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Abstract: Acoustic scene analysis (ASA) relies on the dynamic sensing and understanding of sta-
tionary and non-stationary sounds from various events, background noises and human actions
with objects. However, the spatio-temporal nature of the sound signals may not be stationary, and
novel events may exist that eventually deteriorate the performance of the analysis. In this study,
a self-learning-based ASA for acoustic event recognition (AER) is presented to detect and incremen-
tally learn novel acoustic events by tackling catastrophic forgetting. The proposed ASA framework
comprises six elements: (1) raw acoustic signal pre-processing, (2) low-level and deep audio feature
extraction, (3) acoustic novelty detection (AND), (4) acoustic signal augmentations, (5) incremental
class-learning (ICL) (of the audio features of the novel events) and (6) AER. The self-learning on
different types of audio features extracted from the acoustic signals of various events occurs without
human supervision. For the extraction of deep audio representations, in addition to visual geometry
group (VGG) and residual neural network (ResNet), time-delay neural network (TDNN) and TDNN
based long short-term memory (TDNN–LSTM) networks are pre-trained using a large-scale audio
dataset, Google AudioSet. The performances of ICL with AND using Mel-spectrograms, and deep
features with TDNNs, VGG, and ResNet from the Mel-spectrograms are validated on benchmark
audio datasets such as ESC-10, ESC-50, UrbanSound8K (US8K), and an audio dataset collected by
the authors in a real domestic environment.

Keywords: acoustic scene analysis; acoustic event recognition; acoustic novelty detection; audio
signal augmentation; incremental class-learning

1. Introduction

Due to recent breakthroughs in deep learning and advancements in artificial intelli-
gence, deep neural networks (DNNs), powerful learning models inspired by biological
neural networks, have been developed to deal with many problems in computer vision,
signal processing, and natural language processing. One of the popular deep learning
challenges is human and animal-like lifelong learning also known as incremental/continual
learning; that is, learning without storing and retraining entire previous data due to re-
source limitations of space and computational complexity. However, traditional DNNs
are generally prone to “catastrophic forgetting” [1,2], in which previously seen instances,
classes or tasks may be forgotten. Therefore, for incremental class learning (ICL) in the last
few years, the learning of new classes, or tasks, in a different domain using architectural,
regularization, and rehearsal strategies, in combination or independently, has attracted
considerable attention to satisfy the requirement of sequentially learning without forgetting
and re-using previously learned data [3].

Most of ICL works have focused on computer vision tasks such as image classifica-
tion [4], semantic segmentation [5], image classification in a number of isolated tasks [6].
Only a few [7,8] have focused on the incremental learning of new acoustic events for
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detection of the events. However, incremental learning without forgetting may also be
useful for various tasks such as speech recognition, voice detection, acoustic scene analy-
sis (ASA), acoustic event recognition (AER), acoustic anomaly detection (AAD), acoustic
novelty detection (AND). The tasks of AER and AND in acoustic scenes have not received
as much attention as speech recognition, but the significance of the scene analysis using
audio signals has been demonstrated in a variety of applications for surveillance [9], elderly
human monitoring [10], home automation [11], and robotics [12]. Environmental sounds
differ from speech and musical sounds especially in temporal structure and spectrum
frequency [13]. Also, these sounds have noise-like characteristics with a broad flat spec-
trum that adversely affects the recognition of environments using Mel-frequency cepstral
coefficient (MFCC)-type features [14]. For learning the non-stationary and dynamic nature
of acoustic signals of events in different environments, several works have focused on algo-
rithms under the difficulties of environmental sounds. Audio features including low-level
ones (e.g., zero-crossing rate and short-time energy and complex high-dimensional features
(e.g., MFCCs [15], Mel-spectrograms [16], gammatone–spectrograms [17], and wavelet-
based features [18]) have been used in the literature. Spectrograms from raw audio signals
are used to represent the temporal and spectral structure of the signal, and representative
DNNs, such as ResNet [19] and VGG [20], extract deep-audio representations from images
such as Mel-spectrograms for AER and AAD.

In real-world tasks, a large amount of annotated data may not be available due to its
nature and the expense of annotation. Also, in various acoustic tasks and environments,
novel events or unknown noises may appear that exacerbate ASA performance. Therefore,
it is necessary to detect novel acoustic events and learn the event incrementally to enhance
the recognition capability for acoustic tasks. However, after detecting a novel acoustic
event, only a few samples have been observed to be used in ICL and in the retraining of
the semi-supervised novelty detection method. The scarcity of data is always an important
challenge in AER tasks. Audio signal augmentation is applied by time-stretching to increase
the amount of audio samples belonging to the detected novel acoustic event [21]. In this
study, ICL with novelty detection based ASA for AER is presented and various algorithms
are investigated using different audio features to achieve the ICL and AND tasks.

To extract deep audio representations from acoustic events, inn this work different
deep networks were pre-trained using a large scale of audio datasets. Time-delay neural
networks (TDNNs) were used to recognize speech, speech emotion, and speaker and to
detect of voice activity. Moreover, TDNN-based approaches are sufficient for capturing
the complex temporal characteristics of environmental sounds with transient, intermittent,
and continuous temporal structures. Therefore, factorized TDNN (F-TDNN) [22] and
TDNN with long-short term memory (LSTM) [23] were applied to MFCCs and accoustic
event raw signals, respectively. In addition to the TDNNs, ResNet and VGG were pre-
trained on AudioSet [24], including a large amount of audio data and then employed on
different benchmark datasets to extract the deep audio representations. Moreover, for AND,
the following state-of-the-art methods were applied in a semi-supervised manner: stacked
autoencoder (AE) [25], variational AE (VAE) [26], k-nearest neighbour (kNN) [27], Gaussian
mixture model (GMM) [28], one-class support vector machine (OCSVM) [29], and isolation
forest (iForest) [30]. To achieve ICL, learning without forgetting (LwF) [31], an incremental
classifier and representation learning (iCaRL) [32], and FearNet [33] were employed on
these five types of audio features: Mel-spectrograms, and deep features from TDNN,
TDNN–LSTM, ResNet, and VGG.

The contributions of this work can be listed as follows;

1. the use and investigation of ICL algorithms using acoustic signals in an AER task,
2. the pre-training of F-TDNN and TDNN-LSTM using MFCCs and raw acoustic signals,

respectively,
3. the extraction of deep audio representations with the pre-trained F-TDNN and

TDNN-LSTM,
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4. the development of a semi-supervised AND method to detect new acoustic events
for ICL,

5. the augmentation of audio signals to increase the number of features from the detected
novel event for ICL and retraining of the AND algorithm,

6. the comparison of the deep features from the F-TDNN and TDNN-LSTM, and the
state-of-the-art networks VGG-16 and ResNet-34 pre-trained using Mel-spectrograms
from the same dataset,

7. the integration of ICL and AND in a single framework to achieve ICL without human
supervision and

8. the collection of an audio dataset in a domestic environment.

To the best of our knowledge, the contributions regarding ICL with AND in acoustic
tasks and pre-training of several networks for ICL and AND appear here for the first
time in the literature. The proposed approach for ICL with AND was evaluated on the
benchmark audio datasets ESC-10, ESC-50 [34], UrbanSound8K (US8K) [35], and the audio
dataset (Domestic) collected by the authors using a microphone array located 1 m from the
sound sources. The dataset was generated to achieve audio–visual and robotic tasks and
investigate the microphone array in a domestic real environment.

The rest of the paper is organized as follows: Section 2 is a discussion of the related
work in AER, DNNs to extract audio features, novelty detection in audio features, and ICL.
The steps of the proposed ASA approach for ICL with AND are given in Section 3. The
implementation details of the techniques and algorithms used for feature extraction, AND
and ICL, and the experiments are provided in Section 4. The performances of stacked AE,
VAE, kNN, GMM, iForest, and OCSVM for novelty detection, and LwF, iCaRL, and FearNet
for ICL on five different types of audio features, Mel-spectrograms, and deep features
from TDNN, TDNN-LSTM, VGG-16, and ResNet-34 are discussed in Section 5. Finally,
the conclusion and future work are given in Section 5.

2. Background

In recent years, significant attention has been paid to the use of deep-learning-based
approaches for ASA to deal with several audition tasks such as acoustic scene classification
(ASC), acoustic event recognition (AER), acoustic novelty detection (AND), and acoustic
anomaly detection (AAD) using different types of audio features. Furthermore, several
deep-network-based studies have been proposed for incremental class-learning (ICL) in
different domains. This section describes works on the use of different audio features
for ASA, augmentation of audio data, detection of novel acoustic objects and events, and
incremental learning of new classes.

2.1. Acoustic Scene Analysis

Various types of audio features have been employed to achieve ASA tasks (ASC, AAD,
AND, and AER), which are composed of different types of time-frequency domain, cepstral
and low-level audio features (Gammatone cepstral coefficients, MFCCs and variants [15],
log-frequency filter bank coefficients [36], Mel-spectrograms [16], and a combination of the
MFCCs and Mel-filter bank features [37]) have been used for ASC.

Many works have shown the substantially increased performances of deep neural
networks (DNNs) using large datasets for AER. For the extraction of high-level feature
representations, a deep belief network using spectrograms was proposed [38]. For transfer
learning, a DNN was trained on a large dataset of a particular task, and then the network
was applied to extract audio feature representations for a different dataset [21]. In the other
DNN based work for AER, a CNN based approach was utilized on Mel-spectrograms [39].
As the input of the ResNet network, three-channel (RGB) images were used, so the spec-
trograms were converted to RGB images. Another study in which MFCCs were used as
the input of a DNN was developed to construct x-vector embeddings for speaker verifi-
cation tasks [40]. In addition, in several works, the TDNNs were exploited to recognize
speech [41], emotion [42], speaker, or voice activity. However, the performances of TDNNs
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have not been investigated using sounds in different acoustic environments. To enhance the
performance of sound event detection, other DNN-based acoustic techniques such as noise
reduction [43], and dereverberation and beamforming [44] have been investigated. In our
study for AER and ICL, the effectiveness of transfer learning was demonstrated using
TDNNs pre-trained on the sounds of AudioSet to extract the embedding of acoustic events.

For the augmentation of audio data, a few works have been presented, in which
augmentation was performed on raw audio signals, spectrograms, and low-level audio
features. The spectrograms extracted from the sounds in the ESC-50 dataset were aug-
mented and used to generate a CNN-based ensemble method [45]. Its performance was
compared to many state-of-the-art CNN networks used only for feature extraction includ-
ing variants of ResNet and VGG, AlexNet, GoogleNet, and Inception. Pandeya et al. used
a domestic cat sound dataset to augment the raw audio signals in the dataset by randomly
time-stretching, pitch-shifting, inserting noises of different ranges and dynamic range
compression [46]. The augmentation was also applied to the raw audio signals and the
spectrograms extracted from the signals in an audio dataset of natural animal sounds to
improve the classification of animal sounds [47].

2.2. Novelty Detection on Acoustic Signals

Another challenging problem for ASA is to detect novel scenes in which unknown acous-
tic events occur. For AND, unsupervised deep networks and traditional one-class anomaly
detection methods have been developed by the training data of known classes [26,48,49].
Nguyen et al. proposed a semi-supervised method based on a convolutional VAE that
used to detect anomalous sounds [50]. The deep feature representations extracted by
ResNet and VGG from audio images such as Mel-spectrograms have been exploited for
abnormal sound detection [51]. Hoang et al. proposed four DNNs for AAD where an
audio feature vector was constructed from MFCCs, Mel-Spectrogram, Spectral Contrast,
Short-Time Fourier Transform, and Chroma features used for different autoencoders to
apply anomalous sound detection [52]. We employ MFCCs widely used in acoustic tasks
corresponding to transformed log filter-bank energies by a discrete cosine transform [53].
In addition, an algorithm for few-shot learning was developed to detect rare sounds in
background noises [54]. Furthermore, sequential AEs were used for AAD in industrial
acoustic environments [55]. Even fewer studies have been conducted in the area of few-shot
learning to detect new acoustic events. Shi et al. [56] presented a few-shot method based
on meta-learning for acoustic event detection.

2.3. Incremental Class-Learning

Various ICL algorithms have been developed using architectural, regularization,
and rehearsal strategies, in combination or independently, to learn classes incrementally
while avoiding the problem of catastrophic forgetting. The major problem of incremental
learning was investigated in several studies in which different types of deep networks
were proposed. After learning a new class, the parameters of the new model should not
deviate too far from the configurations of the previous model. One of the oldest ICL
algorithms based on CNN is learning without forgetting (LwF) [31], which focuses on
transferring knowledge to overcome forgetting. Another ICL method called “incremental
classifier and representation learning” (iCaRL), based on rehearsal and regularization
approaches, was proposed in [32] using an external memory of a fixed size for previous
exemplars. iCaRL used a nearest-exemplar algorithm for classification and relied on
preventing substantial changes using the memory. However, the iCaRL algorithm, which
has been shown to provide the best ICL performance in many studies, requires the storage
of knowledge from the learned classes. A generative approach known as FearNet [33],
based on a brain-inspired, dual-memory system achieves incremental learning of new
classes by storing detailed statistics about known classes instead of the previous knowledge.
For its incremental learning process, three short- and long-term memory networks and
a decision network are exploited to choose the activated network. A few recent works
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have focused on incremental learning using CNN for AER. In [7,8], the performances of
incremental learning were evaluated using Mel-spectrograms from one-second audio files.
However, the detection of novel classes in the solutions to incremental learning, has not
been addressed in the ICL studies. Furthermore, the works did not investigate widely used
ICL algorithms and analyses of different audio features. To the best of our knowledge, ICL
with AND has not yet been explored in the acoustic domain.

The lifelong learning problem has been widely studied using various types of machine
learning. Some studies focused on combining it with novelty detection and few-shot
learning. In one of these works [57], an incremental approach with novelty detection based
on a Parzen window kernel density estimator was proposed. This method was applied
to data streams regarding gestures to cope with the problems of real-time data streams,
such as concept drift and the existence of novel classes. Also, class-based incremental
learning [58] has been proposed, in which new classes are incrementally added to the
model without forgetting the known classes. Ren et al. proposed incremental few-shot
learning based on a meta-learning method (an Attention Attractor Network) to achieve
few-shot learning incrementally without retraining the data [59].

3. Proposed Approach

In this section, we introduce the proposed approach composed of six steps; (i) pre-
processing, (ii) extraction of audio features, (iii) AND, (iv) augmentation of audio signals,
(v) ICL, and (vi) AER (Figure 1). The main goals in the AND, ICL, and AER steps are to
learn the function of

1. a novel event detector retrained in a semi-supervised manner and
2. an acoustic event recognizer that can learn incrementally from new events detected in

the AND step.

Raw Audio
Signal

Pre-processing Feature
Extraction

Selected
Frames Acoustic Novelty

Detection

Audio
Features

A novel class
of event?

Audio Signal
Augmentation

YES NO Acoustic Event
Recognition

Acoustic Event

Incremental
Class-Learning Audio

Features
Selected and
Augmented

Frames
New Acoustic

Event

ICL and AND
Models

UNDEFINED

Retraining
AND model

Selected
Frames

Feature
Extraction

ICL
Model

AND
Model

Figure 1. The block diagram of the proposed approach for incremental class-learning with
novelty detection.

3.1. Problem Definition

To analyze and model an audio signal, windowing may provide more accurate and
robust acoustic measures for segmentation of distinctive characteristics from the audio
sample. The most popular windowing technique in this work is the sliding/moving
window with a fixed length through the signal. Let Si be the raw signal of an acoustic event
recording, i, segmented by the sliding window with a constant temporal length (400 ms)
(also called a frame). Then, Wk

i ∈ RT , where k is the index of the window, and T denotes
the window size, which is the time dimension. The length is selected and several tests are
conducted while preserving feature stability and event information. Each window, Wk

i is
50% overlapped by Wk−1

i where k = 2, 3, . . . , Ni, and Ni is the number of windows from
the signal of the event recording, Si. In the pre-processing step, after the windowing of the
raw signal, window-based segmentation is applied to detect the ratio of silence and obtain
the presence of sound events within all the 1-D windows, Wk

i . The sum of the samples for
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each window is compared with the pre-defined silence threshold close to 0 indicating the
absence of any sound activity;

υk
i =

T

∑
t=1

Wk
i (t), (1)

where t denotes the time index in the samples of the kth window. Each window of the
samples, the sum of which, υk

i , is bigger than the silence threshold is selected for feature
extraction.

3.2. Pre-Processing

In the pre-processing step, in addition to the windowing and window selection
explained in Section 3.1, the optimum values of the parameters are selected: the overlapping
factor for windowing, the number of coefficients for the extraction of MFCCs, the window
size in short-time Fourier transform and the hop size for the extraction of Mel-spectrograms.
In addirtion, the optimal setting of the parameters for the algorithms is determined.

3.3. Feature Extraction

In the feature extraction step, five feature types—deep audio representations of four
pre-trained networks and a Mel-spectrogram—are extracted using the audio feature,
Xk

i ∈ {Ik
i , Ck

i , Wk
i }. Each window is used to extract MFCCs, Ck

i (a fixed number of d-
dimensional feature vectors) and a Mel-spectrogram, Ik

i . The audio feature, Xk
i ∈ {Ik

i , Ck
i , Wk

i }
is used to extract the deep audio features with 128 dimensions; Dk

i TDNN, TDNN-LSTM,
VGG; and ResNet networks pre-trained with AudioSet, a large-scale dataset.

The F-TDNN, a deeper network than TDNN has four more channels, and the weight
matrix of each TDNN layer is factorized by multiplying two smaller matrices to reduce
the number of parameters in the layers [60,61]. Instead of singular value decomposition
in a traditional DNN, the factorized architecture is employed for the reduction and the
fine-tuning of the parameters after the reduction. In the TDNN–LSTM architecture, two
TDNN layers are replaced by LSTM layers. MFCCs, Ck

i of acoustic events, and the windows
of the signal, Wk

i are used, respectively, as the input of the F-TDNN and TDNN–LSTM
networks instead of spectrograms like VGG-16 and ResNet-34. The Mel-spectrogram is
also directly used in AND, AER, and ICL tasks. Finally, we conducted AND and ICL
experiments to compute the contribution of these five feature types to the performance of
AND and ICL. The most appropriate feature types were selected for use in the ICL with
AND experiment.

3.4. Acoustic Novelty Detection

The AND step of the proposed method aims to detect novel acoustic events. The mod-
ule has three possible outcomes ( “known”, “unknown” or “undefined”) depending on
the novelty scores provided by the method and a two-level threshold strategy (Figure 1).
An audio sample of an event is detected as “unknown” if it significantly deviates from a
pre-defined decision threshold for novelty according to its novelty scores. A function of the

novelty detector ( fand : Xk:N′i
i → Gi, where N′i denotes the number of selected windows)

is to learn to compute a novelty score, Gi of the raw signal, Si for AND. The average

of the novelty detection outputs of the selected features, Xk:N′i
i is calculated to obtain a

scalar novelty score for each acoustic event recording, i. The detector is defined on the
audio feature set of the known events, and the AND model of the detector is retrained by
including the features of the recently detected novel event.

In case a score greater than the threshold for AND was obtained, it was compared
with another threshold for AER to improve the precision of the ICL and AND, and to
prevent the propagation of the error. If the score was less than or equal to the threshold for
AER, the audio sample was detected as “undefined”. Otherwise, the sample was presumed
to be a “known” event and transmitted to the AER step for the prediction of its event class.
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The two-level thresholding strategy was adopted since false positives of AND might have
negatively affected the performances of the ICL and AND algorithms.

A recently detected new acoustic class will inevitably have limited knowledge, which
means sparsity may deteriorate the ICL and AND performances and cause over-fitting
of ICL and AND models, or the forgetting of the old classes. To tackle the data sparsity
problem, augmentation was directly applied to the raw audio signal of the new class,
by time-stretching with randomly selected factors to increase the number of class samples.
The stretching method changed the duration of the signal while preserving its spectral
characteristic. The AND model was retrained by including new features of the selected
windows from the actual and augmented signals in the previous training feature set. In the
ICL step, only the features are incrementally learned.

ITo select the most appropriate AND method, six state-of-the-art one-class learning
methods (stacked autoencoder (AE), variational AE (VAE), k-nearest neighbour (kNN),
Gaussian mixture model (GMM), one-class support vector machine (OCSVM), and isolation
forest (iForest)) were implemented. An AE is an unsupervised DNN comprised of an
encoder and a decoder, which learns the input data to reconstruct robustly, so the AE is
trained using the features of the known classes to detect a sample as a novel class that is
not reconstructed well. In this work, a stacked AE, consisting of multiple AEs in a stacked
form, and a VAE (a deep generative network combined with a statistics learning method
to obtain a Gaussian mixture-like model) were used for AND. The stacked AE and VAE
reconstructed the selected features, and the novelty score was the reconstruction error
between the input features and the output of the AE networks. Moreover, these thresholds
were automatically computed using the errors for AEs and novelty scores for the rest, and
they identified for each algorithm after conducting several experiments for each dataset.

3.5. Incremental Class-Learning

Incremental learning is the only solution for learning from streaming or ephemeral
data in which the entire dataset is required to be stored in memory to learn from scratch
when new information exists [6]. For incremental learning the traditional neural networks
are prone to one of the most important bottlenecks: catastrophic forgetting. The forgetting
problem is related to the plasticity–stability dilemma [62] which occurs if a deep network
is too plastic: the previously learned information is forgotten, and if the network is too
stable, new information is not adequately learned. Therefore, to overcome the problem,
various methods have been developed using the architectural, regularization and rehearsal
strategies in combination or independently. Architectural strategies are aimed at learn
new classes or information while maintaining previous knowledge. To avoid forgetting,
the regularization strategy focuses on constraints on weight updates. Also, the rehearsal
strategy is based on keeping a number of samples of the known classes instead of the entire
data. In this study, audio features from selected windows of the original and augmented
signals of new detected acoustic events are adapted to the ICL model. Unlike other ICLs,
there is no human supervision for samples of a new class, so the algorithm is integrated
with an AND method.

In the ICL step, an initial supervised setup for training includes a number of audio
features, {Xk

i , yk
i }e, extracted from a randomly selected recording of a randomly selected

acoustic event, e in which i is the index of the recording, and y is the label of the event.
For ICL, the audio samples of unknown events are sequentially and disjointedly learned
while avoiding the forgetting problem. Therefore, a function of an incremental acoustic
event recognizer, ficl : Xk

i → yk
i is learned.

We implemented a number of ICL methods (LwF, iCaRL, and FearNet) to investigate
the performance of the incremental learning of novel classes with a special focus on
the forgetting problem. In the LwF algorithm with an architectural strategy, the effect
of forgetting was reduced by adding a term to the loss function of the network for the
knowledge distillation to make the network output of new classes close to the original
network output. iCaRL, which is based on a strategy of a combination of regularization
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and rehearsal, is also a incremental-class learner that is used to classify audio features by a
nearest exemplar algorithm, and prevent catastrophic forgetting in the acoustic domain.
The last ICL algorithm, FearNet [33], is based on a dual-memory system inspired from
mammalian brains to learn new samples in short-term memory by a hippocampal network,
and progressively consolidate them in long-term memory using pseudorehearsal [2] with a
medial prefrontal cortex (mPFC) network. In addition, the basolateral amygdala, which is
the third network, is exploited to decide whether to use the hippocampal or mPFC network
for a sample.

4. Results and Discussion
4.1. Experimental Setup

For the implementations, Scikit-learn, a python package for three novelty detection
techniques (GMM [28], OCSVM [29], and iForest [30]) and evaluation of the performances,
and Keras for AEs and PyTorch for the ICL networks were used. Also, Librosa [63], another
python package for audio analysis and signal processing, was used for basic operations for
the extraction of MFCC and Mel-spectrograms. The domestic dataset was collected by a
Kinect microphone array. Specifically, the pre-training of F-TDNN, TDNN-LSTM, VGG
and ResNet networks was run on a machine with Intel R© CoreTM i7-8700K CPU and Nvidia
GeForce, GTX 1080Ti GPU.

4.2. Experimental Procedure

In the experiments, three benchmark audio datasets (ESC-10, ESC-50 [34], Urban-
Sound8K (US8K) [35]) and our domestic audio dataset were used to evaluate the perfor-
mances of (1) algorithms with the aforementioned feature types for novelty detection,
(2) algorithms with the feature types for ICL, and (3) selected ICL model and feature types
for ICL with AND. ESC-10 is a subset of the ESC-50 dataset which consists of 5 different
sound categories: animal, non-speech human, urban or outdoor, indoor, and natural. Each
sound clip in this dataset was 5 s long with a sampling frequency of 44,100 Hz. ESC-10
comprised 10 classes from these categories (dog barking, rain, sea waves, baby crying,
clock ticking, person sneezing, helicopter, chainsaw, rooster, and fire crackling). The other
benchmark dataset, US8K included short audio clips of up to 4 s from indoor and outdoor
environmental sounds. Finally, our domestic audio dataset comprised 436 short clips of
10 domestic events (opening and closing doors, footsteps, taking a shower, kettle whistling,
vacuum cleaner, cooking, dishwasher, toilet flushing, washing machine) with a duration
between 1 and 12 s with a sampling frequency of 44,100 Hz which was non-overlapping.

The MFCC with 20-dimension and Mel-spectrogram features was extracted for each
selected window from the acoustic signal processed at sampling rate of 44,100 Hz, where
the parameters were set as follows: window size of 400 ms, step size of 200 ms (overlap
factor of 50%), and FFT size of 512.

In the experiments of AND and ICL, the performances of the algorithms with the
audio feature types were analyzed to estimate the most informative feature representations.
Therefore, the pre-trained TDNN, TDNN-LSTM, VGG-16, and ResNet-34 models were
initialized for transfer learning using a subset of the AudioSet including 5800 h of video
clips with an ontology of 527 types of sound events from YouTube. The subset consisted of
40 classes of the environmental, urban and domestic categories. For AND and ICL, the deep
audio representations were extracted by VGG-16 and ResNet-34 from Mel-spectrograms,
and by F-TDNN and TDNN-LSTM from the MFCCs and raw signal, respectively, of the
sound samples in the ESC-10, ESC-50, US8K, and Domestic datasets.

The first experiment had several experimental setups with many scenarios in which a
different number of known or unknown classes were used to compare the AND algorithms
(stacked AE, VAE, kNN, GMM, iForest, and OCSVM) to find the most promising algorithms.
In the scenarios for the ESC-10, US8K, and Domestic dataset classes, 1, 3, 5, and 7 were
known, and the rest of the 10 were unknown, and one where only 1 class was unknown.
For ESC-50, a different experimental setup was performed. It had scenarios in which 1,
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5, 10, 20, 30, 40, and 45 event classes were known and the rest were unknown, and one
where only 1 class was unknown (the rest of the 49 event classes were known). In the last
experiment, the proposed approach for ICL with AND on the acoustic data is investigated
in which the most suitable AND and ICL algorithms are applied to the best performing
audio feature representations.

4.3. Evaluation Metrics

To measure the performances of the AND algorithms, the average area under the curve
(AUC) and F1-scores were calculated for each feature type and algorithm in each dataset.
The AUC metric was generated by plotting the true positive rate vs. the false positive rate,
and the AUC was computed from the success plot. The F1-scores were computed as the
harmonic mean of precision and sensitivity (recall). The average of the accuracies in a test
set, randomly selected from each dataset and the average F1-score, was used to assess the
performances of the algorithms with the feature types for ICL and ICL with AND.

4.4. Results of Novelty Detection

In the experiments of novelty detection, we aimed to detect new acoustic events by
stacked AE, VAE, kNN, GMM, OCSVM, and iForest algorithms using Mel-spectrograms,
and deep features extracted by TDNN, TDNN-LSTM, VGG, and ResNet networks. In
Tables 1–4, the average F1-scores of AND methods on each feature set extracted from the
datasets were given for these AND scenarios for Domestic, ESC-10, US8K, and ESC-50.
The best performances were observed on the deep features of VGG and F-TDNN through
all the algorithms. Although several satisfactory performances were observed in stacked
AE, kNN, and OCSVM algorithms, the GMM provided the best overall AND performance.
Thus, in the experiment of the proposed ICL with AND approach, GMM was used.

Figure 2a–d, presents the best AUC scores obtained using an audio feature on each
dataset when only one event was known. In this scenario, the features extracted by the
VGG-16 network provided the best AND performances for Domestic (Figure 2a) and US8K
(Figure 2c) datasets. In addition, using the features extracted from ESC-10 and ESC-50
shown in Figure 2b,d, the best AUC scores were observed combining F-TDNN and VGG
with AND methods. The AND performances using the ResNet-34 features were mostly
close to the best results, but in some scenarios withf a high amount of known classes,
the AND methods had poor performances using the features.

Table 1. The Average F1/AUC Scores of AND on Domestic dataset.

Algorithm Mel-Spectrogram F-TDNN TDNN-LSTM ResNet-34 VGG-16

Stacked AE 89.7/92.1 91.7/94.0 86.1/88.3 90.1/92.9 92.8/95.0
VAE 83.5/86.2 84.1/85.2 80.7/81.7 87.3/90.3 88.9/91.1
kNN 86.0/88.2 91.1/94.7 81.5/83.8 88.8/90.4 94.7/97.1
GMM 92.7/94.4 96.1/97.2 86.5/86.7 92.3/94.2 96.4/97.4

OCSVM 86.3/90.6 86.1/91.2 80.1/87.5 85.1/91.7 91.4/94.9
iForest 78.4/81.6 77.4/84.1 74.9/76.8 80.7/86.1 83.1/88.1

Table 2. The Average F1/AUC Scores of AND on ESC-10 dataset.

Algorithm Mel-Spectrogram F-TDNN TDNN-LSTM ResNet-34 VGG-16

Stacked AE 83.1/86.8 76.4/83.1 70.4/74.3 81.5/86.1 81.4/88.7
VAE 76.0/83.2 76.1/83.4 66.4/67.8 83.8/86.3 81.3/85.2
kNN 81.1/88.2 84.8/86.9 70.7/73.8 83.8/87.2 88.4/89.1
GMM 80.5/87.9 85.1/88.9 77.0/77.7 83.0/86.7 89.0/89.1

OCSVM 80.5/85.8 78.1/81.1 76.2/74.1 83.1/85.0 86.2/88.3
iForest 67.2/71.4 62.4/65.2 59.4/57.8 63.3/66.3 71.3/73.0
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Table 3. The Average F1/AUC Scores of AND on US8K dataset.

Algorithm Mel- Spectrogram F-TDNN TDNN-LSTM ResNet-34 VGG-16

Stacked AE 65.7/74.6 63.8/68.9 59.9/63.3 80.8/84.4 81.3/84.8
VAE 62.2/68.6 60.1/66.6 56.7/62.4 74.8/77.9 74.7/76.7
kNN 72.5/78.7 69.2/74.8 65.5/72.8 83.5/87.1 82.0/85.6
GMM 70.8/78.9 73.0/78.9 71.2/78.5 80.1/85.9 85.1/87.7

OCSVM 68.9/71.3 65.1/68.9 66.1/73.5 76.4/80.1 84.1/87.3
iForest 60.5/62.8 59.7/64.0 55.8/57.7 62.2/66.8 63.3/68.2

Table 4. The Average F1/AUC Scores of AND on ESC-50 dataset.

Algorithm Mel- Spectrogram F-TDNN TDNN-LSTM ResNet-34 VGG-16

Stacked AE 68.9/69.8 65.5/67.6 58.1/60.4 68.9/70.1 71.6/72.7
VAE 53.4/58.9 60.9/64.4 59.9/62.2 67.4/68.8 66.3/69.7
kNN 67.9/70.7 66.6/68.3 60.1/63.8 70.9/71.8 70.4/71.1
GMM 71.0/73.8 68.1/69.8 59.5/64.7 71.2/73.4 71.9/73.4

OCSVM 68.9/71.4 64.3/66.8 58.8/60.0 65.7/68.8 68.1/69.4
iForest 52.2/54.2 56.1/58.2 48.1/52.8 56.2/58.1 59.2/60.1
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(a) The VGG-16 network with the AND methods
on Domestic.

0.0 0.2 0.4 0.6 0.8 1.0
False-Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
-P

os
iti

ve
 R

at
e

Stacked AE - AUC=0.92494
VAE - AUC=0.90271
kNN - AUC=0.93053
GMM - AUC=0.90835
iForest - AUC=0.9252
OCSVM - AUC=0.94929

(b) The F-TDNN with the AND methods on ESC-
10.
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(c) The VGG-16 network with the AND methods
on US8K.

0.0 0.2 0.4 0.6 0.8 1.0
False-Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

-P
os

iti
ve

 R
at

e

Stacked AE - AUC=0.91136
VAE - AUC=0.88628
kNN - AUC=0.89172
GMM - AUC=0.92657
iForest - AUC=0.81896
OCSVM - AUC=0.86398

(d) The VGG-16 network with the AND methods
on ESC-50.

Figure 2. The AUC curves of the best performances obtained in the AND scenario in which only one
event is known on the datasets: (a) Domestic, (b) ESC-10, (c) US8K, and (d) ESC-50.

When most of the events were known, but only one event was unknown, VGG
and F-TDNN provided the best novelty detection performances within most of the AND
experiments. The AND performances of the features with the best AND methods are
demonstrated in Figure 3a–d, which were obtained in the most complicated AND scenario;
that is, only one event was unknown.
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(a) The VGG-16, F-TDNN and ResNet-34 net-
work with the AND methods on Domestic.
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Figure 3. The AUC curves of the best performances of the AND methods in the most complicated
AND scenario in which only one event is unknown on the datasets: (a) Domestic, (b) ESC-10,
(c) US8K, and (d) ESC-50.

4.5. Results of the Incremental Class-Learning Experiments

In the ICL experiments, the performances of the LwF, iCaRL, and FearNet on the
audio feature types were obtained without AND, while incrementally learning the rest
of the acoustic event classes in a sequential way. The ICL performances were compared
for accuracy changes observed using a test set including several samples of all the known
events after each new event was learned.

Figure 4a–d demonstrates the changes in accuracy values while the LwF model was
incrementally learning the classes. In our dataset, Domestic, ResNet features provided the
best performance (Figure 4a), and VGG and ResNet obtained similar accuracy values after
each class was learned (Figure 4b). Furthermore, in the most complex datasets (US8K and
ESC-50) the deep features of VGG, ResNet and F-TDNN provided similar ICL performances
as shown in Figure 4c,d. The accuracy values decreased less than 20% at the end. The
worst ICL performance was obtained on each dataset using audio feature representations
by TDNN–LSTM.

In Figure 5a–d, the accuracy changes obtained using iCaRL are demonstrated on these
audio features. The best performance for each dataset was exhibited with the VGG features,
and the performances with the VGG and ResNet features were similar when using the ESC-
50, which comprised 50 distinct acoustic classes with several sounds. In addition, the worst
performances of the algorithm with the Mel-spectrograms and the deep features of the
TDNN–LSTM network were observed for each dataset. On the other hand, the FearNet
algorithm achieved the highest performance using the deep features of VGG and F-TDNN
(Figure 6a–d) compared with the other feature types. The best average accuracy value
using the deep features of VGG and F-TDNN was by the FearNet algorithm (Table 5). For
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ICL, the deep representations provided better results than the Mel-spectrograms using
all the ICL algorithms; therefore, the VGG and F-TDNN features were selected for the
experiment of ICL with GMM.
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(a) The ICL performance of LwF on Domestic.
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(b) The ICL performance of LwF on ESC-10.
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(c) The ICL performance of LwF on US8K.
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(d) The ICL performance of LwF on ESC-50.
Figure 4. The average accuracy changes while incrementally learning new classes by LwF on the
datasets: (a) Domestic, (b) ESC-10, (c) US8K, and (d) ESC-50.
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(a) The ICL performance of iCaRL on Domestic.
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(b) The ICL performance of iCaRL on ESC-10.
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(c) The ICL performance of iCaRL on US8K.
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(d) The ICL performance of iCaRL on ESC-50.

Figure 5. The average accuracy changes while incrementally learning new classes by iCaRL on the
datasets: (a) Domestic, (b) ESC-10, (c) US8K, and (d) ESC-50.
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The ICL performances of the FearNet algorithm on the datasets are demonstrated in
Figure 6a–d. For most of the results, the FearNet provided the best overall performances
on each dataset. However, the iCaRL algorithm also had suitable ICL performances, but it
is observed that the previously learned acoustic events were forgotten while incremental
learning using the LwF model. Therefore, in the last experiment, ICL with AND, the iCaRL,
and FearNet algorithms were used to learn the new events detected by the GMM algorithm
using the deep features extracted by the pre-trained VGG and TDNN (Section 4.6).
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(a) The ICL performance of FearNet on
Domestic.
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(b) The ICL performance of FearNet on ESC-10.
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(c) The ICL performance of FearNet on US8K.
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(d) The ICL performance of FearNet on ESC-50.

Figure 6. The average accuracy changes while incrementally learning new classes by FearNet on the
datasets: (a) Domestic, (b) ESC-10, (c) US8K, and (d) ESC-50.

4.6. Results of Incremental Class-Learning with Novelty Detection

Using VGG and F-TDNN features, the FearNet and iCaRL algorithms were used
for incremental learning on the new classes detected by GMM (Figure 1). In the AND
step, multiple different audio samples of an event may have been detected as a new class.
To evaluate the performances of ICL prediction, an audio sample of an event was labeled as
a pseudo-label of the event, and the accuracy values were computed regarding the actual
labels of the base events and predicted pseudo-labels. In Table 6, the average accuracy
values of five different experiments using the proposed approach are listed in which each
sample of an audio feature representation detected as a new class of acoustic events was
incrementally learned. In Figure 7, the changes of accuracy values obtained after the
detection of each new class are shown in which the best performance on the largest dataset
(ESC-50) was obtained by the FearNet algorithm using VGG features similar to the ICL
experiments. Furthermore, this experiment started with a randomly selected class, and the
GMM detected 214 new acoustic events over time.
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Figure 7. The performances of FearNet and iCaRL with GMM on ESC-50 in which the deep features,
VGG, and F-TDNN of new classes detected by GMM are incrementally learned.

Table 5. The average accuracy values of the ICL algorithms using VGG/F-TDNN features in five
experiments.

Algorithm Domestic ESC-10 US8K ESC-50

LwF 69.4/64.8 64.2/60.0 57.1/54.4 24.1/20.9
iCaRL 78.5/77.6 68.1/68.3 62.1/59.6 28.1/21.1

FearNet 80.7/81.4 74.3/71.0 63.8/59.5 30.8/24.7

Table 6. The average accuracy values of the ICL algorithms with GMM using VGG/F-TDNN features
and number of detected classes in three experiments.

Accuracy Values on VGG/F-TDNN and Number of Detected Events

Algorithm Domestic ESC-10 US8K ESC-50

iCaRL 56.4/51.0/26 48.0/44.3/36 42.4/36.2/40 14.4/9.7/226
FearNet 59.1/52.6/26 53.3/50.3/36 43.9/39.3/40 17.8/14.7/226

4.7. Discussion

The experimental evaluations demonstrated that a new acoustic class can be success-
fully detected and incrementally learned. The most suitable performances were presented
by the algorithms using the VGG features. Unlike TDNN–LSTM, F-TDNN provided satis-
fying ICL performances on these datasets. For the ICL of the detected classes, the iCaRL
method provided the best performance. Therefore, only audio information directly from
the targets can be used to achieve ICL of detected novel acoustic classes.

In the ICL experiments, we showed that the performances of the ICL algorithms in the
acoustic domain were comparable to the results in other domains such as computer vision,
image processing or pattern recognition. Therefore, the ICL with AND approach can be
used for various acoustic problems in which incremental learning of new tasks/classes
may be required (e.g., bioacoustic [64], acoustic anomaly detection [55], or robot audition),
and for multi-modal problems including sound such as audio-visual recognition tasks [65].

5. Conclusions

In this work, for the first time, the incremental class-learning (ICL) of acoustic events
was developed and investigated on different types of audio features in benchmark audio
datasets such as ESC-10, ESC-50, US8K, and our dataset, Domestic. Therefore, we proposed
a novel ICL approach by integrating it with an acoustic novelty detection (AND) method for
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human-like lifelong learning. In this study, the AND was employed in a semi-supervised
manner by retraining the AND model with features from the actual and augmented signals
of the recently detected novel event class. In the experiments, the performances of the
AND and ICL methods using five audio features, Mel-spectrograms, and deep features
of the pre-trained F-TDNN, TDNN-LSTM, VGG-16, and ResNet-34 were evaluated to
estimate the most appropriate feature types and algorithms for ICL with AND. In addition,
this study is one of the few works on the extraction of embeddings of acoustic events by
pre-trained TDNNs.

In the acoustic ICL tasks, new audio classes were detected by an AND algorithm,
and then ICL wass achieved on the detected new classes, while the ICL was applied to the
labeled novel classes in other ICL works.

Regarding future work, the number of acoustic event classes to be recognized will be
increased to the order of hundreds and the performance of the proposed approach will be
verified. Furthermore, due to the availability of a large amount of instances belonging to
unknown classes in addition to previously learned classes, a semi-supervised method will
be developed to incrementally learn the instances of unknown and known classes.
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