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Abstract: The incidence of cardiovascular diseases and cardiovascular burden (the number of deaths)
are continuously rising worldwide. Heart disease leads to heart failure (HF) in affected patients.
Therefore any additional aid to current medical support systems is crucial for the clinician to forecast
the survival status for these patients. The collaborative use of machine learning and IoT devices
has become very important in today’s intelligent healthcare systems. This paper presents a Public
Key Infrastructure (PKI) secured IoT enabled framework entitled Cardiac Diagnostic Feature and
Demographic Identification (CDF-DI) systems with significant Models that recognize several Car-
diac disease features related to HF. To achieve this goal, we used statistical and machine learning
techniques to analyze the Cardiac secondary dataset. The Elevated Serum Creatinine (SC) levels
and Serum Sodium (SS) could cause renal problems and are well established in HF patients. The
Mann Whitney U test found that SC and SS levels affected the survival status of patients (p < 0.05).
Anemia, diabetes, and BP features had no significant impact on the SS and SC level in the patient
(p > 0.05). The Cox regression model also found a significant association of age group with the
survival status using follow-up months. Furthermore, the present study also proposed important
features of Cardiac disease that identified the patient’s survival status, age group, and gender. The
most prominent algorithm was the Random Forest (RF) suggesting five key features to determine
the survival status of the patient with an accuracy of 96%: Follow-up months, SC, Ejection Fraction
(EF), Creatinine Phosphokinase (CPK), and platelets. Additionally, the RF selected five prominent
features (smoking habits, CPK, platelets, follow-up month, and SC) in recognition of gender with an
accuracy of 94%. Moreover, the five vital features such as CPK, SC, follow-up month, platelets, and
EF were found to be significant predictors for the patient’s age group with an accuracy of 96%. The
Kaplan Meier plot revealed that mortality was high in the extremely old age group (χ2 (1) = 8.565).
The recommended features have possible effects on clinical practice and would be supportive aid
to the existing medical support system to identify the possibility of the survival status of the heart
patient. The doctor should primarily concentrate on the follow-up month, SC, EF, CPK, and platelet
count for the patient’s survival in the situation.
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1. Introduction and Related Work

An IoT and wearable monitoring systems are two emerging technologies expected
to have a wide range of applications in healthcare. The integration of IoT aspects into
medical devices improved the quality and effectiveness of the healthcare industry service.
IoT incorporation into the health sector has led researchers worldwide to build intelligent
applications such as mobile health care, healthcare suggestions, and competent healthcare
systems. Smart wearable gadgets can be used for collecting patients’ health condition
data, e.g., fructose levels, pulse rate, BP levels, and these data can be tracked constantly
via wearable device sensors and transmitted to smartphones [1]. The sensor nodes of the
Electrocardiogram can be connected to the IoT network, and the plug and play feature
can be used to back up [2]. The collected data is stored on the cloud server via IoT
technologies. It allows remote access to both real-time and historical data. IoT gadgets will
offer a healthy life at a lesser price. To monitor patients’ heart rate, Abdel-Basset et al. [3]
presented the IoT-based framework with computer-supporting diagnostics for obtaining
real-time data. The collected body sensor data was taken from users’ mobile via Bluetooth
technology and transmitted to the cloud. Kumar et al. [4] recommended a scalable three-tier
architecture. Tier 1 was responsible for compiling the wearable sensor IoT device data.
Apache HBase was used by Tier 2 to efficiently save the wearable IoT sensor data in a cloud
environment. Tier 3 then used Apache Mahout to set out a cardiovascular logistics-based
prediction system. The Cloud and IoT-based mobile healthcare application with fuzzy
temporal neural classifier were developed to monitor and diagnose serious illnesses [5]. S.
J. Park et al. [6] proposed an IoT-based consumer stroke prediction system to predict the
disorder and healthy gait with more than 95% accuracy given by the C5.0 model. Further,
the same author identified the stroke based on IoT sensors to support elderly drivers while
driving [7].

Usually, the symptoms of cardiovascular disease (CVD) differ by gender in the patients.
For example, a male patient is more likely to experience chest pain than a female patient.
It was reported that female heart patients suffer from nausea, excessive exhaustion, and
shortness of breath [8]. Researchers have been experimenting with a range of strategies
to predict Heart Disease (HD). Angiography is the most precise and effective tool for
predicting cardiac artery disease [9]. Still, it is costly, making it out of reach for low-income
families, so scientists and researchers are looking for other ways to predict the outcome
with detection of precise causes.

SS is routinely measured to determine electrolyte, acid-base, and water balance, as
well as renal functionality in our body. The ideal range of the SS is 135–147 mmol/L.
The leading cause of HF is higher fluid retention due to high sodium intake in the body.
That’s why a sodium-free diet is recommended for the general public to avoid the HF
disease, and also it was found to be linked with BP and hypertension [10–12]. Moreover,
the sodium intake significantly impacts the renin, aldosterone, noradrenaline, adrenaline,
cholesterol, and triglycerides [13]. Mohammed W Akhtar et al. [14] found that the renal
insufficiency (abnormality in SC) in HF patients also increased five times more risk of death.
Several studies had identified and supported the close connection between hypertension
and dietary sodium intake. The blood sugar levels in people with diabetes could rise to
dangerously high levels, causing health problems such as renal insufficiency [15]. Abede
Tamrat et al. [16] found significant differences among hemoglobin, creatinine, and salt
levels of anemic and non-anemic levels of patients.

Frequent Smoking could be a cause of atherosclerotic CVD [17]. Huxley RR et al. [18]
noticed more HF among the young chain-smoker in the south Asian small group of study,
and the authors also verified the sexual disparity among them.
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Machine learning plays a critical role in every field of life such as medicine, engineer-
ing, industry, and education. Several popular machine learning algorithms are available
today to solve the complexity and non-linear interaction between various variables. Re-
searchers are encouraged to use machine learning algorithms in healthcare to analyze the
data and make precise diagnostic decisions. Multiple studies have been done with different
classification algorithms in health analytic to identify the CVD in patients [19]. Old age
people were vulnerable to HD due to the degradation of cardiovascular functionality in
their bodies [20,21]. According to the American health association, a total of 86% CVD
patients were found suffering from the CVD [22]. The cox regression model had been used
for the assessing the HF patient’s survival and reported a 32% mortality rate due to CVD.
In addition, it was also found that EF, age, creatinine (creatinine > 1.5 renal dysfunction),
sodium, anemia, and BP had a significant mortality rate. Smoking and diabetes were not
found significant toward HF death. Sagar B. Dugani et al. [23] found that women were
more vulnerable to cardiac disease, and risk profiles changed by age at the start of diabetes.

Further, the age group was predicted in the cancer patients using artificial neural
network (ANN) with the accuracy of 59.09%. Alcohol abuse, Industrial hazard, estrogen
exposure, and papillomavirus were significant key features with the help of the recursive
feature elimination technique [24]. Adam S. Vaughan et al. [25] concluded that the mortality
of HD decreased in all age groups (35–44, 45–54, and 65–74) except between 55–64 years
of age. Sagar B. Dugani et al. [23] found diabetes and insulin resistance, together with
hypertension, obesity, and smoking,as the most potent risk factors for the HD. Despite
higher morbidity, it had been reported that women consistently had a lower rate of mortality
than men in the assessment of death rate related to CVD [26]. Older females were confirmed
to have a higher risk of CVD than age-matched men [27,28].

Villa et al. [29] examined the impact of gender on HD patients and found that women
were generally safe from CVD before menopause, but their risk increased dramatically
after menopause. Edward Korot et al. [30] used the auto ML model with the images of the
retinal fungus and predicted the gender from the UK Biobank dataset with an accuracy of
88.8%. SVM showed promise as the best classifier with LOSSCV hyper-parameter tuning
in identifying the HD with an accuracy of 92.37% [31]. Davide Chicco et al. [32] predicted
a patient’s survival with two most significant key features (EF and SC) using Matthew
Correlation Coefficient (MCC) of 0.61, and accuracy of 83.8%. ABID ISHAQ et. al [33]
also designed and developed patient’s survival classification but with Synthetic Minority
Oversampling (SMOTE) technique due to the existence of imbalance in the target variable
and obtained accuracy of 92.62% with the ETC classifier.

The structure of the present paper is divided into thirteen sections. Section 2 frames
the problem statement of the research. Section 3 outlined the major contribution and
the significance of the present research. Section 4 elaborated the state-of-the-art research
objectives, design and methods. Section 5 explained the machine learning Models with
Hyperparameter tuning. Section 6 presented the encryption and remote access. Section 7
presented a proposed simulation setup for the present research. Section 8 focused on the
basics of applied machine learning algorithms. Section 9 debated the on the various perfor-
mance evaluation metrics. Section 10 reflected the results of seven experiments. Section 11
discussed the findings of the experiments. Section 12 presented the limitation of the study.
Section 13 concluded the real crux of the extant research with the future proceeding.

2. Problem Statement

The IoT-based health monitoring system seems promising to reduce the death rate
and economic percentages of HF expenditures. There is always a high demand for an
efficient system that can carry out intelligent data analysis. Unfortunately, few existing IoT
diabetic surveillance types of research focused on the improving in the system response
performance, but these lack the predictive analysis [34,35].

Data consumers can avoid the high expenses of local storage and management by
outsourcing their data to the cloud, but the users’ concerns about sensitive data privacy
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and security in the cloud are legitimate given the cloud servers’ lack of trust and the fact
that outsourced data may contain sensitive information. Sensitive data can be encrypted
before being transferred to the cloud to mitigate this issue. We can save the encrypted
medical data in the cloud to prevent patient information from being leaked and later can be
used in processing after decryption [36]. We used a standard public key encryption method
in which the data is encrypted using the public key method but only owner can decrypt
the data with his/her private key. A growing number of researchers have been working on
public key encryption techniques to achieve the various security related functionalities.

Doukas C. et al. [37] proposed a IoT enabled Cloud-based system in which data
were acquired by wearable devices such as biosignals, ambient temperature etc. that
were in turn then passed to a gateway using established IoT communication mechanisms
and subsequently to Cloud infrastructure. The gateway was responsible for capturing
the signals and patient data and after that apply user access control as well as security
transmission mechanisms by applying data encryption.

Over the last ten years, a theme has emerged for confirming the study of gender-based
disparities in Coronary Heart Disease (CHD) as a foundation for clinical initiatives to
enhance women’s outcomes [38,39]. It was found that the women were more vulnerable
to CVD and SC related problems [40,41]. Therefore, it is imperative to study SC, SS, and
gender-related features and to find the significant impact of smoking, BP, and diabetes.
The Cox regression method for survival analysis may be employed to examine the effect
of various existing demographic features on time-specific occurrence. New methods for
accurate identification of CVD and other features are still needed to address these issues.
Prediction accuracy without using SMOTE and further related performance enhancement
is a significant challenge and gap of the research. Therefore, there is a need to improve
and extend analytical work on other aspects of HD with IoT technology. Table 1 shows the
comparative analysis of the current versus extant researches towards HD.

Ahmad T. et al. [42] used Cox regression model to predict the mortality. Breiman
predicted survival– status with RF using SMOTE [53]. Chico D. [32] predicted Survival-
Status on the same dataset. The accuracy was 74%, and it needs another hyperparameter
tuning to improve the results. The Cox regression model can identify the specific age group
of HF patients that is more vulnerable to mortality. In addition, statistical methods are
appropriate to determine the impact of patient’s SC and SS on health-related complications
such as diabetes, anemia, High BP, and the effect can be measured on the survival status.

These significant cardiac models need to be transformed into the IoT enabled frame-
work to automate the impact and predictive identification system to develop an intelligent
health care system for cardiac patients.

Table 1. Previous research Versus Extant research.

Ref. Tech. DV FS Algo. CV-HP Multcol. IoT

[4] IoT based 3-Tier Architecture, Wearable Sensors,
Apache Hbase, Apache Mahout, LR Heart Disease × × ×

√

[5] Fuzzy Rule based Neural Network, Cloud and
IoT based Diabetes disease × × ×

√

[14] T-Test, Fisher Exact Test SC,
Renal Insufficiency

× × × ×

[30] Code free deep learning model Gender × × × ×
[31] LR, K-NN, ANN, SVM (RBF),

SVM (Linear), NB, DT, LOSOCV,
Feature Selection

HD
(Present/Absent)

Relief, MRMR, LASSO,
LLBFS, FCMIM

LOSO X X

[32] RF, DT, GBM, LR, ANN, NB, SVM (RBF),
SVM (Linear), KNN, MCC

Survival Check
(Survived / Dead)

RF Grid Search × ×

[33] Stratified cox proportional
Hazard regression model

4 Age-Group examined
with Survival Analysis (time-to-event)

Statistical Analysis × × ×

[42] COX Regression Model EF levels (EF 45)
with Survival (Time to event)

Statistical Analysis X X X

[53] SMOTE, DT, Ada-boost, LR, SGD,
RF, GBM, ETC, NB, SVM

Survival Check
(Survived / Dead)

RF × × ×

Present
Mann–Whitney U-Test, χ2 test,

MS-AZURE,Raspberry pi4,Wearable
Sensor medical devices,

Cox Regression,DT, LR, GBM, GNB, RF,
SVM (RBF), KNN, XGB, VIF, MCC, PKI

Survival-Status (Alive/Dead),
Age-Group,

Gender, SC and SS

RF,XGB Grid Search
√ √

Source: Own elaboration.
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3. Contribution and Significance

In our research approach,we used statistical verification techniques to test significant
features of CVD patients like SC, SS, and other relevant elements. Additionally, the present
research proposed a secured IoT enabled framework based on statistical methods, machine
learning techniques, Raspberry-Pi4, cloud-based Azure server, database, wearable sensor
and public key encryption techniques. The relevant cardiac features (SS, SC, EF, platelets,
and CPK) are also proposed in the framework. The summarized contribution of the present
work is as follows:

• The multi-collinearity removal feature is applied to enhance the accuracy of all pre-
dictive algorithms for patient’s demography with selected features. Additional, a
10-fold CV method found the best generalization to a robust predictive model among
eight machine learning classifiers based on MCC, F1-Score, and accuracy ranking
performance metrics.

• The model also facilitates verifying the impact of patients’ complication levels like
anemia, BP levels, diabetes levels towards SC and SS using Mann-Whitney non-
parametric test. Further, gender and smoking level association are also verified with
χ2 statistics.

• The proposed model also used the Survival analysis tool for ascertaining the impact
of age group levels on the Survival-Status levels variable.

• This model resolved security issues through the digital certificates and PKI data
encryption to ensure the security of patients’ data.

• During unprecedented time of Covid-19 pandemic, the presented IoT framework has
an important utility for the patients in their self-isolation or self-quarantine. They
can also send their daily health symptoms to their doctors via their IoT wearable
devices. Therefore, the existing health system can also be improved and rapid with
the present research.

The major significance of the research is summarised below:

• The present IoT based framework can be helpful in decision-making method that
accurately predicts patient’s demography like age group (Adult and Very Old), Gender
(Woman/Man) and Survival-Status (Alive/Dead) of cardiac patients.

• The selected significant features such as SS, SC, EF, platelets, and CPK might be helpful
to cardiac doctors to diagnose their patients.

4. Materials and Methods
4.1. Objectives

After comprehensive review on existing studies with a focus on current deficien-
cies,we framed seven objectives to address a significant research gap. Out of seven, the
first four required statistical analysis, and the rest of three need predictive analysis with
machine learning.

• Objective 1: To explore the impact of SC and SS on the Survival-Status level of the
patient.

1. H_01: No significant difference between Alive and Dead towards SC and SS.

• Objective 2: To explore an impact of SC and SS on anemia, diabetes, and High BP
levels of the patients.

1. H_02a: No significant difference between non-anemic and anemic levels towards SC
and SS.

2. H_02b: No significant difference between non-diabetic and diabetic levels towards SC
and SS.

3. H_02c: No significant difference between Normal BP and High BP towards SC and SS.

• Objective 3: To explore the association of gender and smoking habit of the patient.

1. H_03: No significant association between gender with smoking habits.
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• Objective 4: To explore the impact of age group on the survival-Status levels (cen-
sored/Dead) of the patient.

1. H_04: No significant association between Age-Group levels and Survival-Status levels.

• Objective 5: To identify the Age-group of HF patient based on significant features.
• Objective 6: To recognize the gender of HF patient based on significant features.
• Objective 7: To predict the HF patient’s Survival-Status levels based on the significant

features.

4.2. IoT Enabled CDF-DI Framework

Figure 1 showed the proposed framework with six primary components: Health
wearable sensors devices, Raspberry Pi-4 with PKI module, Azure IoT Hub, Azure Cloud,
UCI data repository data sets, CDF-DI Monitoring System, Cardiac patient dashboard, and
mobile for getting any update.

Figure 1. Conceptual Design of CDF-DI integration with IoT Framework.

Here, wearable health sensors devices are IoT devices. These gadgets can help in
collecting the patients’ medical information from remote regions. Medical data are obtained
with IoT instruments attached to the human body. Azure IoT hub is collecting the sensor
data with its registered Raspberry Pi microcomputer system with cryptography module for
privacy and security of data. Azure IoT hub, in its turn, send data to its cloud for storage.
The UCI HF dataset is also used here for training and validating the CDF-DI monitoring
system. All of these datasets (Sensor data and UCI dataset) have been uploaded to a
cloud database. Finally, the CDF-DI monitoring system performs statistical and predictive
analysis. The final prediction analysis is displayed to the doctor for information on the
cardiac patient dashboard.

There are three phases in the proposed Cloud and IoT-based health care system. The
essential data is collected from IoT devices, the UCI repository, and medical history data in
the first stage. Phase two is used to store collected records on cloud databases safely. Phase
three is responsible for the prediction and diagnosis of the condition. Phase-3 has sub
modules which predict the Gender, Age-Group, and Survival-Status of patients utilizing
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various machine learning classification algorithms (RF, XGB, SVM, DT, GNB, GBM, LR,
and k-NN). The second submodule is responsible for verifying the impact of SC and SS on
the patients’ complications like anemia, diabetes, BP, and Survival-Status. The survival-
Analysis approach is also helping to asess the mortality outcome for a specific patients’
age group in the CDF-DI monitoring system. Another sub-module verifies the association
between Gender and smoking level of HF patients.

In addition to these functionalities, the system will also send all notification updates
to the doctors and patients family about the status of their patients to the registered mobile
numbers and also sound alarms when the patient’s body metrics deviate from the normal
benchmark [44].

4.3. Work Flow Diagram

Figure 2 visualizes the workflow of the proposed IoT enabled CDF-DI healthcare
framework. The presented CDF-DI monitoring system provides three services: Classifica-
tion, association, and impact identification with cloud-based edge technology. It provides
several significant features to classify the patients’ survival status, age group, and gender.
It supports an association of gender with smoking level and age group with survival status.
Additionally, it explored the impact of SC and SC on the patients’ health complications
levels. The participants like patients, nurses, and doctors can query to avail these ser-
vices provided from their mobile and computers remotely. The generated queries shall
be forwarded to the Azure cloud server, and handled with the Raspberry-Pi to collect
patients’ data through its wearable IoT devices. Now, sensitive information of patients can
be stored on a cloud server using the PKI encryption technique. These encrypted data will
be decrypted with the private key and entered into the CDF-DI system to avail the desired
service.

Figure 2. Workflow of IoT Based CDF-DI Framework.

4.4. Dataset Description

This research used HF clinical dataset obtained from the UCI Machine Learning
repository [45,54]. The dataset has a total of 13 features with 299 records of heart patients.
The data are collected during the patients’ follow-up months. There are 194 men and 105
women among the 299 patients. The average follow-up period was 130 days, ranging from
4 to 285 days. Renal insufficiency is indicated by an SC level which is higher than the
average level (1.5). There are no missing values. Table 2 shows the description (narrative,
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ranges, measurement units). Dataset has six categorical (binary) variables. The age of the
patients are lies between 40 to 95, with a mean value of 60.83.

Figure 3 shows the distribution plot of metric variables available in the dataset.
Figure 3a illustrates that non-normal EF distribution (p < 0.05) with mean of 38.08. Figure 3b
displays the non-Normal distribution of the CPK with a mean of 581.84 with 251.49 kur-
tosis and 4.48 skewness. Figure 3c visualizes the non-Normal distribution, and it has a
mean of 263358.03 with 6.21 kurtosis and 1.46 skewness. Figure 3d depicts a non-normal
distribution of SC, and its mean was 1.40. The kurtosis and skewness are 25.83 and 4.46,
respectively. Figure 3e graphs the non-normal distribution of SS having a mean of 136.36
with the Kurtosis of 25.83 and skewness of 4.46. Figure 3f displays, and it is evident that the
SS has non-normal distribution with 136.63 means. The lower bound and upper bound are
136.12 and 137.13, respectively, with 4.41 SD. Patients’ Follow-up months distribution plot
is displayed in Figure 3f. From day 4 to day 285, the follow-up month mean is 130.26 found.
The absence of normality is also there with 77.61 SD.

Figure 3. Dataset Distribution (a) EF, (b) CPK, (c) C-platelets, (d) SC, (e) SS, (f) Follow-up.



Sensors 2021, 21, 6584 9 of 30

Table 2. Dataset Description.

Continuous Variables Categorical Variables

Attribute
Name Description Range Measured in Attribute

Name Description Range

Platelets Platelets in blood 25,100–85,000 kiloplatelets
/mL Gender Woman/man 0–1

Age Age of Patient 40–95 Years Smoking Yes/No 0–1
SS 135.39 114–148 mEq/L Diabetes 40 (42%) 0–1

SC Level of creatinine in
the blood 0.50–9.40 mg/dL High BP Yes/No 0–1

EF
Percentage of leaving

the heart at each
concentration

14–80 Percentage Anaemia
Decrease in Red

Blood
Cell/Haemoglobin

0–1

CPK Level of CPK
enzymes in the blood 23–7861 Mcg/L Survival-Status Died / Alive 0–1

Time Follow up Month 4–285 Days
Source: Own elaboration.

4.5. Preprocessing

Variance inflation factor (VIF) is a measure of the amount of multicollinearity in
explanatory variables. The highest VIF leads to the issue of multicollinearity. Usually, its
score should be less than 10 [46]. Therefore, multicollinearity is identified in SS, Age, EF
features of the dataset. To remove it, a backward elimination method is used for feature
selection. Tests for correlation and multicollinearity among features were employed using
the VIF. After the removal of only two features: SS and Age, the VIF scores are found
significant. Equation (1) shows the estimation of the VIF value of an attribute a ∈ A is
determined from a dataset D = (A, X) using a standard linear regression. Where R is a
regression coefficient of determination.

VIF(a) =
1

1− R2 (1)

Further, to classify the age group of the patients towards survival in HF, the “Age
group” has been derived as a novel feature from the existing age feature. It has been
transformed using binning (bucketing) into two categories: Adult and very old. The
encoding of Adult and very old has been set to 0 and 1, respectively. After bucketing,
129 patients belong to an adult, and 170 relate in Very Old categories. Table 3 shows
the significant features after applied VIF with backward elimination. The model has
considerable multicollinearity based on gender and age group as target features (VIF > 10).

Z-score is one of the most significant standardization procedures that may be carried
out by subtracting the mean and dividing the standard deviation for each value of each
feature [47]. Equation ( 2) shows the z-score calculation where the µ is the mean and σ is
the SD of given continuous feature.

z =
x− µ

σ
(2)

Standardization is applied on the dataset during preprocessing part of the SVC classi-
fier in the 10-fold CV method of gender, age group, and survival-status prediction.
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Table 3. Feature’s VIF of Gender and Age.

towards Gender towards Age

Features VIF Score VIF score (Backward
Elimination) VIF Score VIF score (Backward

Elimination)

Age 30.12 Removed 30.40 Removed
Anaemia 1.90 1.79 1.91 1.79

CPK 1.45 1.40 1.46 1.42
Diabetes 1.78 1.75 1.79 1.75

EF 13.09 7.78 13.35 7.91
High BP 1.63 1.57 1.65 1.57
Platelets 8.49 7.02 8.64 7.02

SC 3.13 3.03 3.13 3.05
SS 58.37 Removed 61.55 Removed

Smoking 1.55 1.47 3.81 3.29
Time 5.65 4.02 1.89 1.89

Survival-Status 2.46 1.94 5.66 4.16
2.47 1.97

Source: Own elaboration.

5. Models Hyperparameter Tuning

ML model’s efficiency can be increased on the given dataset by tuning hyperparame-
ters. The method of hyperparameter selection is one of the most critical characteristics of
ML models. Optimization of hyperparameters may be described as follows in Equation (3):

x∗ = arg.mxεX f (x) (3)

Here f (x) denotes the objective score to minimize the validation set errors, x* is the
minimum score hyperparameters collection, and x may assume any domain value of X.
The hyperparameters are tuned at 10-fold Grid Search CV to maximize the MCC score. The
following listed parameters were utilized for ML models.

Hyperparameter search space is reflected in Table 4 for this research. In the RF
classifier, the max sample parameter is managed if bootstrap = True (default), otherwise the
entire dataset will be used to make a tree each [48]. For all proposed classifiers (Age-Group,
Gender, Survival Prediction), Gini is used as a criterion and to measure the quality of a
split, max-feature set to 7 for the best split, min-sample-leaf set to 2 as the least sample
number necessary for the leaf node. The number of the decision tree is set by 50 using an
n-estimators parameter. DT classifier, Gini with the max-features set as a log. The max
depth and minimum sample split are set to 50. The SVM classifier regularization parameter
is set as C (10) with a radial basis kernel. Gradient boosting classifier (GBM), a Learning rate
of 0.001 reduces each tree’s contribution. The interaction of the input variables determines
the best value is set as 3 with a number of an estimator (n_estimator) is 1000.

Table 4. Model Hyperparameter Tuning.

Classifier Model Tuning Parameters

RF criterion= ’gini’, max_features= 7, min_samples_leaf=2,
min_samples_split= 2, n_estimators=50

DT criterion=’gini’, max_depth=50, max_features= ’log2’,
min_samples_leaf= 1, min_samples_split= 50

SVM C=10, gamma= 0.001, kernel= ’rbf’
GBM learning_rate=0.001, max_depth= 3, n_estimators=1000, subsample= 0.5
XGB Gamma = 0, learning_rate = 0.1, max_delta_step = 2, max_depth = 6,

min_child_weight = 4, n_estimators = 200, reg_alpha = 0, reg_lambda = 8
k-NN metric=’manhattan’, n_neighbors= 3, weights= ’uniform’

LR C=1.0, penalty= ’l2’, solver= ’newton–cg’
Source: Own elaboration.



Sensors 2021, 21, 6584 11 of 30

XGB, a scalable end-to-end tree boosting method commonly used by data scientists
to achieve state-of-the-art results on a variety of machine learning challenges [49]. To
avoid overfitting, step size shrinkage was used in the update (eta aka learning rate) set as
0.1 and gamma set as 0. Maximum depth of tree set as 6 and increase this result model
become more complex with minimum child weight set as 4 with 200 trees in the forest
(n_estimator). In k-NN, n_neighbour set as 3 with mahanntan metric and weight set as
uniform. Newton-cg is set as a solver to handle the multi-class problem, and newton-cg
handles only l2 penalty with regularization parameter C set as 1.0 in LR classifier.

6. Encryption and Remote Access

The IoT has the ability to connect a wide range of medical devices, sensors which
helps the healthcare specialists to provide excellent medical services at a remote location.
Therefore the safety for patients, healthcare costs, accessibility of healthcare services, and
operational efficiency in the healthcare industry have all improved with the adoption of
IoT techniques [50]. PKI can boost the trust significantly while exchanging the data in
an unsafe environment, such as an IoT and over the cloud. Even If the hacker steals the
public key, retrieving the private key would be computationally impossible because of the
complexity involved in its calculation. In addition to secure data transmission, effective
device authentication can be accomplished via PKI digital certificates. This idea can be
implemented on Raspberry-pi device with public key cryptography technique on the IoT
sensor collected data and further the encrypted data can be sent to the cloud storage.
Further this CDF-DI analysis system can analyze this data after making the decryption of
stored data with their private key.

The proposed remote smart healthcare support system would allow patients to be
monitored for their health condition and to receive prescriptions from their doctors while
they’re at remote location (home). Moreover, doctors can also carry out the diagnosis of
ailments using the data collected remotely from the patient. An Android-based mobile
application that connects with a web-based application allows for efficient patient-doctors
dual real-time communication.

A Raspberry-pi microcontroller will perform the overall task of the system. IoT based
wearable devices: BP monitoring, platelet counter, glucose monitoring, blood cretanine
analyzers are connected to the Raspberry-pi for gathering and data transmission to Azure
cloud and also to the mobile application for home control. Raspberry-pi has some digital
pins can be used to relay the settings of the wearable devices [51].

7. Simulation Setup

An IoT-based proposed framework integrates various elements: Wearable sensors
devices, Raspberry Pi device, MS-AZURE IoT hub (acting as a gateway) for transferring
data to the cloud system. Along with patient identity, their follow-up months, age, and sex
are maintained inside the system. In the absence of an instrument to assess EF, a pseudo-
random number method generates 14 to 80. The BP parameter is measured using Omron
HeartGuid-bp8000m, which provides cloud data and mobile telephone notifications. It is
used for setting the High BP value when the input value becomes greater than the Normal
level. Abbott’s FreeStyle Libre System monitors glucose levels. Anemia and smoking are
also retrieved from the patient’s medical history records. The Raspberry Pi single-board
computer [52] is used to capture and process the data. Table 5 lists the hardware required
for this experiment.
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Table 5. Proposed Hardware for CDF-DI System.

Hardware Description

HeartGuideBP8000m Omron Wearable smartwatch for BP monitoring
PC100-Platelet

Counter Point of Care Platelet/Thrombocyte Counting

Freestyle Libre
Flash Glucose

Monitoring System
Wearable Sensor, ASIN: B08M1CMWZW

Raspberry Pi4 1.5 Ghz quad core 64 bit ARM cortex A-72CPU
Personal

Computer/Laptop Intel® coreTM i3 processor

Nova StatSensor Creatinine Portable, Biosensor Blood Creatinine Analyzer/Miniaturized

8. Machine Learning Experiment Design

The present paper experimented on machine learning binary classifiers for prediction
on given dataset using: DT [43], RF [53], k–NN [54], LR [55], XGB [56], GBM [57], GNB [58],
Linear, Radial SVM [59]. Table 6 shows the employed machine learning classifiers. The
experiment trained and tested with it 10-fold cross-validation using the grid search CV
method. Each model was trained with a different hyper-parameter on the training set
applied it to the validation set and then chose the model with the highest MCC to apply to
the test set. In this experiment, we repeated experiments ten times for all classifiers and
documented the highest result for MCC. We arranges the result table according to ranking
based on MCC first, F1-Score (second), and then finally, results were arranged based on
accuracy. Results were displayed on the theme of different metrics, different ranks. The
three rankings we applied to the report yielded the same results, revealing intriguing
features, when ranking based on MCC, F1-score, or the accuracy, the top classifier changes.

Table 6. Machine Learning Models.

Model Description Reference

DT DT is an algorithm of classification which works well on categorical and numerical forms of data. It is
generally used to build tree-like structures. Medical data can be analysed easily with good accuracy. [43]

RF
RF is a model of tree-based ensemble learning that produces exact prediction by combining several weak

learners. This model uses the bagging technique for training a range of decision tree with different
bootstrap samples

[53]

k-NN

When compared to a collection of known data, the k-NN method allows us to identify unknown data by
calculating the distance or similarity of an unknown datum. It assigns a class to the datum based on the
number of neighbors with the same class who are the nearest to it. k controls or indicates the number of

neighbors used in the decision.

[54]

LR LR typically predictive analysis based on the concept of probability. Binary categorical variable is
predicted by one or more independent variable using sigmoid function [55]

XGB
The XGB is a popular ensemble learning algorithm that uses DT models in the background for
computation. It is a highly effective scalable machine learning algorithm. It combines multiple

weak-learner to build a strong classifier proved a better classifier.
[56]

GBM Many weak classifiers work together to build a powerful model for learning on the GBM. It usually time
taking process due to creation of many independent tree. It has ability to deal with missing values [57]

GNB
GNB is a naive bayes variant that works with gaussian distributions and is used for continuous data.

The prior and posterior likelihood of the class in the data are involved in conjunction with a function that
has constant values. All of the features are often assumed to obey a gaussian or regular distribution

[58]

SVM

SVM is a mathematical model-based supervised learning technique. It is used to solve problems
including regression and classification problems. It classifies data by creating high-dimensional
hyperplanes, also known as decision planes. Hyper planes are used to separate one form of data

from another

[59]

Source: Own elaboration.
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9. Performance Evaluation Metrics

Scientific research uses a variety of performance matrices to assess prediction ac-
curacy [60–62]. In binary classification problems, accuracy and F1-Score derived from
Confusion matrics (CMs) have employed metrics for performance evaluation. The propor-
tion of actual negatives that were predicted as negatives is known as specificity (or True
Negative Rate (TNR)) in Equation (4).

TNR =
(TN)

(TN + FP)
(4)

The recall or sensitivity in Equation (5) is a metric to detect the true positives instances
in a model. It identified actual rates of patients with HF.

Recall =
(TP)

(TP + FN)
(5)

Precision is the ratio of True Positives to all Positives in its most primitive sense as
described in Equation (6).

Precision =
(TP)

(TP + FP)
(6)

The ratio of the overall number of correct predictions to the total number of predictions
is known as accuracy as described in Equation (7).

Accuracy =
(TP + TN)

(TP + TN) + (FP + FN)
(7)

The Harmonic Mean of Precision and Recall is the F1-Score as described in Equation (8).
It helps to sustain stability between precision and recall.

F1− Score =
(2× TP)

2× TP + FP + FN
(8)

Equation (9) shows the Mathews Correlation Coefficient (MCC). It would be a more
accurate statistical measure that only yields a high score if the prediction performed well
in all four CMs groups (true positives, false negatives, true negatives, and false positives)
despite imbalance dataset [63]. The MCC would produce a high score only if the binary
predictor are able to correctly predict the majority of positive data instances and the
majority of negative data instances while working with binary classification [64]. It has the
worst value of -1 and the best value of +1.

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(9)

10. Experiments and Results
10.1. Experiment-1

This experiment was conducted to verify the significant differences between Alive (0)
and Dead (1) patients towards their SC and SS level using non-parametric Mann–Whitney
U-test. Table 7 shows the U test statistics with p-values for both SC and SS.

Table 7. Impact of SC and SS on Survival-Status of the Patient.

Parameter Distribution Normal Homogeneity in Variance µ Rank U Sig. 2-tailed (p)

SC × × 0: 128.10 5298.00 0.00 *1: 196.31

SS ×
√ 0: 162.40 7226.50 0.00 *1: 123.78

Source: Own elaboration. * is 0.05 significance level.
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It was observed that Survived and Non-Survived patients’ SC were significantly
different (U = 5298, p < 0.05). It was evident from the nonidentical mean rank of Survived
and Non-Survived patients’ SC (µ rank : 128.10 & 196.31). Test results indicated a higher
non-survived patient’s level than in survived patients.

In the case of SS, the difference in mean ranks (µ rank : 162.40 & 123.78) could also be
observed. Thus, the SS of survived patients (µ rank : 162.40) was higher than non-survived
patients (µ rank : 123.78). A Mann–Whitney U test indicated that this difference was
statistically significant (U = 7226.50, p < 0.05).

Figure 4 displayed the substantial differences in SC with mean rank (µ rank : 128.10 &
196.31) of survived and non-survived patients. Hence, it could be easily concluded that non-
survived patients’ SC level was greater due to HF. However, in the case of SS, the reverse
scenario could be observed. Non-survived patient’s SS level became low (µ rank : 123.78
& 162.40) when a patient suffered from HF. Therefore, this experiment results indicated a
statistically significant impact of SC and SS on the Survival-Status of the patients, i.e., we
rejected the null hypothesis H_01.

Figure 4. SC and SS Impact on Survival Status.

10.2. Experiment-2

The experiment was conducted to test the three null hypotheses (H_02-H_04) to
verify the differences in SC and SS towards anemic, diabetic, and high BP levels. All the
hypotheses were tested with a Mann Whitney U test.

Table 8 shows that the Mann–Whitney U-test statistics of related hypotheses: H_02_a,
H_02_b and H_02_c experiments results. We found no significant p-values in anemic levels
(Non-Anemic (0) and Anemic (1)), diabetic levels (Non-Diabetic (0), Diabetic (1)), and BP
level (Non-BP (0), BP (1)) towards SC and SS.

Table 8. Impact of SC and SS w.r.t Anemic, Diabetic and BP levels.

Variable & Assumptions Anemic Levels Diabetic Levels BP Levels

Parameter Distribution
Normal

Homogeneity
in Variance µ Rank U p µ Rank U p µ Rank U p

SC ×
√ 0:151.22 10758 0.779 0:149.86 10850.0 0.973 0: 155.67 9085 0.1221:148.40 1:150.20 1: 139.52

SS ×
√ 0:145.40 10183.5 0.289 0:154.03 10173.5 0.339 0: 148.78 9948.50 0.7391:156.06 1:144.38 1: 152.25

Source: Own elaboration.

The SC towards non-anemic (µ rank = 151.22) and anemic (µ rank = 148.40) patients
were not significantly different, according to test results (U = 10758, p > 0.05). Same scenar-
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ios could be noted in the SS w.r.t non-anemic (µ rank = 145.40), and anemic (µ rank = 156.06)
levels were not also significantly different with (U = 10183.50, p > 0.05). Therefore, findings
recommended an insignificant p-values in the case of SC and SS. In SS, we failed to reject
“H_02_a: No Significant difference between non-anemic and anemic levels towards SC and
SS”.

Further, the SC towards non-diabetic (µ rank = 149.86) and diabetic (µ rank = 150.20)
levels patients were not statistically significantly different (U = 10850, p > 0.05). Same
result patterns could be observed in the SS towards non-diabetic (µ rank = 154.03) and
diabetic (µ rank = 144.38) level patients were not also different with (U = 10173.50, p > 0.05)
towards SS. Therefore, we also failed to reject the null hypothesis (H_02_b), i.e., there were
no significant differences in diabetic and non-diabetic patients towards SC and SS.

Moreover, the SC in Non-BP (µ rank = 155.67) and BP (µ rank = 139.52) levels pa-
tients were not found fundamentally unique, as indicated by a U test statistical results
(U = 9085, p > 0.05). Similar conduct could be noted in the SS towards BP level in non-
BP (µ rank = 148.78), and BP (µ rank = 152.25) patients were not likewise unique with
(U = 9948.50, p > 0.05) towards SS.

Therefore, we also failed to reject the null hypothesis (H_02_c): "No significant difference
between Normal BP and High BP towards SC and SS". There were no significant differences
between Non-BP and BP patients towards SC and SS.

Figure 5a displays, the closest mean SC ranks towards anemic levels (µ = 151.22 > µ = 148.40).
In the case of SS, non-anemic patients had a greater mean rankf SS as compared to the
anemic patients (µ = 145.4 < µ = 156.06). Findings showed no significant result in the mean
ranks of SS. (p > 0.05).

Figure 5. SC and SS Impact on (a) Anemic level, (b) Diabetic Level, (c) BP.

From Figure 5b, Diabetic patient’s mean rank of SC level was found greater than
Non-diabetic patient’s mean rank (µ = 149.89 < µ = 150.20). conversely, non-diabetic
patient’s mean rank of SS was found greater as compared to diabetic patient’s mean rank
(µ = 154.03 > µ = 144.38). Unfortunately, the statistical test suggested an insignificant
difference (p > 0.05).

Figure 5c reflects the greater difference in the SC’s mean ranks (µ = 155.67 > µ = 139.52),
but in the case of SS, mean ranks difference seems close to BP patients (µ = 148.78 < µ = 152.25),
but no statistically significant differences found towards SC and SS towards BP levels
(p > 0.05).



Sensors 2021, 21, 6584 16 of 30

10.3. Experiment-3

This experiment was performed to verify the association between gender and smoking
levels of HD patients. The experiment used a non-parametric χ2 test to explore the associa-
tion of gender level with smoking levels. A Cross-tab table was generated to investigate
the association between two nominal variables.

Table 9 shows the cross-tab of observed values of gender and smoking levels, and
Table 10 shows the expected values with χ2 of each cell. Residuals (Observed-Expected)
are also marked in this table. A positive residual cell χ2 value means that the observed
value is higher than expected. A negative cell residual χ2 value (e.g., -29.7) represents the
observed cases are less than the expected number of cases.

Table 9. Observed value of Gender Vs. Smoking Status.

Gender Non-Smoker Smoker Row Marginals (Row Sum)

Female 101 4 105
Male 102 92 194

Column Marginals
(Columns Sum) 203 96 299

Source: Own elaboration.

Table 10. Expected value of Gender Vs. Smoking Status (χ2 Values).

Gender Non-Smoker Smoker df χ2 p

Female 71.30 (12.37) 33.7 (26.17)

1 59.45 0.00 *Residual 29.7 −29.7
Male 131.70 (6.70) 62.3 (14.16)

Residual −29.7 29.7
Source: Own elaboration.

Table 10 shows the most significant χ2 value 26.17 is found in the second cell. It
is because the observed female smoker patients were 04, whereas 33.7 was expected.
Therefore, the 2nd cell consists of a much larger number of expected cases than observed.
This means that the number of observed female smoker patients was significantly less than
expected. The second-largest χ2 value of 14.16 is located in the Male Smoking patient’s
cell. However, we have noticed that this cell’s number of observed cases was significantly
greater than expected (Observed = 92, Expected = 62.3). This indicates that a substantially
higher number of male smokers was observed than what was actually expected. The
third-largest cell χ2 value of 12.37 is located in a non-smoker females’ cell. The observed
value of 101 and the predicted value of 71.30 for a non-smoker female were found. This
means observed female non-smoker was significantly greater than expected. The last χ2

value was 6.70, in which expected non-male smokers (131.70) were considerably smaller
than observed (102).

Further, It was obvious that the two groups were significantly associated (p < 0.05)
with χ2 (1) = 59.45. Therefore, these findings suggested to reject the null hypothesis H_03
that no significant association of gender with smoking level.

10.4. Experiment-4

This experiment was conducted to explore the significant association of age group
towards the survival-status levels using the Survival Analysis-Cox regression model
tool. From the dataset, out of 299 patients, 129 were adults; 170 were from very old
age group groups.

Table 11 shows a descriptive summary of age group towards survival-status levels in
which 31 (24%) were from the adult age group and 65 (38.2%) from very old age group were
found non-survived due to HF 98 (76%) adults and 105 (61.8%) very old age group patients
were categorized as censored (study period was over and the patient has not experienced
the event/ Patient’s follow-up was lost).
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Table 11. Age group vs. Survival-Status Descriptive Summary.

Case Processing Summary

Age_Group Total Patients No. of Deaths Censored
N Percent

Adult 129 31 98 76.0%
Very Old 170 65 105 61.8%
Overall 299 96 203 67.9%

Source: Own elaboration.

Diabetes, platelets, gender, and smoking were found non-significant factors in the
Cox regression model output in below Table 12. The negative age group coefficient values
showed that CVD risk from CVD in “Adults” has lower than “Very Old”. The Age Group’s
hazard ratio (HR) exp value (exp (-0.60) = 0.55) showed that 55 deaths happened out of
every 100 deaths. These deaths were due to HD in which particular age group attribute
level was played a significant role. Further results were illustrating the considerable part
of CPK, anemia, EF, and high BP towards Survival-Status levels (p < 0.05).

Table 12. Significance Check towards Survival-Status.

Variable β Coefficient HR p

Anemia 0.497 1.644 0.022 *
CPK 0.000 1.0 0.020 *

Diabetes −0.055 0.946 0.800
EF −0.046 0.955 0.000 *

high_BP 0.490 1.632 0.023 *
Platelets 0.000 1.0 .972
Gender −0.134 .875 0.590

smoking 0.058 1.059 0.818
Age-Group −0.596 0.551 0.00 8*

Source: Own elaboration. * is 0.05 significance level.

Figure 6 demonstrates the survival function using Kaplan Meier Survival Curve. The
x-axis represents the patients’ follow-up months, and the y-axis represents survival rate
w.r.t to age group levels. The survival rate for the "Very Old" age group was lower than
that of the "Adult" age group. It also indicated a statistically significant difference between
the two levels with a log-rank p-value of .003 (p < 0.05) with χ2 (8.565), df = 1. The censored
patients were highlighted with a cross on the curve. Therefore the experiment’s findings
recommended rejecting the null hypothesis H_04 that there was no significant association
between age group with Survival-Status levels.
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Figure 6. Kaplan Meier Curve of Follow-up months vs. Age Group Level.

10.5. Experiment-5

This experiment identified heart patient’s gender (Woman, Man) using various state-
of-art classification algorithms as demonstrated in Table 13. Eight prediction algorithms
(RF, GBM, DT, XGB, LR, SVM, k-NN, and GNB) were evaluated with the 10-fold stratified
cross-validation technique and were compared all on six performance metrics: MCC,
F1-ratio, Accuracy, and Precision and recall (TPR), and TNR (specificity).

Table 13 confirms that the RF has outperformed others in terms of highest MCC (+0.87)
with SD 0.25, accuracy (0.94) with SD 0.11, and F1-Score (0.95) with 0.09 SD. Furthermore,
the results also supported that the RF model achieved the highest TNR and TPR with 0.95
and 0.95 respectively. However, GNB model in terms of MCC, F1-Ratio and accuracy was
found the worst performer with +0.06, 0.71, and 0.59, respectively. Moreover, in terms of
recall, it was found that k-NN algorithm was the next performer after RF with 0.80 and in
terms of specificity, GBM was found next performing classifier after RF with 0.68.

Gender classification algorithms’ confusion metrics (CM) displayed in Table 14. It can
be noticed that the majority of the algorithms achieved a classification accuracy of more
than 59%. It is clear from the results of CM that RF made the actual right highest prediction
of 185 men and 96 women, and only 9 men and 9 women were wrongly predicted. The
major misclassification occurred in the GNB model. Basically, 74 women were misclassified
as men, and also the major misclassification found in 69 men, were wrongly predicted
as women.

Figure 7 displays the ROC curve drawn at 10-fold CV. It plots the True Positive Rate
(TPR) against False Positive Rate (FPR) of all proposed algorithms at various threshold val-
ues. The AUC (area under the ROC curve) is another method for determining a classifier’s
predictability. Its AUC value measures the classifier’s superiority, and the mean RF AUC
(green color) 0.97 with SD of ± 0.07 was found highest followed by the mean SVM AUC
0.79 with SD ± 0.05. The k-NN was the worst performer in the ROC curve with a mean
k-NN AUC was 0.55 with an SD of 0.12.
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Table 13. Gender Classification Performance Metrics.

Classifier MCC F1-Score Accuracy Recall
(TPR)

Precision TNR

MCC Ranking:

RF +0.87 ± 0.25 0.95 ± 0.09 0.94 ± 0.11 0.95 ± 0.11 0.95 ± 0.08 0.91 ± 0.14
GBM +0.31 ± 0.19 0.71 ± 0.06 0.65 ± 0.08 0.64 ± 0.08 0.79 ± 0.09 0.68 ± 0.17

LR +0.25 ± 0.14 0.75 ± 0.04 0.67 ± 0.05 0.78 ± 0.08 0.73 ± 0.05 0.45 ± 0.14
Linear SVM +0.24 ± 0.13 0.75 ± 0.04 0.66 ± 0.05 0.78 ± 0.07 0.72 ± 0.05 0.45 ± 0.13

DT +0.22 ± 0.20 0.72 ± 0.06 0.64 ± 0.07 0.72 ± 0.13 0.73 ± 0.08 0.50 ± 0.24
XGB +0.21 ± 0.18 0.74 ± 0.06 0.65 ± 0.08 0.76 ± 0.09 0.72 ± 0.04 0.45 ± 0.10

K-NN +0.12 ± 0.11 0.73 ± 0.04 0.62 ± 0.05 0.80 ± 0.08 0.68 ± 0.04 0.30 ± 0.11
GNB +0.06 ± 0.16 0.71 ± 0.05 0.59 ± 0.06 0.76 ± 0.09 0.66 ± 0.04 0.29 ± 0.12

F1-Score Ranking:

RF +0.87 ± 0.25 0.95 ± 0.09 0.94 ± 0.11 0.95 ± 0.11 0.95 ± 0.08 0.91 ± 0.14
LR +0.25 ± 0.14 0.75 ± 0.04 0.67 ± 0.05 0.78 ± 0.08 0.73 ± 0.05 0.45 ± 0.14

SVM +0.24 ± 0.13 0.75 ± 0.04 0.66 ± 0.05 0.78 ± 0.07 0.72 ± 0.05 0.45 ± 0.13
XGB +0.21 ± 0.18 0.74 ± 0.06 0.65 ± 0.08 0.76 ± 0.09 0.72 ± 0.04 0.45 ± 0.10

k-NN +0.12 ± 0.11 0.73 ± 0.04 0.62 ± 0.05 0.80 ± 0.08 0.68 ± 0.04 0.30 ± 0.11
DT +0.22 ± 0.20 0.72 ± 0.06 0.64 ± 0.07 0.72 ± 0.13 0.73 ± 0.08 0.50 ± 0.24

GBM +0.31 ± 0.19 0.71 ± 0.06 0.65 ± 0.08 0.64 ± 0.08 0.79 ± 0.09 0.68 ± 0.17
GNB +0.06 ± 0.16 0.71 ± 0.05 0.59 ± 0.06 0.76 ± 0.09 0.66 ± 0.04 0.29 ± 0.12

Accuracy Ranking:

RF +0.87 ± 0.25 0.95 ± 0.09 0.94 ± 0.11 0.95 ± 0.11 0.95 ± 0.08 0.91 ± 0.14
LR +0.25 ± 0.14 0.75 ± 0.04 0.67 ± 0.05 0.78 ± 0.08 0.73 ± 0.05 0.45 ± 0.14

SVM +0.24 ± 0.13 0.75 ± 0.04 0.66 ± 0.05 0.78 ± 0.07 0.72 ± 0.05 0.45 ± 0.13
XGB +0.21 ± 0.18 0.74 ± 0.06 0.65 ± 0.08 0.76 ± 0.09 0.72 ± 0.04 0.45 ± 0.10
GBM +0.31 ± 0.19 0.71 ± 0.06 0.65 ± 0.08 0.64 ± 0.08 0.79 ± 0.09 0.68 ± 0.17
DT +0.22 ± 0.20 0.72 ± 0.06 0.64 ± 0.07 0.72 ± 0.13 0.73 ± 0.08 0.50 ± 0.24

k-NN +0.12 ± 0.11 0.73 ± 0.04 0.62 ± 0.05 0.80 ± 0.08 0.68 ± 0.04 0.30 ± 0.11
GNB +0.06 ± 0.16 0.71 ± 0.05 0.59 ± 0.06 0.76 ± 0.09 0.66 ± 0.04 0.29 ± 0.12

Source: Own elaboration.
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Figure 7. Gender classifiers’ ROC’s at dynamic thresholds.
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The RF was the best performer in all terms of performance metrics. Therefore the RF
must extract out important features by its inherent feature selection method. XGB was
chosen as feature selection due to its gain method across all splits for feature extraction.
As displayed in Figure 8, RF and XGB were used to perform the feature selection in the
predicting of patient’s gender. RF Classifier considered smoking as first key predictor with
value of 0.265,next platelets (0.167), CPK (0.155), SC (0.109), EF (0.091) during follow-up
months (0.129). The XGB classifier also gave the same importance to Smoking with the
value of 0.41.

Table 14. Gender classifier’s CMs

Model GBM k-NN RF DT LR GNB XGB SVM

Actual

Predicted

Gender M W M W M W M W M W M W M W M W
M 125 69 155 39 185 9 139 55 152 42 147 47 147 47 152 42
W 34 71 32 73 9 96 52 53 57 48 74 31 58 47 58 47

Source: Own elaboration.

Figure 8. Gender identification Features.

10.6. Experiment-6

This experiment predicted the Age-Group (Adult, Very Old) of heart disease patients
using various classification algorithms (Table 15). Here RF had the best performance in
terms of MCC = +0.92 with SD 0.23, F1-score (0.96) with SD 0.11, and accuracy (0.96)
with SD 0.11. The SVC classifier was the worst among all listed algorithms in terms of
MCC = 0.02 with SD 0.17, but in terms of F1-Score, the k-NN classifier performed poorly
(0.62 with SD 0.08 accuracy) followed in ranking by GNB classifier with 0.55 with 0.05 SD.
Indeed, RF was outstanding in both the recalls (TP ratio = 0.97) with SD 0.07 and specificity
(TN ratio = 0.95) with SD 0.16.

The Age-Group classifiers’ CMs are shown in Table 16 with eight classification algo-
rithms. The majority of the predicting the age group algorithms have achieved classification
accuracy greater than 55%. Among all specified algorithms, the RF classifiers’ CM TP VO
(Very Old):165 and TN A (Adult):122 values were the highest among all. Further, only
the XGB algorithm could find the next highest Adults (72) prediction, and only the GBM
algorithm made the accurate prediction in very old (147) in Age Group next to RF model.
However, a very substantial number of adult patients (107) were misclassified as Very
Old in the GNB classifier. In contrast, many Very Old patients (62) were misclassified
as adults in the k-NN classifier. Indeed RF classifier’s performance revealed the lowest
misclassification rate with only seven adult patients misclassified as very old and only
5-very old patients wrongly predicted as adult patients.
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Table 15. Age Group Classification Performance Metrics.

Classifier MCC F1-Score Accuracy Recall
(TPR) Precision TNR

MCC Ranking:

RF +0.92 ± 0.23 0.96 ± 0.09 0.96 ± 0.11 0.97 ± 0.07 0.95 ± 0.10 0.95 ± 0.16
GBM +0.25 ± 0.14 0.73 ± 0.05 0.64 ± 0.05 0.86 ± 0.10 0.64 ± 0.04 0.35 ± 0.13
DT +0.23 ± 0.11 0.68 ± 0.07 0.62 ± 0.05 0.69 ± 0.14 0.66 ± 0.06 0.53 ± 0.17

XGB +0.23 ± 0.15 0.67 ± 0.07 0.59 ± 0.07 0.64 ± 0.10 0.68 ± 0.06 0.56 ± 0.11
LR +0.16 ± 0.13 0.69 ± 0.03 0.58 ± 0.05 0.77 ± 0.05 0.62 ± 0.06 0.37 ± 0.15

SVM 0.12 ± 0.14 0.67 ± 0.05 0.58 ± 0.06 0.73 ± 0.09 0.61 ± 0.06 0.38 ± 0.14
k-NN +0.09 ± 0.11 0.62 ± 0.08 0.56 ± 0.05 0.63 ± 0.14 0.61 ± 0.05 0.46 ± 0.14
GNB 0.02 ± 0.17 0.68 ± 0.03 0.55 ± 0.05 0.85 ± 0.07 0.57 ± 0.05 0.17 ± 0.15

F1-Score Ranking

RF +0.92 ± 0.23 0.96 ± 0.09 0.96 ± 0.11 0.97 ± 0.07 0.95 ± 0.10 0.95 ± 0.16
GBM +0.25 ± 0.14 0.73 ± 0.05 0.64 ± 0.05 0.86 ± 0.10 0.64 ± 0.04 0.35 ± 0.13

LR +0.16 ± 0.13 0.69 ± 0.03 0.58 ± 0.05 0.77 ± 0.05 0.62 ± 0.06 0.37 ± 0.15
GNB 0.02 ± 0.17 0.68 ± 0.03 0.55 ± 0.05 0.85 ± 0.07 0.57 ± 0.05 0.17 ± 0.15
DT +0.23 ± 0.11 0.68 ± 0.07 0.62 ± 0.05 0.69 ± 0.14 0.66 ± 0.06 0.53 ± 0.17

SVM 0.12 ± 0.14 0.67 ± 0.05 0.58 ± 0.06 0.73 ± 0.09 0.61 ± 0.06 0.38 ± 0.14
XGB +0.23 ± 0.15 0.67 ± 0.07 0.59 ± 0.07 0.64 ± 0.10 0.68 ± 0.06 0.56 ± 0.11

K-NN +0.09 ± 0.11 0.62 ± 0.08 0.56 ± 0.05 0.63 ± 0.14 0.61 ± 0.05 0.46 ± 0.14

Accuracy Ranking:

RF +0.92 ± 0.23 0.96 ± 0.09 0.96 ± 0.11 0.97 ± 0.07 0.95 ± 0.10 0.95 ± 0.16
GBM +0.25 ± 0.14 0.73 ± 0.05 0.64 ± 0.05 0.86 ± 0.10 0.64 ± 0.04 0.35 ± 0.13
DT +0.23 ± 0.11 0.68 ± 0.07 0.62 ± 0.05 0.69 ± 0.14 0.66 ± 0.06 0.53 ± 0.17

XGB +0.23 ± 0.15 0.67 ± 0.07 0.59 ± 0.07 0.64 ± 0.10 0.68 ± 0.06 0.56 ± 0.11
LR +0.16 ± 0.13 0.69 ± 0.03 0.58 ± 0.05 0.77 ± 0.05 0.62 ± 0.06 0.37 ± 0.15

SVM 0.12 ± 0.14 0.67 ± 0.05 0.58 ± 0.06 0.73 ± 0.09 0.61 ± 0.06 0.38 ± 0.14
k-NN +0.09 ± 0.11 0.62 ± 0.08 0.56 ± 0.05 0.63 ± 0.14 0.61 ± 0.05 0.46 ± 0.14
GNB 0.02 ± 0.17 0.68 ± 0.03 0.55 ± 0.05 0.85 ± 0.07 0.57 ± 0.05 0.17 ± 0.15

Source: Own elaboration.

Table 16. Age group classifier’s CMs.

Model GBM k-NN RF DT LR GNB XGB SVM

Actual

Predicted

Age Group A VO A VO A VO A VO A VO A VO A VO A VO
A 45 84 59 70 122 7 69 60 46 83 22 107 72 57 49 80

VO 23 147 62 108 5 165 52 118 39 131 26 144 55 115 45 125
Source: Own elaboration.

As shown in Figure 9, the evaluated discriminator models performance spans from
very low to good discriminatory levels (0.25 <= AUC <= 0.94). The top five discriminator
(RF (0.94), GNB (0.67), LR (0.64), SVC (0.60) and k-NN (0.56)) based on AUC metrics.
XGB and GBM models were found worst discriminator with 0.25 and 0.39 values in this
experiment. The excellent discrimination made only by RF model.
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Figure 9. Age Group classifier’s ROC’s at dynamic thresholds.

Figure 10 displays the most significant features that correctly identified the the age
group of patients. The RF inherent feature selection technique found the platelets as highest
key predictor with coefficient of 0.201 followed by CPK (0.189), SC (0.161), EF (0.088) and
diabetes (0.027) during patients’ Follow-up months (0.216). It was also evident from the
figure, the top significant features extracted by XGB classifier were SC (0.154), anemia
(0.101), Survival-Status (0.101), smoking (0.088) and platelets (0.085) during follow-up
months (0.093). Both classifier rank differently features to predict the Age group. CPK and
platelets counts were considered as most significant features by both classifiers.

Figure 10. Patient Age group Features.

10.7. Experiment-7

This experiment identified the Survival-Status of patients using various classifiers as
illustrated in Table 17. Findings recommended that we consider RF classifier as the best
preforming model in terms of MCC (+0.91 with ± 0.11 SD), in F1-score ranking (0.94 with
± 0.07 SD) and accuracy ranking (0.96 with ± 0.06 SD). DT and XGB model followed in
terms of MCC = +0.63. The k-NN classifier was the worst performer among all specified
algorithms with MCC = +0.06, accuracy of 0.61, but in terms of F1-Score ranking, SVM-SVC
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were found to be as poor with 0.31. Indeed, the top MCC ranking classifier-RF model
performed admirably in both recall terms (TP rate = 0.93) and specificity terms (TN rate =
0.98) respectively. The k-NN model was not able to predict a large percentage of patients
correctly.

Table 17. Survival-Status Classification Performance Metrics.

Classifier MCC F1-Score Accuracy Recall (TPR) Precision TNR

MCC Ranking:

RF +0.91 ± 0.11 0.94 ± 0.07 0.96 ± 0.05 0.93 ± 0.08 0.95 ± 0.08 0.97 ± 0.05
DT +0.63 ± 0.11 0.75 ± 0.07 0.83 ± 0.05 0.80 ± 0.10 0.71 ± 0.09 0.85 ± 0.06

XGB +0.63 ± 0.12 0.74 ± 0.10 0.84 ± 0.05 0.72 ± 0.17 0.77 ± 0.10 0.90 ± 0.05
LR +0.59 ± 0.10 0.71 ± 0.08 0.82 ± 0.04 0.66 ± 0.11 0.77 ± 0.09 0.91 ± 0.04

GBM +0.59 ± 0.14 0.72 ± 0.10 0.83 ± 0.05 0.69 ± 0.15 0.75 ± 0.12 0.89 ± 0.06
GNB +0.53 ± 0.17 0.64 ± 0.15 0.81 ± 0.06 0.54 ± 0.17 0.79 ± 0.14 0.93 ± 0.05
SVM +0.13 ± 0.14 0.21 ± 0.11 0.68 ± 0.03 0.13 ± 0.08 0.52 ± 0.24 0.94 ± 0.03
k-NN +0.06 ± 0.16 0.33 ± 0.12 0.61 ± 0.06 0.30 ± 0.12 0.37 ± 0.14 0.77 ± 0.07

F1-Score Ranking:

RF +0.91 ± 0.11 0.94 ± 0.07 0.96 ± 0.05 0.93 ± 0.08 0.95 ± 0.08 0.97 ± 0.05
DT +0.63 ± 0.11 0.75 ± 0.07 0.83 ± 0.05 0.80 ± 0.10 0.71 ± 0.09 0.85 ± 0.06

XGB +0.63 ± 0.12 0.74 ± 0.10 0.84 ± 0.05 0.72 ± 0.17 0.77 ± 0.10 0.90 ± 0.05
GBM +0.59 ± 0.14 0.72 ± 0.10 0.83 ± 0.05 0.69 ± 0.15 0.75 ± 0.12 0.89 ± 0.06

LR +0.59 ± 0.10 0.71 ± 0.08 0.82 ± 0.04 0.66 ± 0.11 0.77 ± 0.09 0.91 ± 0.04
GNB +0.53 ± 0.17 0.64 ± 0.15 0.81 ± 0.06 0.54 ± 0.17 0.79 ± 0.14 0.93 ± 0.05
k-NN +0.06 ± 0.16 0.33 ± 0.12 0.61 ± 0.06 0.30 ± 0.12 0.37 ± 0.14 0.77 ± 0.07
SVM +0.13 ± 0.14 0.21 ± 0.11 0.68 ± 0.03 0.13 ± 0.08 0.52 ± 0.24 0.94 ± 0.03

Accuracy Ranking:

RF +0.91 ± 0.11 0.94 ± 0.07 0.96 ± 0.05 0.93 ± 0.08 0.95 ± 0.08 0.97 ± 0.05
XGB +0.63 ± 0.12 0.74 ± 0.10 0.84 ± 0.05 0.72 ± 0.17 0.77 ± 0.10 0.90 ± 0.05
DT +0.63 ± 0.11 0.75 ± 0.07 0.83 ± 0.05 0.80 ± 0.10 0.71 ± 0.09 0.85 ± 0.06

GBM +0.59 ± 0.14 0.72 ± 0.10 0.83 ± 0.05 0.69 ± 0.15 0.75 ± 0.12 0.89 ± 0.06
LR +0.59 ± 0.10 0.71 ± 0.08 0.82 ± 0.04 0.66 ± 0.11 0.77 ± 0.09 0.91 ± 0.04

GNB +0.53 ± 0.17 0.64 ± 0.15 0.81 ± 0.06 0.54 ± 0.17 0.79 ± 0.14 0.93 ± 0.05
SVM +0.13 ± 0.14 0.21 ± 0.11 0.68 ± 0.03 0.13 ± 0.08 0.52 ± 0.24 0.94 ± 0.03
k-NN +0.06 ± 0.16 0.33 ± 0.12 0.61 ± 0.06 0.30 ± 0.12 0.37 ± 0.14 0.77 ± 0.07

Source: Own elaboration.

Table 18 represents all the CMs of survival-status classification algorithms. Here, TP
(second row) represents the total number of right-predicted alive patients, and TN (first
Row) represents the total number of right-predicted dead patients. Among all specified
CMs, the RF classifiers’ CM displayed notable results with the highest Dead (89) and Alive
(198). Only seven dead patients were wrongly predicted as alive and only 5 alive patients
misclassified as dead by RF classifier compared to other classifiers. The k-NN algorithm
has made the highest misclassification in the prediction of alive (49) and in dead (67).

Table 18. Survival Status classifier’s CMs

Model GBM k-NN RF DT LR GNB XGB SVM

Actual

Predicted

Survival-Status D AL D AL D AL D AL D AL D AL D AL D AL
D 66 30 29 67 89 7 77 19 63 33 52 44 69 27 54 42

AL 22 181 49 154 5 198 31 172 20 183 14 189 21 182 13 190
Source: Own elaboration.
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An ROC curve is created by plotting TPF (sensitivity) versus FPF (1-specificity) over
a range of cut-offs. Figure 11 shows that the ROC curves with increasing discriminant
capacity of diagnostic tests are gradually closer to the upper left hand corner. It can also be
seen that the RF curve (AUC = 0.97) has a higher discriminating capacity than rest available
curves.). The worst mean k-NN AUC (0.50) reflects very poor discriminative capability.
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Figure 11. Survival Status classifier’s ROC’s at dynamic thresholds.

As seen in Figure 12, Follow-up months (0.492), SC (0.182), EF (0.110), platelets
(0.086), CPK (0.077) and gender (0.012) were significant features to predict survival-status
of patient. It was also obvious from visualization, the top significant features extracted
by XGB classifier: SC (0.134), EF (0.127), gender (0.087), diabetes (0.065) and platelets
(0.064) during follow-up months (0.396). Both classifiers considered SC and EF as the most
significant features. but XGB treated the same gender at 3rd rank and RF treating the same
at 5th rank.

Figure 12. Patient Survival Features.
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11. Discussion

The significant p-value is critical for evaluating the hypothesis in statistical tests. To
test the first two hypotheses, the Mann-Whitney U test was used in this study. It played a
vital role due to the absence of normality in data. The authors had investigated the impact
of SC and SS on the Survival-Status levels as well as on patients’ health complications
levels such as anemia, diabetes, and high BP. The association between gender and smoking
habit and the association between age group and survival-status were validated with χ2

and a cox-regression model.
The first null hypothesis, "H_01: No significant difference in Alive and Dead towards

SC and SS," was rejected (p < 0.05). There were statistically significant differences existed
between the SC and SS w.r.t Survival-Status levels. The second null hypotheses “H_02a:
No significant differences between non-anemic and anemic levels towards SC and SS”,
“H_02b: No significant differences between non-diabetic and diabetic levels towards SC
and SS”, and “H02c: No significant differences between non-BP and BP levels towards SC
and SS” were all not statistically significant (p < 0.05). Furthermore, the patients’ gender
and their smoking habits were significantly associated (p < 0.05). As a result, the third
null hypothesis, "H_03: No significant relationship between gender and smoking level,"
was rejected. During the study, it was found that actual Smoker female patients (04) were
significantly less than expected (33.7) compared to non-smoker female patients. It was also
observed that actual male smoker patients (92) were substantially more significant than
expected (62.3) but not the same in male non-smoker patients. An actual male who was
not accustomed to smoking habits (102) was found to be significantly less than expected
(131.70) during follow-up months. The present study used also the cox regression model to
explore the association between age group and survival-status levels and demonstrated
a statistically significant association between these two attributes. Therefore “H_04: No
significant association among age groups and Survival-Status level” was rejected (p < 0.05).

The study’s findings are self-evident: H01, the Survival-Status was linearly correlated
with SC and SS (p < 0.05), supporting other author reports [12–14,42]. In the case of (H_02a,
H_02b, and H_02c) refering to complications such as anemia, diabetes, and high blood
pressure, SC and SS influences were not statistically significant (p > 0.05), contradicting
autor reports [10,15] but supporting this author report [42]. The gender-smoking-habits
association (H03) were significant (p < 0.05) supporting the article [17]. The age group
Survival-Status association (H_04) finding was also statistically significant (p < 0.05) in
contrast with the reports mentioned in reference [25] but supported by the reference [23].

The proposed CDF-DI was performed on a heart disease dataset and showed promis-
ing results compared to previous models in improving prediction accuracy. For compari-
son, we used eight state-of-the-art MLAs (GNB, LR, GBM, SVM, DT, XGB, k-NN, and RF)
throughout the study that have an established track record for accuracy and efficiency in
the research community. All models were subjected to 10-fold cross-validation, and six
performance metrics were collected: Accuracy, precision, TPR, F1-measure, MCC, TNR.
RF classifier was found superior in all mentioned performance ranking scores (MCC score
ranking, F1-Score ranking, and accuracy score ranking) in all machine learning predic-
tion goals.

The proposed model outperformed with RF machine learning model in predicting
patients’ gender another model by obtaining accuracy up to 94%, and 95% in all metrics, i.e.,
precision, TPR, and F1-Score, respectively. In addition,the proposed CDF-DI model had the
highest MCC values, up to 0.87, proving its superiority over other models. Furthermore, the
proposed model had the lowest FPR and the highest TNR by up to 9% and 91%, respectively.
The suggested model’s low FPR and high TNR values demonstrate the CDF-DI model’s
capacity to reduce miss rates and improve classification accuracy for both negative and
positive subjects. Table 13 displays the comprehensive performance findings for predicting
patients ‘gender. GNB was the worst performer in MCC, F1, and Accuracy score ranking
with 0.06, 71%, and 59% respectively.
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Further, the predicting age group of patients had displayed encouraging results with
the RF model. The proposed model was found as the best with RF in all key performance
criteria, such as precision, TPR, F1-Score, and accuracy, 95%, 97%,96%, and 96%, respec-
tively. GNB model found the worst performing model in terms of MCC ranking and
accuracy ranking with 0.02 and 55% scores, respectively. The k-NN model was worst in
F1-Score ranking during the prediction of age group of patients with 62% scores. Table 19
summarizes all of the performance findings.

Table 19. Benchmark with previous study results.

CDF-DI (Extant Research) Davide Chicco et al. [32]

Model Accuracy F1-Score MCC Sen. Spec. Existing
Accuracy

Existing
F1-Score

Existing
MCC Sen. Spec. Extant

Accuracy

RF 0.96 0.94 0.91 0.93 0.97 0.74 0.55 0.38 0.49 0.86 0.22 ↑
DT 0.83 0.75 0.63 0.80 0.97 0.74 0.55 0.38 0.53 0.83 0.09 ↑

GBM 0.83 0.72 0.59 0.69 0.89 0.74 0.53 0.37 0.48 0.86 0.09 ↑
LR 0.82 0.71 0.59 0.66 0.91 0.73 0.47 0.33 0.39 0.89 0.09 ↑

GNB 0.81 0.64 0.53 0.54 0.93 0.70 0.36 0.22 0.28 0.90 0.11 ↑
SVM 0.68 0.21 0.13 0.13 0.94 0.69 0.18 0.16 0.12 0.97 −0.01 ↓
k-NN 0.61 0.33 0.06 0.30 0.77 0.62 0.15 −0.02 0.12 0.87 −0.01 ↓

Source: Own elaboration.

Furthermore, the RF model had also shown promising results in predicting the
Survival-Status of patients. Performance metrics (precision, TPR, F1-Score, accuracy, MCC,
and TNR) were found better with RF by up to 95%, 94%, 96%, 0.91, and 97%, respec-
tively. The k-NN model proved significant with MCC and accuracy score ranking, and in
F1-Score ranking, the SVM model found a weak model. Table 17 summarizes all of the
performance findings.

This is incredibly encouraging for hospital settings: Even if several laboratory test
data and health conditions were absent from a patient’s electronic health record, doctors
could still predict patient survival by evaluating the EF, SC, and CPK values alone. The
present research also yielded several intriguing outcomes that varied from the findings of
the same dataset study [58]. Davide Chicco et al. identified EF, SC, age, CPK, and gender
chosen as the top five features for predicting Survival-Status while Tanvir Ahmad et al. [14]
also identified age, SC, High BP, EF, and anemia as top essential features. This study found
SC, EF, platelets, CPK, and gender as important features which play an essential role in
predicting Survival-Status with RF Classifier as depicted in Figure 12. We found EF at 2nd

position and also found platelets as an essential feature which the previous study had not
found. The present paper also improves the accuracy, F1-Score, and MCC by 0.22, 0.39, and
0.53 respectively in RF classifier and other models as depicted in Table 19.

The experiment results displayed that the supervised machine learning models per-
formed the best role in efficiently predicting the heart failure patients’ age group and
gender. Tree-based algorithms performed well on the imbalanced dataset using the 10-
fold cross-validation method. As it was displayed in Figure 10, RF identified CPK, SC,
follow-up month, platelets, and EF as significant features while predicting the patients’
age group (adult, very old). Moreover, the RF classifier identified smoking, CPK, platelets,
follow-up month, and SC. These methods became beneficial in-patient care because doctors
can predict a patient’s age group based on only five significant characteristics. RF and XGB
commonly extracted out SC and EF as crucial features in predicting the age group target
variable. Moreover, smoking, CPK, and platelets were found vital features in predicting
the patient gender common in RF and XGB.

The top five input features playing a vital role in predicting Survival-Status were
presented in Figure 12. The top 5 features selected by RF and XGB inbuilt feature selection
techniques were follow-up month, SC, EF, CPK, and anemia. The RF and XGB feature
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selection approach had lot in common. Follow-up month had the highest ranking (0.49),
whereas anemia had a lower score (0.01) extracted by the RF feature selector. The XGB
algorithm also treated the follow-up month feature as the most important (0.40) and gave
the lowest rank to the the anemia (0.02). our findings suggest a special attention at the
patients’ SC, EF, platelets, and CPK biomarkers for their survival during their follow-
up months.

12. Limitation

The experiments had been conducted on small dataset having confined features and
instances. The patients under observations were above age of 40 years. Lack of real-time
Implementation of the presented models must be include more samples and features to
gain more significant accuracies of predictive models to make generalization for the whole
population. The applied statistical and machine learning techniques were also confined.
More feature selection algorithms approaches: Info gain, gain ratio, relief, and χ2 might be
useful to improve the performance of the predictive models.

13. Conclusions

Wearable sensor technologies, particularly for chronic heart disease, can be used
efficiently in the healthcare industry. Many lives can be saved by using monitoring and
prediction systems, especially when the patient is in a remote location without access to
medical care. This paper proposed a wearable PKI secured IoT enabled Smart Healthcare
using a machine learning system based on the CDF-DI monitoring system. The present
research confirmed the importance of Sodium and creatinine levels in the human body. It
was revealed the significance of SC and SS towards the Survival-Status (Alive/Dead) of
CVD patients (p <0.05). We also found that the anemia level, High BP level, and diabetic
level have no significant effect on the SC and SS biomarker levels (p >0.05). Further,
a significant association of smoking habits with specific patients towards gender was
observed (p < 0.05). We conclude that the patients belonging to the very old age group were
more mortality prone than adult patients. The platelets, CPK, SC, and EF were the four
most prominent cardiac features that played their role well in the patient’s demography
identification. In addition to the earlier study’s features EF, and SC [32,42], the authors
recommended three more features: Platelets, CPK, and gender to identify the Survival-
Status of the patient. This research achieved the highest prediction accuracy of 96% to
predict the survival status of HF patients using the winner RF algorithm. The CDF-DI
monitoring system would be a significant socio-economic health care system for cardiac
patients after its implementation and integration. With early prediction using IoT enabled
CDF-DI, patients can escape from the costlier health care tests or checkups. Positively, the
present research work might be a milestone in the IoT enabled health care industry and
help to save human lives from this severe cardiac disease.
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Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of things
CVD CardioVascular Diseases
HF Heart Failures
HD Heart Disease
SC Serum Creatinine
SS Serum Sodium
EF Ejection Fraction
CPK Creatinine Phosphokinase
BP Blood-Pressure
DT Decision Tree
RF Random Forest
SD Standard Deviation
SVM Support Vector Machine
KNN k-Nearest Neighbors
XGB eXtreme Gradient Boosting
GBM Gradient Boosting Machines
LR Logistic Regression
LNR Linear Regression
AUC Area Under Curve
VIF Variation Inflation Factor
GNB Gaussian Naive Bayes
Mdn Median
TPR True Positive Rate
TNR True Negative Rate
CMs Confusion matrics
PKI Public Key Infrastructure
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