Flank wear 
ΔD Diameter deviation 

References 
1. Patalas-Maliszewska, J.; Topczak, M. A New Management Approach Based on Additive Manufacturing Technologies and 

Industry 4.0 Requirements. Adv. Prod. Eng. Manag. 2021, 16, 125–135, doi:10.14743/apem2021.1.389. 
2. Kang, W.; Derani, M.; Ratnam, M. Effect of Vibration on Surface Roughness in Finish Turning: Simulation Study. Int. J. Simul. 

Model. 2020, 19, 595–606, doi:10.2507/IJSIMM19-4-531. 
3. Piotrowski, N. Tool Wear Prediction in Single-Sided Lapping Process. Machines 2020, 8, 59, doi:10.3390/machines8040059. 
4. Kuntoğlu, M.; Aslan, A.; Pimenov, D.Y.; Usca, Ü.A.; Salur, E.; Gupta, M.K.; Mikolajczyk, T.; Giasin, K.; Kapłonek, W.; Sharma, 

S. A Review of Indirect Tool Condition Monitoring Systems and Decision-Making Methods in Turning: Critical Analysis and 
Trends. Sensors 2021, 21, 108, doi:10.3390/s21010108. 

5. Kuntoğlu, M.; Salur, E.; Gupta, M.K.; Sarıkaya, M.; Pimenov, D.Yu. A State-of-the-Art Review on Sensors and Signal Processing 
Systems in Mechanical Machining Processes. Int. J. Adv. Manuf. Technol. 2021, 116, 2711–2735, doi:10.1007/s00170-021-07425-4. 

6. Swain, S.; Panigrahi, I.; Sahoo, A.K.; Panda, A. Adaptive Tool Condition Monitoring System: A Brief Review. Mater. Today Proc. 
2020, 23, 474–478, doi:10.1016/j.matpr.2019.05.386. 

7. Pohokar, N.; Bhuyar, L. Neural Networks Based Approach for Machining and Geometric Parameters Optimization of a CNC 
End Milling. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3. 

8. Almeshaiei, E.; Oraby, S.; Mahmoud, M. Tool Wear Prediction Approach for Turning Operations Based on General Regression 
Neural Network (GRNN) Technique. In Adaptive Computing in Design and Manufacture VI; Springer: Berlin/Heidelberg, 
Germany, 2004. 

9. Özel, T.; Nadgir, A. Prediction of Flank Wear by Using Back Propagation Neural Network Modeling When Cutting Hardened H-
13 Steel with Chamfered and Honed CBN Tools. Int. J. Mach. Tools Manuf. 2002, 42, 287–297, doi:10.1016/S0890-6955(01)00103-1. 

10. Caggiano, A. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern 
Recognition. Sensors 2018, 18, 823, doi:10.3390/s18030823. 

11. El Hakim, M.A.; Shalaby, M.A.; Veldhuis, S.C.; Dosbaeva, G.K. Effect of Secondary Hardening on Cutting Forces, Cutting 
Temperature, and Tool Wear in Hard Turning of High Alloy Tool Steels. Measurement 2015, 65, 233–238, 
doi:10.1016/j.measurement.2014.12.033. 

12. Das, D.; Chapagain, A. Cutting Temperature and Tool Flank Wear during Turning Aluminium Matrix Composite in Air-Water 
Spray Environment—A Taguchi Approach. Mater. Today Proc. 2018, 5, 18527–18534, doi:10.1016/j.matpr.2018.06.195. 

13. Özbek, O.; Saruhan, H. The Effect of Vibration and Cutting Zone Temperature on Surface Roughness and Tool Wear in Eco-
Friendly MQL Turning of AISI D2. J. Mater. Res. Technol. 2020, 9, 2762–2772, doi:10.1016/j.jmrt.2020.01.010. 

14. Wang, C.; Ming, W.; Chen, M. Milling Tool’s Flank Wear Prediction by Temperature Dependent Wear Mechanism 
Determination When Machining Inconel 182 Overlays. Tribol. Int. 2016, 104, 140–156, doi:10.1016/j.triboint.2016.08.036. 



Sensors 2021, 21, 6687 13 of 13 
 

 

15. Sun, W.-H.; Yeh, S.-S. Using the Machine Vision Method to Develop an On-Machine Insert Condition Monitoring System for 
Computer Numerical Control Turning Machine Tools. Materials 2018, 11, 1977, doi:10.3390/ma11101977. 

16. Wu, X.; Liu, Y.; Zhou, X.; Mou, A. Automatic Identification of Tool Wear Based on Convolutional Neural Network in Face 
Milling Process. Sensors 2019, 19, 3817, doi:10.3390/s19183817. 

17. Li, G.; Yang, X.; Chen, D.; Song, A.; Fang, Y.; Zhou, J. Tool Breakage Detection Using Deep Learning. arXiv 2018, 
arXiv:1808.05347, doi:arxiv.org/abs/1808.05347. 

18. Gouarir, A.; Martínez-Arellano, G.; Terrazas, G.; Benardos, P.; Ratchev, S. In-Process Tool Wear Prediction System Based on 
Machine Learning Techniques and Force Analysis. Proc. CIRP 2018, 77, 501–504, doi:10.1016/j.procir.2018.08.253. 

19. Mikołajczyk, T.; Nowicki, K.; Bustillo, A.; Yu Pimenov, D. Predicting Tool Life in Turning Operations Using Neural Networks 
and Image Processing. Mech. Sys. Signal. Process. 2018, 104, 503–513, doi:10.1016/j.ymssp.2017.11.022. 

20. Kuntoğlu, M.; Aslan, A.; Sağlam, H.; Pimenov, D.Y.; Giasin, K.; Mikolajczyk, T. Optimization and Analysis of Surface 
Roughness, Flank Wear and 5 Different Sensorial Data via Tool Condition Monitoring System in Turning of AISI 5140. Sensors 
2020, 20, 4377, doi:10.3390/s20164377. 

21. Ficko, M.; Begic-Hajdarevic, D.; Hadžiabdić, V.; Klancnik, S. Multi-Response Optimisation of Turning Process Parameters with 
GRA and TOPSIS Methods. Int. J. Simul. Model. 2020, 19, 547–558, doi:10.2507/IJSIMM19-4-524. 

22. Kuntoğlu, M.; Aslan, A.; Pimenov, D.; Giasin, K.; Mikolajczyk, T.; Sharma, S. Modeling of Cutting Parameters and Tool 
Geometry for Multi-Criteria Optimization of Surface Roughness and Vibration via Response Surface Methodology in Turning 
of AISI 5140 Steel. Materials 2020, 13, 4242, doi:10.3390/ma13194242. 

23. Akkoyun, F.; Ercetin, A.; Aslantas, K.; Pimenov, D.Y.; Giasin, K.; Lakshmikanthan, A.; Aamir, M. Measurement of Micro Burr 
and Slot Widths through Image Processing: Comparison of Manual and Automated Measurements in Micro-Milling. Sensors 
2021, 21, 4432, doi:10.3390/s21134432. 

24. Mamledesai, H.; Soriano, M.A.; Ahmad, R. A Qualitative Tool Condition Monitoring Framework Using Convolution Neural 
Network and Transfer Learning. Appl. Sci. 2020, 10, 7298, doi:10.3390/app10207298. 

25. Brili, N.; Ficko, M.; Klančnik, S. Automatic Identification of Tool Wear Based on Thermography and a Convolutional Neural 
Network during the Turning Process. Sensors 2021, 21, 1917, doi:10.3390/s21051917. 

26. Akhavan Niaki, F.; Mears, L. A Comprehensive Study on the Effects of Tool Wear on Surface Roughness, Dimensional Integrity 
and Residual Stress in Turning IN718 Hard-to-Machine Alloy. J. Manuf. Process. 2017, 30, 268–280, 
doi:10.1016/j.jmapro.2017.09.016. 

27. Guo, Y.; Ye, W.; Xu, X. Numerical and Experimental Investigation of the Temperature Rise of Cutting Tools Caused by the Tool 
Deflection Energy. Machines 2021, 9, 122, doi:10.3390/machines9060122. 

28. Kus, A.; Isik, Y.; Cakir, M.C.; Coşkun, S.; Özdemir, K. Thermocouple and Infrared Sensor-Based Measurement of Temperature 
Distribution in Metal Cutting. Sensors 2014, 15, 1274–1291, doi:10.3390/s150101274. 

29. Pontes, F.J.; Ferreira, J.R.; Silva, M.B.; Paiva, A.P.; Balestrassi, P.P. Artificial Neural Networks for Machining Processes Surface 
Roughness Modeling. Int. J. Adv. Manuf. Technol. 2010, 49, 879–902, doi:10.1007/s00170-009-2456-2. 

30. Vukelic, D.; Kanović, Ž.; Šokac, M.; Santoši, Ž.; Budak, I.; Tadic, B. Modelling of Micro-Turning Process Based on Constant 
Cutting Force. Int. J. Simul. Model. 2021, 20, 146–157, doi:10.2507/IJSIMM20-1-553. 

31. Spaic, O.; Krivokapic, Z.; Kramar, D. Development of Family of Artificial Neural Networks for the Prediction of Cutting Tool 
Condition. Adv. Prod. Eng. Manag. 2020, 15, 164–178, doi:10.14743/apem2020.2.356. 

32. Savkovic, B.; Kovac, P.; Rodic, D.; Strbac, B.; Klancnik, S. Comparison of Artificial Neural Network, Fuzzy Logic and Genetic 
Algorithm for Cutting Temperature and Surface Roughness Prediction during the Face Milling Process. Adv. Prod. Eng. Manag. 
2020, 15, 137–150, doi:10.14743/apem2020.2.354. 

33. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. arXiv 
2015, arXiv:1512.00567. 

34. Choi, T.; Seo, Y. A Real-Time Physical Progress Measurement Method for Schedule Performance Control Using Vision, an AR 
Marker and Machine Learning in a Ship Block Assembly Process. Sensors 2020, 20, 5386, doi:10.3390/s20185386. 

35. Chi, Y.; Dai, W.; Lu, Z.; Wang, M.; Zhao, Y. Real-Time Estimation for Cutting Tool Wear Based on Modal Analysis of Monitored 
Signals. Appl. Sci. 2018, 8, 708, doi:10.3390/app8050708. 

36. Mikołajczyk, T.; Nowicki, K.; Kłodowski, A.; Pimenov, D.Yu. Neural Network Approach for Automatic Image Analysis of 
Cutting Edge Wear. Mech. Syst. Signal Process. 2017, 88, 100–110, doi:10.1016/j.ymssp.2016.11.026. 

 


	1. Introduction
	2. Materials and Methods
	2.1. Experiment
	2.2. Categorising Tool Wear Levels
	2.3. Wear Monitoring and Image Acquisition Time
	2.4. Experimental Setup
	2.5. Convolutional Neural Network

	3. Results and Discussion
	3.1. Complete Image Set (60 s)
	3.2. Other Classifications
	3.3. Discussion

	4. Future Work
	Abbreviations
	References

