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Abstract: Road accidents represent the greatest public health burden in the world. Road traffic
accidents have been on the rise in Rwanda for several years. Speed has been identified as a core
factor in these road accidents. Therefore, understanding road accidents caused by excessive speeding
is critical for road safety planning. In this paper, input and out pulse width modulation (PWM) was
used to command the metal–oxide–semiconductor field-effect transistor (MOSFET) controller which
supplied voltage to the motor. A structural speed control and Internet of Things (IoT)-based online
monitoring system was developed to monitor vehicle data in a continuous manner. Two modeling
techniques, multiple linear regression (MLR) and random forest (RF) models, were evaluated to find
the best model to estimate the required voltage to be supplied to the motors in a particular zone.
The built models were evaluated based upon the coefficient of determination R2. The RF performs
better than the MLR as it reveals a higher R2 value and it is found to be 98.8%. Based on the results,
the proposed method was proven to significantly reduce the supplied voltage to the motor and
consequently increase safety.

Keywords: electric vehicle; Internet of Things; road safety; speed adaptation; variable speed limit

1. Introduction

Every year, road traffic accidents kill approximately 1.32 million people worldwide,
and more than 50 million people sustain non-fatal injuries. Low- and middle-income (LMI)
countries account for more than 90% of the world’s fatalities, although they own 60% of the
world’s vehicles. The road fatality rate in LMI countries was at 27.5 per 100,000 populations
while in high-income countries the road fatality rate was 8.3 per 100,000 [1]. Africa has a
fatality rate of 26.6 per 100,000 people while the European region has 9.3 per 100,000 [2].
Road safety brings significant costs to the economy and trauma to society. The average cost
of road traffic accidents in LMI countries was estimated to be between 3% and 5% of their
gross domestic product (GDP).

In Rwanda, motorcycle drivers represent one of the most at-risk occupational groups,
with a significant burden of disability-related vehicular incidents and permanent injuries.
Among the motorcycle drivers surveyed, 38.7% said they had been in an accident in
their lifetime, and 8.5% said they had gone to the hospital [3]. According to the World
Health Organization (WHO), global road traffic crashes in 2018 were the 8th and the 1st
leading cause of death for children and young adults, respectively. In the same year, the
fatality rate per 100,000 people was 29 for Uganda, 34.7 for Burundi, 29.2 for Tanzania, 27.4
for the Democratic Republic of the Congo (DRC), 27.8 for Kenya, and 29.7 for Rwanda.
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Considering the fatality rate per 100,000 people, Rwanda was ranked 7th in the world [4].
According to the Rwanda National Police (RNP) for the past four years, reckless driving,
wrong maneuvering and excessive speeding have been the major causes of traffic accidents.
They account for 32.64%, 25.36%, and 13% of traffic accidents, respectively. Figure 1 depicts
the cause factors of road accident cases for the past four years. In a typical year, there have
been 5595 road accidents on average, with 603 deaths, 789 serious injuries, 1765 minor
injuries, and 2437 property damage.

Figure 1. Number of confirmed road accident cases in Rwanda by causing factor (2016–2019).

An increase in average speed is relatively associated with an increase in collision
frequency [5]. Figure 2 shows that for the last 4 years, road accidents caused by excessive
speeding increased in mean per month with 37.9, 51.1, 68 and 84.6 cases, respectively.

The United States of America (USA) started installing a chip in every entity on the
Internet, including vehicles, which will facilitate the Internet of Vehicles (IoV) [6]. The inte-
gration of technologies expands the Intelligent Transportation System (ITS) framework,
wireless access protocols [7] and GSM [8]. Today’s real-time traffic data available for mov-
ing vehicles have enabled the development of ITS applications for traffic control services [9].
The IoT is revolutionizing research by integrating smartness into the existing areas. ITS is
tremendously promising to minimize road traffic safety challenges [10]. The IoV allows
both collecting and storing vehicles’ movement data in the Cloud [11]. Vehicle data are be-
ing sent to the web from any device that can communicate using the representational state
transfer application programming interface (REST API) [12]. Building a sensor network for
IoT applications implies a higher initial cost.

The GSM cellular network covers 96.4% of Rwanda. The fourth-generation long-term
evolution (4G LTE) technology was deployed across 94.2% of its geographic coverage. De-
veloping an application that is cellular communication-based is cost-effective [13]. The in-
car navigation system to provide traffic reports through vehicle-to-Cloud communication
is crucial in ITS [14]. Police forces along the roads keep continue being employed as the
major solution to ensure that road users adhere to the set rules. Nowadays, ITS-based
solutions facilitate traveling in a more organized way. One of the approaches has been the
variable speed limit (VSL) to optimize traffic flow by adapting the speed limit to real-time
conditions [15]. VSL has been used in conjunction with other traffic flow control strategies
to improve traffic throughput while reducing bottlenecks [16]. Variable message signs are
installed on motorways to notify drivers about the current speed limits [17]. Their contri-
butions are significant in terms of speed harmonization [18]. The presence of an active VSL
in the region results in increased traffic density as well as a reduction in flow [19]. The VSL
has shown its high influence on traffic flow dynamics such as congestion management [20].
VSLs are being used as an approach to optimize traffic flow in terms of flow harmonization.
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(a)

(b)
Figure 2. (a) Monthly variation of excessive speeding road accidents; and (b) cumulative number of
excessive speeding due accidents by year (2016–2019).

The speed of road vehicles is subjected to various parameters such as traffic conditions,
vehicle conditions, weather, road curvature, driver behavior, and many others factors [21].
Vehicle speed control can be implemented using the in-vehicle system, e.g., adaptive cruise
control (ACC) [22]. Intelligent speed adaptation (ISA) can also be used at a macroscopic
level for a whole road segment. Vehicle speed control in related works was based on
environment perception [23], road conditions [24], and driver state detection [25]. A gear
shift method for the dual clutch transmission (DCT) was proposed for the speed control of
automotive motors [26]. However, road traffic accidents are avoidable, and Sub-Saharan
African countries lack adequate methods of reporting the tangible and intangible costs of
road accidents. This leads to the inappropriate consideration of road accident costs [27].
Human factors related to driving behavior, the driver’s attitude, and driving experience
have been demonstrated to have relevant impacts on accident severity [28,29]. Every 1%
increase in average speed increases the fatal crash risk by 4%. Hence, there is a need to
develop an intelligent system to avoid excessive speeding. Investigating the effect of the
change of speed on accidents has shown a strong relationship between speed and road
safety [30]. Despite the existing approaches, the variety of factors still challenges the drivers
and road accidents keep increasing exponentially. Hence, there is a need to find a reliable
and cost-effective system to limit the driver to the specific speed of a particular zone. Speed
reduction needs a special focus since it is a priority strategy to reduce the rising fatalities
associated with excessive speeding.

This paper was driven by the fact that Rwanda is taking advantage of emerging tech-
nologies to address road safety. The transportation sector is one of the major contributors to
road safety problems [31]. As a solution, the government has encouraged the use of electric



Sensors 2021, 21, 6670 4 of 17

vehicles in its 2050 vision to reduce pollution by up to 38%. Electric vehicles will account
for 9% of this target [32]. Various policies are being implemented for the electrification
of transport [33]. Electric car sales in 2019 were 2.1 million [34]. Electric vehicles are
categorized into battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs) based
on the energy type [35]. This paper proposes a dynamic speed adaptation (DAS) method
for controlling the operating speed at which the vehicle is observed operating under free
flow conditions. Together with the speed sensing module for sensing the maximum lawful
speed and predefined road curvature data for a particular zone, the vehicle’s speed limit is
adjusted accordingly. The output from the speed limits and road curvature information
parameters are presented as explanatory variables to predict the outcome of the response
variable, which is the voltage supplied to the electric motor of the vehicle. The data gener-
ated by the small setup device was used to evaluate the MLR and RF regression approaches
to compute the needed speed limit. The idea of speed control proposed in this paper is
based on the working principles of BEVs, where only batteries feed the electric motor.
The vehicle thus solely relies on the energy stored in the batteries pack [36].

Motivated by the aforementioned matters, this paper aimed to investigate an adaptive
speed control system for road safety. This research provides a data acquisition architecture
using IoT technology. It also conducts a comparative analysis of regression models to
predict the voltage. The key contributions of this paper are as follows: (i) proposing a
hierarchical framework to control the speed and intelligently monitor the vehicle’s data;
(ii) validating the efficiency of the proposed speed control system using the developed
prototype; (iii) evaluating the effectiveness of the proposed vehicle data logging and
monitoring; and (iv) proposing a machine learning model embedded in an in-vehicle
device to predict the voltage to be supplied to the motor.

The rest of the paper is organized into the following sections. Section 1 discusses the
related literature, Section 2 gives the detailed speed controlling system and an in-depth
discussion of the implementation components. Section 3 discusses the experiment and
their results. Finally, in Section 4, the conclusion with the future work directions is given.

2. Proposed Approach

In this section, a brief overview of the speed sensing and control mechanism is presented.
The control parameters and external disturbances that have an influence on the stability of
the control system are not considered. The design and implementation of a decision support
mechanism with a low level of abstraction are described. The components used for the
system validation are presented. Predictive models such as convolutional neural networks,
hidden Markov and deep learning techniques were developed to predict the speed based
on previous speeding history. In this work, voltage prediction models were built to show
the dependence between vehicle speed, voltage supplied to the vehicle’s motor, and road
curvature information.

2.1. Dynamic Speed Adaptation Architecture

Most drivers perceive posted speed limits as unnatural. This leads them to only
reduce speed when the risk of an accident is perceived or when to avoid being caught and
punished by road authorities. In order to design, build, and test intelligent VSL control
systems, integrated hardware was configured along with the software to be able to operate
with different types of sensors and actuators. The sensors range from infrared (IR) sensors,
voltage sensors, a Global System for Mobile/General Packet Radio Service (GSM/GPRS)
module, MOSFETs, and a DC–DC converter. The microcontroller is programmed to run the
controller algorithm, sensor fusion, and serial port communication. The control commands
are sent to the MOSFETs that control the voltage supplied to the DC motors. Figure 3 depicts
the internal vehicle speed control system components that aid in speed control. Real-time
vehicle data are transmitted through GSM/GPRS to the web-server database, assumed
to reside in the traffic management center (TMC). The road authorities have the privilege
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of monitoring vehicle data in a particular zone. Vehicle identification, its geographical
location, and speed-related data are transmitted and then stored in the remote database.

Figure 3. Architecture of the speed control system.

A Cloud-based IoT platform was developed with the primary goal of tracking and
storing the data of moving vehicles. System architecture and interfaces are shown in Figure 4.

Figure 4. Fundamental layout of IoT-based speed monitoring.

Developing an IoT-based solution that allows road users and road authorities to track
vehicles’ data in real time would contribute to road safety measurements. Setting speed
restrictions is one of the strategies for reducing the increase in speed-related accidents.
Therefore, it is important to build responsive and effective decision support mechanisms to
handle speeding-related issues.

2.1.1. In-Vehicle Setup

The in-vehicle device, with the help of the microcontroller, packs the data and then
uploads the vehicle’s data to the Cloud web platform through the GSM/GPRS module.
The speed of the vehicle, the voltage supplied to the motor, and the current and geolocation
data are collected. The microcontroller is programmed to send these data to a remote
database. Road authorities and drivers will use various intelligent terminals to access the
Cloud platform as well as obtain data in real time. Figure 5 shows the different components
required by the moving vehicle.

(1) IR Sensor: infrared sensors are electronic devices that measure infrared radiation in
their environment. They have been used to investigate occupancy [37].
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(2) Microcontroller: this is the central part of the acquisition of the variable speed control
design. The physical programmable board serves as the brain, and the flow chart logic
occurs here. The GSM/GPRS module is connected to the microcontroller as it has a set
of analogue/digital input/output pins that enable different sensors to be connected
to the microcontroller. The GSM/GPRS module transmits the vehicle’s location and
details the web storage in real time [38].

(3) GSM/GPRS Module: to allow data transmission to a remote web server, an Arduino
Uno module interface is used. This GSM/GPRS module works with GSM frequencies
in the range of 850 MHz–1900 MHz. The module, through its protocol, enables data
transfer to the database via the GSM network [39].

(4) GPS module: the GPS module compatible with Arduino Uno utilizes data from
satellites to locate the moving vehicle at a specific trajectory. The data of the moving
vehicle are used to know the exact location of the beginning of the speed limit zone [40].
Data have important applications for road managers and people in transportation
research fields such as the detection of the movement of drivers, traffic flows in an
area, and predicting the number of accident cases in a specific zone [41].

Figure 5. The embedded speed control device.

Color information has been used for the detection of traffic signs [42]. Road sign
recognition systems were developed to increase driving safety. However, developing
automated methods that recognize the speed limit have been challenged by various factors
including dynamics in the environment, uncontrolled illumination caused by solar radia-
tion, camera resolution, and blurred traffic signs [43]. Road sign detection and recognition
are the most challenging tasks for the automatic recognition of speed limits. The detection
accuracy and recognition rate become challenging when the partial obscuring, blurring,
and fading of traffic signs occurs, particularly in a real-time changing environment. Fur-
thermore, fast algorithms during the recognition process and the computational complexity
are required [42]. Precise measurements for relative positioning remain challenging when it
comes to precise relative tracking results. Global navigation satellite system (GNSS) signals
are often blocked in the challenging environments. This leads to the discontinuous carrier
phase which has effects on the use of GNSS precise positioning [44].

In order to avoid the failure of the proposed system which might be caused by poor
GNNS signal coverage, particularly in multi-layer super ways, a contingency sensor system
was used. The IR sensor to measure the reflection of the light for the color painted at the
entrance of the speed limit zone was considered. The assumption is that the colors are
painted on the road surface. Each color intensity corresponds to a certain speed limit of that
particular zone (a voltage that is linearly proportional to light intensity). The IR sensors
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mounted on the moving vehicle read the road surface and interpret the defined reflected
measured wavelengths (the reflection light depends on the color of the surface) when
entering the speed limit zone. The information sensed is transferred to the microcontroller
for further instructions, interpretation, as well as determining the voltage to be supplied to
the motors. The voltage to be supplied to the motors is proportionally assigned to the colors.

Figure 6 shows the flowchart of the program that was running on the Arduino Uno
microcontroller board. The physical programmable board serves as the brain, and the flow
chart logic takes place there.

Figure 6. A program running into Arduino Uno.

2.1.2. IoT System Design

Figure 7 shows the IoT system design. The layers of the architecture are the sens-
ing layer (moving car equipped with the sensors), network connectivity layer (the GSM
communication), and service layer (the users). The data collected at the sensing layer are
obtained in a variety of formats, including comma-separated values (CSV). Data-based
models fully become actionable at this level. Hence, the data might be analyzed to become
valuable information to road traffic authorities or health personnel’s specific requirements
and patterns. Based on the functional requirements, data-driven models that learn data
might be developed to make use of the vehicle’s data [45].

Figure 7. Sample of captured data appealing in the database.
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2.1.3. Web Front-End and Web Back-End

The remote database was used to keep the collected vehicle data for data analysis
services and user-oriented application services [46]. Different groups of users access all
tracking information in real-time from a web-based application. These users may include
an admin facility to contact the driver, update color meaning, and the user to track their
driving history. This application/service layer is where industry-specific applications such
as predictive models can be developed based on a custom application. This module is to
be developed using an HTML5 Web app. Cloud servers can be used for planning based on
gained knowledge of units (speed versus location, speed versus cases, as well as accident
cases versus location) due to faster and flexible data processing features.

2.2. Modeling the Supplied Voltage from Battery to the Motor

In driving scenarios, speed is one of the major causes of accidents. Various variables
such as road geometry, sight distance, and road surface type were found to have a big
contribution to speed. Hence, these factors that influence speed-related accidents were
considered to develop DAS systems. Location and geometric information about road
curvature [47,48], curve speed warning systems [49], and road curvature with speed limits
can be used to adjust the vehicle’s speed [50]. In this work, we proposed a predictive
model that can be embedded in the developed smart device installed in the vehicle to keep
displaying the speed and inform the internal devices about the voltage to be supplied to the
motor. The data used in the modeling are the data collected by the in-vehicle components
described in Section 2.1.1. Rwanda follows the policy on the Geometric Design of Highways
and Streets [51]. Due to the shortage of data, standards require that curvature is used
to set up speed limit [51,52]. The voltage, which is the electrical energy from the car’s
batteries supplied to the motors to cause the rotation of the car’s wheels, was predicted.
Controlling the operating speed requires following the roadside-imposed maximum speed
limit together with the road curvature information. A comparison between the two models,
MLR and RF, was performed to find the best model to predict the required voltage to
be supplied to the motors. The correlation between voltage with imposed speed limits
and road curvature information were transformed to linearize the speeding function.
The driver’s operating speed depends on the supplied voltage from the batteries, which
in turn depends on the maximum lawful speed posted on the regulatory sign and road
curvature information. If the voltage increases, the speed increases. In contrast, the decrease
in voltage is equal to the magnitude of the operating speed.

2.2.1. Multiple Linear Regression Model

The MLR technique can be used to model the voltage data for the speed control of the
EV in terms of other parameters of the imposed speed limit and the curvature information.
For the MLR model, the dependent variable y (voltage) is assumed to be a function of k
independent variables x1, x2 . . . xn, here referred to as the speed limit and road curvature
data. Hence, the model is expressed as

yi = b0 + b1x1 + b2x2 + . . . + bkxi + ei, (1)

where y is an independent variable, b0, b1, b2 . . . bk are fitting constants, xi(i = 1, 2, . . . k) are
predictor variables, and ei is a random error.

2.2.2. Random Forest Model

The RF model is a machine learning model that combines the algorithm of classification
to make output predictions from a sequence of regression decision trees. The model is
based on the concept of ensemble learning, independently constructed based on a random
vector sampled from the input data. Prediction built on the classifier in the assembly.
The number of trees in the forest and the number of variables utilized to develop each
tree are the two primary characteristics that influence the RF model’s capacity to estimate.
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The model’s mean square error calculation is calculated by the out of bag (OOB) and this is
the method for measuring the prediction error. Equation (2) is used to calculate the error:

MSEOOB =
1
n

n

∑
i=1

(Oi − PiOOB)
2, (2)

where n is the observation number and PiOOB is the average of the OOB’s predictions across
all the trees.

2.3. Validation of the Models

For both the MLR and RF models presented, the informativeness of the models
can be considered as sufficient based on the selected number of metrics for evaluating
each selected model. In this paper, the training dataset consisted of 70%, whereas the
remaining 30% of the records were used for a test. This produces better error results,
compared to the 80% testing and 20% training method. To evaluate the performance of
both the models, the results were assessed by the mean absolute error (MAE), mean squared
error (MSE), root-mean-square error (RMSE), and R squared (R2) [53–55]. The voltage
modeling scenario used in this paper was considered a regression problem, which is a
set of statistical processes for estimating the relationships between the response variable
and predictor variables, hereby referred to as the posted maximum speed and the road
curvature information. The MAE is a risk metric corresponding to the expected value of the
absolute error given by the Equation (3). The MSE, which is the average of a set of errors, is
given by the Equation (4). The RMSE is the standard deviation of the residuals (prediction
errors). RMSE is defined by the Equation (5). The R2 is a statistical metric used to measure
how much of the outcome to be expected (voltage to be supplied). The R2 values range
from zero to one [0, 1]. Hence, zero (0) illustrates that the voltage to be supplied to the
motor cannot be predicted by the speed and curvature values, while one (1) implies the
perfect prediction of both predictors without the error Equation (6):

MAE =
1
n

n

∑
i=1
|yi − ŷi| (3)

MSE =
1
n

n

∑
i=1
|yi − ŷi|2 (4)

RMSE =

√
∑n

1 (yi − ŷi)

n
(5)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)2 (6)

In Equations (3)–(6), ŷi is the predicted value of the ith sample and yi is the corre-
sponding true value for the total n sample.

3. Results and Discussions
3.1. Data Acquisition

In the experimental setup configuration, the sensors were connected to a microcon-
troller board with the GSM/GPRS module enabled to send data to the configured database
server. The EV was built with four (4) 12 V batteries linked in parallel. The electric motor
only drives the vehicle. The positive and negative terminals of all batteries were connected
in the same manner to maintain a constant voltage (12 V). Together with the mentioned
sensors, the brain of the prototype is the microcontroller that has the responsibility of
regulating the inputs. The MOSFET’s responsibility is to execute the control law. To val-
idate that the designed control system has the desired behavior, a voltage divider rule
was used to convert a higher input voltage to a lower output voltage to control the speed
of the motor. Input and out pulse width modulation (PWM) generated variable-width
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pulses to represent the amplitude of an analogue input signal. The flow of the current
was controlled by regulating the amount of voltage across the motors, assumed to be
measured in kilometers per hour (km/h). The microcontroller uses the PWM technique to
control the speed of the motor based on the Equation (7). In order to vary the speed of the
motor, the duty cycle of the PWM signal (PWM wave) is on a score of 0-255V. From the
Equation (9), the MOSFET changes the amount of applied voltage to the motor that varies
in the range of 0–12 V. As detailed in Table 1, a call to analogWrite (100) was applied for
speed limit of 40 km/h, analogWrite (150) for 60 km/h, analogWrite (200) for 80 km/h and
analogWrite (255) for 100 km/h respectively, such that analogWrite (255) requested a 100%
duty cycle equivalent to 12 V. Figure 8 presents the layout of the data transmitted by in the
database. Both prediction models were tested using the acquired sensor data captured by
the developed IoT system and the curvature data defined in [48].

PWM = (D/256)12 V, (7)

where D presents the duty cycle, PW is the pulse width and T is the total period of the
signal. However, the duty cycle is calculated by

D = PW/T, (8)

with T being the total period of the signal:

vOUT = vIN/(R2/(R1 + R2)), (9)

where vOUT = output voltage, vIN = input voltage and R1, R2 values of two resistors.

Table 1. Relationship between color, speed, curvature radius and PWM.

Colour Speed (km/h) Curvature Radius (m) PWM

BLUE 40 95 100
WHITE 60 215 150
BROWN 80 380 200
BLACK 100 590 255

Figure 8. Data presentation in the database.

As mentioned previously, the responsibility of the MOSFET controller is to execute the
control law by controlling the voltage flow between the batteries and the motor. The simula-
tion scenarios presented in the Tables 2–4 were chosen at random with the aim of validating
of the functionality of the system.



Sensors 2021, 21, 6670 11 of 17

Table 2. Scenario 1.

Speed Latitude Longitude Voltage Current Time Date

40 −1.9792737 30.107641 4.73 0.4 11:27:47 a.m. 5 May 2021
60 −1.97928962 30.107671 5.74 0.68 11:28:42 a.m. 5 May 2021
80 −1.9793045 30.107688 9.49 0.94 11:29:32 a.m. 5 May 2021
100 −1.97928752 30.107669 12.31 1.4 11:30:13 a.m. 5 May 2021

Table 3. Scenario 2.

Speed Latitude Longitude Voltage Current Time Date

40 −1.9793291 30.107719 4.97 0.43 3:21:19 a.m. 8 May 2021
60 −1.9793272 30.107679 5.73 0.71 3:21:08 a.m. 8 May 2021
80 −1.9793045 30.107688 9.48 0.94 3:56:44 a.m. 8 May 2021
100 −1.97946624 30.107625 12.27 1.13 3:20:11 a.m. 8 May 2021

Table 4. Scenario 3.

Speed Latitude Longitude Voltage Current Time Date

40 −1.9792737 30.107641 4.89 0.39 11:57:37 a.m. 9 May 2021
60 −1.97951431 30.107639 5.75 0.69 12:04:58 p.m. 9 May 2021
80 −1.9792737 30.107641 9.57 1 12:02:30 p.m. 9 May 2021
100 −1.97932577 30.107591 12.5 1.18 12:06:22 p.m. 9 May 2021

Furthermore, in these different scenarios, voltage thresholds to obtain the speed limit
were required due to some errors that might be caused by the sensors. Furthermore,
from experience, the in-vehicle device, when kept running for a long time period, some
errors could be produced, consequently affecting the proposed controller performance.

3.2. Preparation of Data for Multivariate Forecast Model

Before the ML models, data preparation in Anaconda Python was performed. A sepa-
rate environment was created by the installation of Keras, Pandas, NumPy, and Matplotlib
libraries for data preprocessing and visualization.

3.3. Collinearity of the Data

The collinearity was computed to assess the correlation between the speed, voltage,
and curvature variables. Thus, implying a direct relationship between the discussed variables
is necessary to predict the voltage based on the combination of the variables. Figure 9 shows
the correlation of the variables. It also shows how all parameters are related to controlling
the speed of the vehicle through the quantity of voltage to be supplied to the motors. This
reveals that the correlation between speed, curvature of the road, and voltage supplied to the
motors occurs in a coincidental manner.

The correlation between both pairs of variables has determined that the correlation
between the two variables is high. To control the speed, there is a dependent phenomenon
that includes the correlation between voltage and speed. Thus, the results show that the
linear regression model to predict the voltage by using the imposed features, i.e., speed
limit and curvature, which have a correlation coefficient of r = 0.97, and r = 0.98, respectively,
in the degree of the association of measured variables. Figure 10 indicates that for every
positive increase in voltage, the speed increases proportionally. The function box plot in
the seaborn library to produce the plots that are used to determine whether the imposed
speed limit and road curvature have more voltage outliers.
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Figure 9. Pearson correlation between speed, voltage, and curvature variables.

Figure 10. Relationship between variables.

Figure 11 shows the pair’s plot that visualizes the distribution of speed and voltage,
as the focus is on reducing speed by reducing the amount of voltage supplied to the
motors. Despite the fact that power supply is a significant challenge, the higher the speed,
the higher the power supplied to the motor is. This affects the system’s functionality,
according to our observations during simulation.
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Figure 11. Pair plot of the used variable.

3.4. Comparative Analysis of Models

The results of the preferred model were compared for the two machine learning
algorithms to evaluate the efficiency of the proposed models. To verify the prediction
capability of the proposed models, the evaluation of their results is shown in Table 5.
The accuracy of the RF model had a significant improvement over the MLR model. With the
highest R2 = 0.988 and lowest MAE = 0.194, MSE = 0.066, RMSE = 0.258, respectively,
compared to the MLR model which has a lower R2 = 0.986 and higher MAE = 0.223,
MSE = 0.074, RMSE = 0.273. Hence, the RF-based prediction model showed the highest
prediction accuracy in terms of performance with regard to R2, with an R2 of 98.82%
compared to MLR, which has an R2 of 98.68%.

Table 5. Fitting accuracy of the data.

Testing Data

Model MAE MSE RMSE R2

Multiple Linear Regression 0.223499 0.074573 0.273081 0.986874
Random Forest Regression 0.194704 0.066607 0.258083 0.988276

Training Data

Model MAE MSE RMSE R2

Multiple Linear Regression 0.272016 0.114518 0.338406 0.982988
Random Forest Regression 0.254960 0.111780 0.334335 0.983395

Table 6 presents the comparative values for the performance accuracy of the proposed
model. The results show that the RF has a high accuracy compared to the MLR model.
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The table shows the performance values for both the training and test of the proposed
models and the optimal parameter values described present the best model.

Table 6. Fitting accuracy of the regression models.

Model MAE MSE RMSE R2

Multiple Linear Regression 0.223500 0.074574 0.273082 0.986874
Random Forest Regression 0.194705 0.066607 0.258084 0.988276

Figures 12 and 13 present the result showing that RF model performs well comparing
to MLR model.

Figure 12. Fitting accuracy: actual and predicted results.

Figure 13. Prediction results: comparison of the RF and MLR model.

4. Conclusions and Future Works

A data acquisition and communication system based on GSM/GPRS was introduced.
The design as well as the execution of all the voltage measures were analyzed in order to
maintain speed. Synchronization between software applications and hardware features
has been successfully programmed. The transmission synchronization tests carried out
demonstrated that the GSM/GPRS-based real-time monitoring was successful. The predic-
tive models of machine learning algorithms, RF and MLR, were applied to the recorded
vehicle data to estimate the required voltage per specific speed limit. The RF has proven
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to be a more powerful modeling approach than the MLR model. The MAE, MSE, RMSE,
and higher R2 value were more favorable for the RF than for MLR for the prediction
of voltage. However, according to our observations during the experiment, there were
effects on the system’s functionality when it was kept running for a certain period of time.
The voltage sensor would behave unexpectedly. There is an opportunity to extend this
work by implementing the method in hybrid vehicles, which combine the use of electric
motors and internal combustion engines. The future development will be the integration
of several GSM/GPRS terminals with various modeling variables that might interrupt the
speed limit. Rain, road damage and unusual events are among these factors. The speed
control model proposed demonstrates that the system can be applied to both other systems
for parameter monitoring. In this work, the statistical significance of the differences in per-
formance between the three scenarios was not considered, but with potential consideration
in future studies.
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