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Abstract: Nondestructive evaluation of elastic properties plays a critical role in condition moni-
toring of thin structures such as sheets, plates or tubes. Recent research has shown that elastic
properties of such structures can be determined with remarkable accuracy by utilizing the dispersive
nature of guided acoustic waves propagating in them. However, existing techniques largely require
complicated and expensive equipment or involve accurate measurement of an additional quantity,
rendering them impractical for industrial use. In this work, we present a new approach that requires
only a pair of piezoelectric transducers used to measure the group velocities ratio of fundamental
guided wave modes. A numerical model based on the spectral collocation method is used to fit the
measured data by solving a bound-constrained nonlinear least squares optimization problem. We
verify our approach on both simulated and experimental data and achieve accuracies similar to those
reported by other authors. The high accuracy and simple measurement setup of our approach makes
it eminently suitable for use in industrial environments.

Keywords: guided acoustic waves, elastic properties, spectral collocation method, Lamb waves

1. Introduction

The field of guided acoustic waves (GAWs) has attracted increasing interest in the
research community over the past decade [1]. In addition to various applications in
nondestructive testing [2,3] and structural health monitoring [4,5], guided waves have been
successfully used to measure liquid properties [6], monitor biogenic deposits in tubes [7],
and even to accelerate electrochemical reactions during the battery charging process [8].

Guided acoustic waves are dispersive, i.e., their phase and group velocities depend on
frequency [9]. For particular material and geometry, this dependence is usually represented
by dispersion curves, which have proven to be a useful tool for the development of GAW
applications [10,11]. Consequently, various methods have been developed to compute
dispersion curves for different scenarios, including cylindrical [12–14] and multilayer
systems [15–17], as well as waveguides surrounded by liquids [18–20].

Using the opposite approach, the dispersive nature of GAWs can be utilized to de-
termine the elastic properties of thin structures such as sheets, plates, and tubes. The
procedure first requires the measurement of group or phase velocities at multiple frequen-
cies. A numerical model is then fitted to these measurements by optimizing the model
parameters. Recent research in this area has shown that this strategy can determine the
elastic properties of thin structures with remarkable accuracy [21–25]. However, existing
studies differ widely in terms of how the velocities are measured.

One of the earliest works on this subject was published by Rogers [21] in the mid-
nineties. He used a pair of variable-beam contact transducers to measure phase velocities
of different Lamb-type modes, by considering the phase shift over a certain path. Sale et
al. [22] used a pair of piezoelectric transducers at a fixed distance to measure the group
velocities of zero order guided wave modes excited by a laser. In another publication [23]
a speckle interferometer was used to measure the wavelength of multiple guided wave
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modes, excited using a transducer wedge. A similar approach was reported [24], where a
laser-scanning vibrometer was used to measure the wavenumbers of different Lamb-type
modes. Gao et al. [25] used a laser ultrasonic setup for both, excitation and detection of
different Lamb modes.

Most of the described techniques either require complicated and expensive equipment
or involve accurate measurement of an additional quantity, rendering them less suitable
for use outside the laboratory environment. In this work, we introduce a new simple and
precise approach that requires only a pair of piezoelectric transducers used to measure the
group velocities ratio of fundamental Lamb modes. A numerical model based on spectral
collocation method is used to fit the measured data, and both longitudinal and transverse
wave velocities and the thickness of the inspected structure are estimated by solving a
bound-constrained nonlinear least squares optimization problem.

2. Materials and Methods

In the following section, we introduce the measurement setup, the numerical model
used to fit the measured data and the optimization approach used to extract the elastic
properties of the inspected structure.

2.1. Measurement Setup

The measurement setup involves a pair of identical piezoelectric disc transducers
(PIC255, diameter 8 mm, thickness 0.5 mm, PI Ceramic GmbH, Lederhose, Germany),
attached to the surface of the test specimen at a fixed distance d = 100 mm, as shown
in Figure 1. The transmitting transducer is excited by a signal generator (33500B Series,
Keysight Technologies, Inc., Santa Rosa, CA, USA), which provides five-cycle sine bursts
modulated by a Hanning window. A digital storage oscilloscope (HDO6034 (Teledyne
LeCroy , Chestnut Ridge, NY, USA) is used to record the Lamb-type guided acoustic wave
signals arriving at the receiving transducer.

Figure 1. A schematic diagram of the measurement setup, consisting of a signal generator (GEN), a
digital storage oscilloscope (DSO) and two transducers, one for transmitting (T) and one for receiving
(R) the guided acoustic wave signals, attached to the surface of the test specimen at a fixed distance
(d).

A typical signal recorded by the oscilloscope is demonstrated in Figure 2. In order to
extract the propagation times tA0 and tS0 of both fundamental Lamb modes, the envelope of
the signal is calculated and the time shifts of the maxima relative to the excitation signal are
determined. We note that, depending on the application, other approaches such as those
based on computation of the wavelet transform [26] or the short-time Fourier transform
[27] may also be considered for this purpose.



Sensors 2021, 21, 6675 3 of 10

Figure 2. Determination of propagation times of the fundamental Lamb modes.

Once the propagation times have been determined, group velocities cA0 and cS0 are
usually calculated by considering the distance d between the transmitter and the receiver

cA0 =
d

tA0

and cS0 =
d

tS0

. (1)

However, accurate measurement of the distance d not only requires additional equip-
ment, but also affects the measurement uncertainty of the group velocities. Our approach
overcomes this issue using a simple trick: instead of estimating the velocities directly, we
calculate their ratio and thus eliminate the distance d in equations 1, yielding

y =
cS0

cA0

=
tA0

tS0

. (2)

2.2. Numerical Model

A popular approach used to calculate dispersion curves of a plane waveguide, is to
solve the analytical frequency equations using root-finding techniques [1]. However, for
complicated problems the root-finding process becomes increasingly challenging, particu-
larly if multilayer systems need to be examined [28]. For these scenarios, matrix methods
are usually preferred.

Matrix methods compose the individual solutions of each layer into a system matrix
and the general solution, which satisfies the boundary and the interface conditions, is then
calculated for the entire system. This is done by finding the roots of the characteristic
function, which is represented by the determinant of the system matrix (a detailed treatment
of matrix methods can be found in [15]). However, matrix methods are prone to numerical
errors and are usually associated with high computational costs [29].

In this work, we employ an alternative popular method recently introduced by various
authors [28–33], which allows the dispersion curves to be calculated by numerically solving
the underlying differential equations using the spectral collocation method. This method
provides a good trade-off between precision, implementation effort, and computation
time, and can be easily applied to cylindrical geometries or multilayer systems [28,30].
However, the spectral collocation method is not always robust. A detailed discussion on the
robustness of this method in the calculation of dispersion curves of acoustic waveguides
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has already been provided by other authors (see, e.g., references [29–31]). For applications
where robustness is critical, the approach may need to be adapted.

2.2.1. Derivation of Differential Equations

To introduce the numerical model, we consider a planar waveguide as shown in
Figure 3. Following [34], we express the displacement field in terms of potentials Φ and Ψ
and thus obtain two uncoupled wave equations

∂2Φ
∂x2

1
+

∂2Φ
∂x2

2
=

1
c2

L

∂2Φ
∂t2 ,

∂2Ψ
∂x2

1
+

∂2Ψ
∂x2

2
=

1
c2

T

∂2Ψ
∂t2 ,

(3)

Figure 3. Geometry of the waveguide.

for longitudinal and transverse waves, which propagate independently in unbounded
solid medium with velocities cL and cT , respectively. The coupling of both wave equations
is provided by the boundary conditions at the surfaces of the waveguide, requiring both
stress components σ21 and σ22 to be equal to zero

σ21 = µ

(
∂u2

∂x1
+

∂u1

∂x2

)
= 0,

σ22 = λ

(
∂u1

∂x1
+

∂u2

∂x2

)
+ 2µ

∂u2

∂x2
= 0,

(4)

where λ and µ are Lamé constants and the displacement components u1 and u2 are defined
as follows

u1 =
∂Φ
∂x1

+
∂Ψ
∂x2

,

u2 =
∂Φ
∂x2
− ∂Ψ

∂x1
.

(5)

For solutions of the wave equations we consider plane harmonic waves of the type

Φ(x1, x2, t) = φ(x2)ei(kx1−ωt),

Ψ(x1, x2, t) = iψ(x2)ei(kx1−ωt),
(6)

where k is the wavenumber, t the time, ω the angular frequency and i the imaginary
number. By substituting 6 into wave equations 3 we obtain(

∂2

∂x2
2
− k2

)
φ = −ω2

c2
L

φ,(
∂2

∂x2
2
− k2

)
iψ = −ω2

c2
T

iψ.

(7)

By analogy, substituting 6 into 4 delivers
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iσ21

µ
=

(
−2k

∂

∂x2

)
φ +

(
∂2

∂x2
2
+ k2

)
iψ = 0,

σ22

2µ
=

(
(α + 1)

∂2

∂x2
2
− αk2

)
φ−

(
k

∂

∂x2

)
iψ = 0,

(8)

where

α =
λ

2µ
≡ 1

2
c2

L
c2

T
− 1. (9)

2.2.2. Spectral Collocation Method

The spectral collocation method (SCM) is a numerical approach to solving differential
equations. Its main idea is to expand the solution of the differential equation by a linear
combination of some global polynomial basis functions that satisfy the exact solution
on a set of N pre-assigned collocation points. This allows the evaluation of derivatives
at such collocation points by multiplication with a pre-computed matrix. For bounded
non-periodic domains, Chebyshev differentiation matrices are typically used [35].

Following this scheme, we replace the m-th order differential operators in Equation 7
with the corresponding Chebyshev differentiation matrices D(m) (see, e.g., [36] for imple-
mentation details) and thus obtain a system of equations

[L]
(

φ
iψ

)
= ω2[M]

(
φ
iψ

)
, (10)

where

[L] =

[
D(2) − k2 · I 0

0 D(2) − k2 · I

]
, (11)

[M] =

[
−1/c2

L · I 0
0 −1/c2

T · I

]
(12)

and I is an N × N identity matrix.
Similarly, from Equation 8 it follows that

[S]
(

φ
iψ

)
= 0, (13)

where

[S] =

[
−2kD(1) D(2) + k2 · I

(α + 1)D(2) − αk2 · I −kD(1)

]
. (14)

At this point, the wave equations and boundary conditions are both represented by
a set of 2N equations corresponding to N Chebyshev collocation points defined on the
interval [−1, 1]. Using coordinate transformation

D(m)

[− h
2 , h

2 ]
=

(
2
h

)m
D(m)
[−1,1], (15)

the solution is introduced on the problem domain.
Finally, 10 and 13 are combined into a system of equations by replacing the rows 1, N,

N + 1 and 2N of the matrix [L] with the corresponding rows of the matrix [S] and setting
these rows to zero in the matrix [M].

Once the eigenvalues ω2 are calculated for different k values by solving the matrix
eigenvalue problem 10 using the QZ algorithm [37], the group velocities are calculated as
follows
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c =
dω

dk
. (16)

The above equations combine to give the numerical modelM, which is used to fit the
measured data, as described in the next section.

2.3. Optimization

In our approach, we use the numerical model described in the previous section
to fit our measured data. The elastic properties and thickness of the test specimen are
determined by solving an optimization problem that can be formulated as follows: Consider
n measurements yi acquired at frequencies fi such that fi 6= f j ∀i 6= j and i, j ∈ {1, 2, . . . , n}.
We wish to describe the relationship between the frequency f and the measured quantity
y using a numerical modelM( f ; ϑ) whose parameters form vector ϑ = (cL, cT , h)T . As
a measure for the discrepancy between our model and the observed data, we define the
residuals

ri(ϑ) = yi −M( fi; ϑ) (17)

and finally obtain a nonlinear least squares problem

min
ϑ

n

∑
i=1

r2
i (ϑ), (18)

which can be solved using standard techniques such as the Levenberg–Marquardt algo-
rithm [38].

From a practical point of view, it may be useful to define a search region for the model
parameters to prevent the algorithm from getting stuck in a local optimum. In such cases,
the task is transformed into a bound-constrained optimization problem, which can be
solved efficiently using the STIR (Subspace Trust Region Interior Reflective) method [39].

3. Results
3.1. Simulated Data

To verify our approach, we first applied it to simulated data. Guided acoustic wave
signals in the frequency range 110 to 200 kHz were provided by a finite element model of
an h = 1 mm thick aluminium sheet. The elastic properties of aluminium (cL = 6.35 km/s,
cT = 3.10 km/s, ρ = 2.8 g/cm3) were chosen according to the literature [1]. According to
Adamou [30], the number of collocation points N required to determine the group velocities
of j lowest Lamb modes with an accuracy of 10 digits can be calculated with the formula
N ≥ 2j + 10. For our numerical model, we used a grid of N = 16 collocation points, which
proved to be a good trade-off between accuracy and computation time. The parameter
bounds were chosen as follows: 5.00 km/s≤ cL ≤ 7.00 km/s, 2.50 km/s≤ cT ≤ 3.50 km/s,
and 0.90 mm ≤ d ≤ 1.10 mm.

The group velocities ratios derived from the simulated acoustic signals at different fre-
quencies as well as the corresponding solution found by optimization are shown in Figure
4. The good agreement between the data and the solution indicates that the algorithm was
able to find an optimum. In fact, the relative error between the determined parameters and
the reference was about 1 %, as can be seen in Table 1.
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Figure 4. Group velocities ratios (circles) derived from the acoustic signals at different frequencies
and the corresponding fitted model (solid line) for (a) simulated data and (b) experimental data.

Table 1. Results for simulated data.

Parameter Reference Solution Error (%)

cL (m/s) 6350.00 6418.44 1.08
cT (m/s) 3100.00 3121.98 0.71
h (mm) 1.00 1.01 0.90

Since optimization results typically depend on the initial solution, or in our case on
the search region specified for the solution, we repeated the optimization process multiple
times with some randomly chosen upper and lower parameter bounds. In each case, the
relative error between the determined parameters and the reference was about 1 %.

3.2. Experimental Data

We also applied our approach to experimental data. For this purpose, an aluminium
sheet of h = 1 mm thickness was investigated. A pair of piezoelectric disc transducers were
attached to its surface as described in Section 2.1. The excitation signals in the frequency
range 110 to 200 kHz were provided by a signal generator and the received signals were
recorded using a digital storage oscilloscope. For the numerical model we used a grid of
N = 16 collocation points and the search region for the solution was set in the same way as
it was for the simulated data.

To verify the experimental results, additional reference measurements were performed.
The thickness of the aluminium sheet was measured using a micrometer screw gauge and
the longitudinal wave velocity was obtained by time-of-flight measurements with an
ultrasonic transducer (M2017 Delay Line Transducer, Olympus Europa SE & Co. KG,
Hamburg, Germany) operating at 30 MHz.

The group velocities ratios obtained from the measured acoustic signals and the
corresponding solution are shown in Figure 4. Compared to the simulated data, some
measurement points deviate slightly from the solution found. However, the obtained pa-
rameters still show good agreement with the reference, as can be seen in Table 2. Although
the relative error is slightly higher in this case, the result can still be termed accurate.

Table 2. Results for experimental data.

Parameter Reference Solution Error (%)

cL (m/s) 6718.75 6876.13 2.34
cT (m/s) - 3151.11 -
h (mm) 1.00 0.97 3.40
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4. Discussion

This paper presents a method for measuring the elastic properties of thin structures
such as tubes, plates and sheets, that takes advantage of the dispersive nature of guided
acoustic waves. The measurement setup consists of a signal generator, a digital storage
oscilloscope and a pair of piezoelectric transducers, which are used to measure the ratio of
group velocities at different frequencies. The measured data is then fed into a numerical
model based on the spectral collocation method in order to determine the elastic properties
and the thickness of the investigated structure via optimization. Validation of the method
with simulated and experimental data resulted in a measurement error of 1.1 % and 3.4 %,
respectively, which is similar to the results reported by other authors [21–25].

To determine the wave velocities from the signals measured with a piezoelectric
receiver, the distance between the transmitter and the receiver must be known exactly.
This requires additional equipment, complicates the measurement setup and raises the
possibility of additional measurement uncertainties, which may have a negative impact
on the accuracy of the measurement principle. Our approach overcomes this issue by
determining the ratio of the group velocities, which can be calculated directly from the
propagation times of the two fundamental Lamb modes, significantly simplifying the entire
measurement setup.

Laser ultrasonic methods for detection of guided acoustic waves usually rely on the
measurement of the wave number rather than the wave velocity. This also avoids the need
to determine the distance between the transmitter and receiver. However, such methods
require expensive and complicated equipment and are poorly suited for the characterisation
of curved or weakly reflective materials. Our approach, on the other hand, uses low-cost
components and allows the characterisation of arbitrarily shaped structures and various
materials, opening up a wide field of potential applications.

For the determination of the propagation velocity of the two fundamental Lamb
modes, a five-cycle sine burst modulated by a Hanning window is used. On the one hand,
the propagation time of the wave can be determined relatively accurately using such a
compact signal. On the other hand, such a signal has a much broader spectrum than
signals with a higher number of cycles, which means that unwanted side effects such as
dispersion become more prominent. In the application studied in this article, the Lamb
waves are excited at frequencies with a relatively flat course of the frequency-dependent
phase velocity, so that dispersion effects only play a minor role. The relatively small
distance between transmitter and receiver also has a positive impact. However, depending
on the application, such effects can have a negative impact on the measurement method,
which is why the use of alternative signal patterns should be investigated in the future.

For future investigations, the method could be adapted for rotationally symmetrical
structures such as pipes. In this case, the measurement setup could be reduced to a
single transducer that can act as both a transmitter and a receiver of circumferential Lamb
waves. In this way, the measurement of wear or deposits in pipes could be provided,
enabling continuous online monitoring of industrial plants. However, in contrast to many
non-destructive tests performed on pipes and sheet material, the approach here is not
aimed at detecting defects but at determining material properties. A defect-free part of
the structure must always be selected so that the measurements are not affected by these
non-representative inhomogeneities. In this context, weld metal must also be considered
a defect, as the homogeneity of the material is no longer given and the evaluation of the
measurement results can lead to misleading values.

Author Contributions: Conceptualization, V.F. and F.B.; methodology, V.F. and F.B.; software, V.F.
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