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Abstract: In this paper, a new optimization algorithm called motion-encoded electric charged 
particles optimization (ECPO-ME) is developed to find moving targets using unmanned aerial 
vehicles (UAV). The algorithm is based on the combination of the ECPO (i.e., the base algorithm) 
with the ME mechanism. This study is directly applicable to a real-world scenario, for instance the 
movement of a misplaced animal can be detected and subsequently its location can be transmitted 
to its caretaker. Using Bayesian theory, finding the location of a moving target is formulated as an 
optimization problem wherein the objective function is to maximize the probability of detecting the 
target. In the proposed ECPO-ME algorithm, the search trajectory is encoded as a series of UAV 
motion paths. These paths evolve in each iteration of the ECPO-ME algorithm. The performance of 
the algorithm is tested for six different scenarios with different characteristics. A statistical analysis 
is carried out to compare the results obtained from ECPO-ME with other well-known metaheuristics, 
widely used for benchmarking studies. The results found show that the ECPO-ME has great 
potential in finding moving targets, since it outperforms the base algorithm (i.e., ECPO) by as much 
as 2.16%, 5.26%, 7.17%, 14.72%, 0.79% and 3.38% for the investigated scenarios, respectively. 

Keywords: electric charged particles optimization; motion-encoded; probabilistic target finding; 
unmanned aerial vehicles 
 

1. Introduction 
Currently, unmanned aerial vehicles (UAVs) are among the most promising research 

tools of interest due to their potentials for use in numerous practical applications [1–3]. 
UAVs are especially suitable for surveillance and rescue tasks. They are highly capable of 
working under harsh environmental conditions. Moreover, they can connect with a 
sensor-rich work environment, ideal for dealing with a variety of tasks [4]. In the case of 
searching for a lost target using UAVs, several factors are taken into consideration. One 
of those is the ‘golden time’, a critical period when the probability of finding the target 
becomes maximal [5]. This probability decreases rapidly with time, due to several factors 
such as the terrain, weather conditions, attenuation of the initial particulars, the target 
dynamics, etc. 

Therefore, while formulating the problem of searching for a lost target by UAVs, it 
is required to find a path that can maximize the target detection probability within a given 
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flight time. Usually, the target position information and other search conditions play 
crucial roles in such formulations [6,7]. Such search problems are found in the literature 
as probability functions where uncertainties are considered using initial assumptions. 
Besides, sensor models and search conditions are adequately incorporated in the problem 
formulation. Articles [6,8] proposed a Bayesian approach to deal with the objective 
functions of detection probability evaluation of UAV flight paths. 

Article [9] proposed a novel path tracking mechanism for high-speed autonomous 
vehicles based on the combination of model predictive control (MPC) and a PID-speed 
controller. A lane-level multilayer map model has been proposed in [10] to ease the 
tracking of a UAV or any other autonomous vehicle, even in a complicated network. A 
self-assessment based method [11] was used to solve a cooperative search problem, where 
autonomous vehicles can cooperate. This method was checked on different 
communication structures and excellently performed in scalability, design complexity, 
and communication skill. The UAV-based search problem is represented as a control 
system problem in [12] where the detection and collection of data can work 
simultaneously with coverage control. 

In [7,13], the stochastic Markov process was proposed to represent deterministic 
target dynamics, meaning that the search scenarios will not affect the process. The initial 
search map can be modeled as a multivariate normal distribution, where the mean and 
the variance are computed using the initial information of the target position. While 
modeling the sensor, continuous Gaussian variable [6] and binary variable [14] are both 
used with the binary states defined as ‘‘detected’’ and ‘‘non-detected’’. 

Because of the involvement of multiple probabilistic variables, such search problems 
are complex in nature. 

The complexity of the search problem varies between NP-hard [15] to NEXP-
complete [16]. The former refers to the nondeterministic polynomial-time hardness, while 
the latter refers to nondeterministic exponential-time completeness. In NEXP-complete 
type problems, the number of solutions increases exponentially along with the flight time 
and search dimension. Therefore, solving such a problem by classical methods like 
differential calculus to find the exact solution is understandably impractical. Therefore, 
approximated heuristic methods are mostly used. Typical optimization algorithms used 
in this field include genetic algorithms (GA) [17], ant colony optimization (ACO) [14], one-
step look ahead greedy search algorithm [6], k-step look ahead greedy search algorithm 
[7], Bayesian optimization approaches (BOA) [8], branch and bound approach [18], cross-
entropy optimization (CEO) [19], gradient descend methods [20,21], limited depth search 
algorithms [22], neural networks [23] etc. Among the used algorithms, Refs. [8,14,19,22] 
presented are the algorithms capable of using more than one UAV for search purposes, 
thus speeding up the search process. 

On the other hand, Ref. [6,7] proposed algorithms to support a specific design of the 
search problem. However, it is noted that most of the used methods can successfully track 
moving targets using the binary model of sensor detection. Recently, [24] proposed using 
motion-encoded particle swarm optimization (MPSO) to solve UAVs’ moving-target 
search problem. The paper also compared the results with some well-known 
metaheuristic approaches. It was 24% more efficient in detection and 4.71 times more 
time-efficient than the original PSO. A review paper [25] nicely gathers all the intelligent 
optimization algorithms that have been tried on UAV dependent swarm search 
applications. 
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The literature identifies different approaches adopted to certify the optimal search 
divergence, such as target dynamics, constraints, assumptions, and searching 
mechanisms. The complex nature of optimal search, particularly for fast-moving targets, 
makes optimal problem formulation and solution strategizing challenging. However, 
recent advancements in sensors, UAV technologies, and communications have opened up 
new opportunities for research in the field. The solution must be highly robust in terms of 
search capacity and possess the properties of a methodical optimization tool like 
adaptability, computational efficiency, optimality, etc. 

Electric charged particle optimization (ECPO) is a new metaheuristic optimization 
algorithm that was proposed by Bouchekara in 2020 [26]. The algorithm is established 
based on the interaction phenomenon between electrically charged particles. Different 
strategies of interacting behavior have made this algorithm a robust one and suitable for 
application on diverse applications. ECPO is a promising optimization tool that has been 
compared with several state-of-the-art optimization algorithms. It was tested and verified 
with a set of 30 functions and one real-life engineering problem. This algorithm resembles 
an intuitive sense of the motion of an apparently stray and lost animal in the wilderness 
and thus is expected to give results of analogical significance. However, motion encoding 
feature has been added with the ECPO in this paper for the first time to improve the 
searching capabilities of the algorithm for UAV dynamic target search problems. 

This paper proposes a motion-encoded electric charged particle optimization (ECPO-
ME) algorithm to solve the problem of moving target search. Some of the main features of 
the paper are highlighted below: 
- The formulation of the optimization problem with a suitable objective function and 

the required constraints represents the targeted problem accurately. 
- The use of motion-encoding mechanism with ECPO to increase the efficacy of the 

algorithm. This duo has neither been tried before in the literature nor in solving any 
optimization problems. 

- Comparing the proposed mechanism with 10 commonly used metaheuristic 
optimization algorithms strengthens the logic of using it in moving target search 
applications. It is also compared with MPSO, used in a recently published research 
paper to solve a similar optimization problem. 

- The presentation of the convergence curves for all the used optimization methods in 
a single plot to ease the comparison of their performance. 
The simulation results demonstrate the superiority of ECPO-ME over all other 

optimization algorithms in solving the problem of moving target search, which is crucial 
in ascertaining the presence and position of a misplaced animal in vast landscapes. 
Additionally, we prove that the motion-encoding strategy improved the efficacy of the 
ECPO algorithm by a considerable margin. 

The remaining paper is structured as follows: Section 2 contains the problem 
formulation and the objective function development. Section 3 presents the optimization 
algorithm details to solve the addressed problem. Section 4 exhibits the simulation 
problem, and, finally, Section 5 draws the concluding remarks of the article. 

2. Problem Formulation 
The problem addressed in this work is formulated as a search problem that entails 

modeling of the target, sensor, and belief map, as presented in [24]. These three aspects of 
the problem formulation are discussed in Sections 2.1–2.3, respectively and the objective 
function is developed in Section 2.4. 

2.1. Target Model 
Consider the variable ݔ ∈ Χ, which represents the unknown location of the target in 

the search problem. To begin the search, the probability distribution function (PDF) which 
could be any suitable probability distribution based on the target’s most recent 
information (for example the target’s most recently known position) is used to model the 
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target’s location. For example, reference [24] discussed using a normal distribution 
centered on the last known location or a uniform distribution if there is no information 
about the target’s location. The PDF is represented using the belief map, ܾ(ݔ଴), which is 
a grid map with each cell marked with the probability of the target being in that cell. The 
belief map is developed by discretizing the search space into a grid of ܵ௥ × ܵ௖ cells with 
their associated probabilities such that if the target is in the search space, then ∑ (଴ݔ)ܾ = 1.(௫బ∈ௌ)  

The target navigation pattern can be modelled as a Markov process. In this work, we 
assume a conditionally deterministic target whose navigation pattern depends upon the 
target’s initial position, ݔ଴. Therefore, probability that a target moves from cell ݔ௧ିଵ to ݔ௧, ݌(ݔ௧|ݔ௧ିଵ) called the transition function is known for all cells ݔ௧ ∈ ܵ . As such, if the 
target’s initial position is known, then the target’s entire path will be known, which is a 
standard assumption in target search problems [14]. 

2.2. Sensor Model 
The UAV is equipped with a sensor that carries out independent observations ݖ௧ at 

each time step ݐ. An observation is classified based on the results of a detection algorithm; 
if detected, ݖ௧ = ௧ܦ  otherwise, ݖ௧ = ഥ௧ܦ . However, the observation likelihood, ݌(ݖ௧|߯௧), 
given sensor model, captures the fact that ݖ௧ =  ௧ does not guarantee the presence of aܦ
target, due to imperfection of the sensor and detection algorithm. Hence it is quite clear 
that, for a target location ߯௧, the likelihood of no detection can be obtained as: ݌(ܦഥ௧|߯௧) = 1 − (1) (௧|߯௧ܦ)݌

Here ݌(ܦ௧|x୲௧) and ݌(ܦഥ௧|x୲) represent the likelihood of detection and the likelihood of no 
detection, respectively. 

2.3. Belief Map Update 
Given sensor observations, ܼଵ:௧ = ,ଵݖ} … , {௧ݖ  and initial distribution ܾ(߯଴),  a 

Bayesian approach can be used to develop the belief map of the target, ܾ(߯௧). As with all 
Bayesian approaches, prediction and update operations are required. With the help of 
Bayesian approaches, both the prediction and update operations can be carried out. For 
the prediction step, the target motion model is used to propagate the belief map over time 
according to the equation: ෠ܾ(ݔ௧) = ෍ ௫೟షభ∈ௌ(௧ିଵ߯)ܾ(௧|߯௧ିଵ߯)݌   (2)

where: ܾ(߯௧ିଵ)  is the previous belief map such that ܾ(߯௧ିଵ) = (ଵ:௧ିଵݖ|௧ିଵ߯)݌  i.e., the 
conditional proability of target being at ߯௧ିଵ  given observations up to ݐ − 1; and the 
update step involves multiplying the latest conditional observation by ෠ܾ(߯௧): ܾ(ݔ௧) = (௧|߯௧ݖ)݌ߟ ෠ܾ(ݔ௧) (3)

The normalization factor ߟ௧,which measures the probability that the target is inside 
the search area (i.e., ∑ ܾ(߯௧) = 1ఞ೟∈ௌ ) , is defined as: ߟ௧ = 1/ ෍ (ݐ_߯|௧ݖ)݌ ෠ܾ(ݔ௧)ఞ೟∈ௌ  (4)

2.4. Objective Function 
Bayesian theory considerations mean that the probability that the target is not 

detected at time ݐ during any observation, ݎ௧ =  :depends upon two factors (ଵ:௧ିଵݖ|ഥ௧ܦ)݌
the latest belief map from the prediction phase (2), and the no-detection likelihood (1). 
This probability ݎ௧ is defined as: 
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௧ݎ = (ഥ௧|߯௧ܦ)݌ ෠ܾ൫ݔఞ೟൯, (5)

which is applicable across the entire search space. From (4) and (5) ݎ௧ = ௧ݖ ௧, andߟ/1 =  ഥ௧ܦ
represents a “no detection” event. The combined probability of failing to detect the target 
over the period of 1 to t ܴ௧ =  :becomes (ഥଵ:௧ܦ)݌

ܴ௧ = ෑ ௞ݎ = ܴ௧ିଵݎ௧௧
௞ୀଵ  (6)

And the probability of detecting the target for the first time at time t is given as: 

௧݌ = ෑ ௞(1ݎ − (௧ݎ = ܴ௧ିଵ(1 − ௧)௧ିଵݎ
௞ୀଵ  (7)

Therefore, the probability of detecting the target in t steps is a summation of ݌௧ over ݐ steps known as the cumulative probability ௧ܲ is given by: 

௧ܲ = ෍ ௞݌ = ௧ିଵ݌ + ௧௧݌
௞ୀଵ  (8)

Note that the cumulative probability ௧ܲ = 1 − ܴ௧ is different from ݌௧. 
Hence for a finite search time over a time period {1, … , ܰ}, the goal of the search 

strategy is to determine a search path ܱ = ,ଵ݋) … ,  ே) that could maximize the cumulative݋
probability ௧ܲ. Therefore, the search objective function is: 

ܬ = ෍ ௧ே݌
௧ୀଵ  (9)

3. Motion-Encoded Electric Charged Particles Optimization (ECPO-ME) Algorithm 
3.1. Description 

The ECPO [26], being inspired by the electric charged particles (ECPs) interactions, 
is a population-based heuristic algorithm. In the description of the algorithm, the 
following internal parameters are used: 
nECP: the total number of ECPs, 
MaxITER: the maximum number of iterations, 
nECPI: the number of ECPs which are interacting with themselves in one of the three 
strategies, 
naECP: the archive pool size. 

The ECP is assumed to search for a better solution by consequent interaction of 
charged particles in the selected strategy. While interacting, the best particle attracts the 
comparatively worst one, whereas the worst particle repels the best one. The ECPO is 
explained in detail in the following sub-section. 

3.2. Pseudocode 
Algorithm 1 presents the pseudocode for ECPO. All the steps are elaborately 

described in the following sub-sections. 
Algorithm 1 ECPO pseudocode 
1 Inputs ObjFunction (objective function), ProblemSize (dimension of the problem), 

nECP (number of ECPs), nECPI (number of ECPs in interaction), Strategy, 
naECP (size of the archive pool) and MaxITER (maximum number of 
iterations) 

2 Output ECPୠୣୱ୲ 
3 Initialization() 
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4 for Iter = 1: MaxITER 
5    Selection() 
6    Interaction() 
7    BoundsCheck() 
8    Diversification() 
9       PopulationUpdate() 
10 end for 

3.3. Algorithm 
3.3.1. Initialization 

The working procedure of ECPO starts by generating nECP charged particles within 
the search space, like all other metaheuristic approaches. The particles are then sorted 
according to their fitness. To generate the charged particles, a random normal distribution 
procedure has been adopted. 

3.3.2. Archive Pool 
Along with the generated population, a separate archive of naECP is created with the 

best ECPs and is denoted by archiveECP. In this archive, only the best quality ECPs are 
stored and updated with each iteration. 

3.3.3. Selection 
The performance of the algorithm much depends on the successful selection 

operation of ECPs. In this stage, nECPI number of particles are arbitrarily selected from 
the generated population, sorted according to their fitness, starting from the best to the 
worst. The particles selected in this phase will go through the next phase- interaction. 

3.3.4. Interaction 
As aforementioned, not all ECPs interact, only few of them do which are specified by 

nECPI. In the interaction phase, the selected nECPI particles interact among themselves, 
in one of the predetermined strategies. To illustrate clearly, let us assume that nECPI = 3 
which are sorted as best to worst and denoted as ‘ECP1′, ‘ECP2′, and ‘ECP3′. The best 
particle among all the particles is denoted as ECPbest. It is worth mentioning that the 
procedure will remain same for any other value of nECPI. Although any value for nECPI 
can be used, from the authors experience nECPI = 2 and nECPI = 3 give good results 
compared to other values. 

Strategy 1 
In strategy 1, only the best ECP, also known as the ECPୠୣୱ୲  gets interacted with 

another ECP at the time. Therefore, this strategy generates two new ECPs (ECP௜୬ୣ୵ଵ and ECP௜୬ୣ୵ଶ) for the case of three interacting ECPs. The whole procedure is presented in 
Figure 1. 
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For ECP1 
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For ECP2 

  
(e)  (f) 

For ECP3 

Figure 1. Illustration of the interaction between ECPs for strategy 1. 

For ECPଵ: 

At first, it gets affected by ECP2 and ECPbest, simultaneously, to move to ECPଵ୬ୣ୵ଵ. 
Then, ECP3 and ECPbest affected ECP1 to move to ECPଵ୬ୣ୵ଶ. 

The required force to move ECP1 up to ECPଵ୬ୣ୵ଵ is represented as: ܨ = ௕௘௦௧ଵܨ  + ଶଵ (10)ܨ
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where: ܨଶଵ represents the force of ECP2 on charge particle ECP1 whereas ܨୠୣୱ୲ଵ is the 
force on ECP1 from ECPbest. 

These two forces can be expressed as follows: ܨ௕௘௦௧ଵ = ߚ  × ܥܧ) ௕ܲ௘௦௧ − ܥܧ ଵܲ) (11)ܨଶଵ = ߚ  × ܥܧ) ଵܲ − ܥܧ ଶܲ) (12)

where ߚ is a randomly generated number through any of the distribution mechanisms, 
such as normal distribution or gamma distribution. 

As discussed earlier, ECPbest attracts ECP1, whereas ECP2 repeals ECP1, because ECP1 
is better than ECP2 and worse than ECPbest. 

Therefore, the total force pushing ECP1 towards ECPଵ୬ୣ୵ଵ  is given by (as 
demonstrated in Figure 1a): ܥܧ ଵܲ௡௘௪ଵ = ܥܧ  ଵܲ + = ܨ ܥܧ  ଵܲ + ௕௘௦௧ଵܨ + = ଶଵܨ ܥܧ  ଵܲ + ߚ × ܥܧ) ௕ܲ௘௦௧ − ܥܧ ଵܲ) + ߚ × ܥܧ) ଵܲ − ܥܧ ଶܲ) 

(13)

Similarly, the required force pushing ECP1 towards ECPଵ୬ୣ୵ଶ is as follows: ܥܧ ଵܲ௡௘௪ଶ  = ܥܧ  ଵܲ + =  ܨ ܥܧ  ଵܲ + ௕௘௦௧ଵܨ + =  ଷଵܨ ܥܧ  ଵܲ + ߚ × ܥܧ) ௕ܲ௘௦௧ − ܥܧ ଵܲ) + ߚ × ܥܧ) ଵܲ − ܥܧ ଷܲ) 
(14)

It is illustrated in Figure 1b. 

For ECPଶ : 
ECP1 and ECPbest affects simultaneously to move to ECPଶ୬ୣ୵ଵ . Similarly, ECP2 is 

affected by ECP3 and ECPbest simultaneously for moving to ECPଶ୬ୣ୵ଵ. These two scenarios 
are illustrated in Figure 1c,d, respectively. 

For ECPଷ : 
This last and third particle, ECP3 is affected by ECP1 and ECPbest, simultaneously, to 

move to the new particle, ECPଷ୬ୣ୵ଵ. Later, ECP3 gets affected by ECP2 and ECPbest together 
to create ECPଷ୬ୣ୵ଶ (Figure 1e,f). 

Equations (13) and (14), used for ECP1, are like the ones used for ECP2 and ECP3. 
They have not been rewritten here to avoid repetition. 

Strategy 2 
In the second strategy, the ECPbest does not interact with all of the remaining ECPs; 

rather, it associates with selected ones. Therefore, in the presented illustration, all the three 
interacting ECPs will create one new ECP, each, which is called ECP௜୬ୣ୵  (where ݅ 
represents the indexing of the selected ECP). 

For ECPଵ: 

ECP1 gets affected by ECP2 and ECP3, simultaneously, which will lead it to move 
towards ECPଵ୬ୣ୵. The resulting force for this movement is given by: ܨ = ଶଵܨ  + ଷଵ (15)ܨ

where: ܨଶଵ refers to the force of ECP2 for ECP1 and ܨଷଵ represents the force of ECP3 on 
the first charged particle, ECP1. 
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Therefore, the required force of pushing ECP1 towards ECPଵ୬ୣ୵  is given by (as 
shown in Figure 2a): ܥܧ ଵܲ௡௘௪  = ܥܧ  ଵܲ + =  ଵܨ ܥܧ  ଵܲ + ଶଵܨ + =  ଷଵܨ ܥܧ  ଵܲ + ߚ × ܥܧ) ଵܲ − ܥܧ ଶܲ) + ߚ × ܥܧ) ଵܲ − ܥܧ ଷܲ) 

(16)

For ECPଶ: 

The second particle (ECP2) is affected by ECP1 and ECP3, simultaneously, to create 
the movement towards ECPଶ୬ୣ୵. The resulting force for this incident is denoted by: ܨ = ଵଶܨ  + ଷଶ (17)ܨ

where: ܨଵଶ refers to the force between ECP1 and ECP2 whereas ܨଷଶ represents the force 
between ECP3 and ECP2. 

For ECPଷ: 

The ECP3 gets affected by first and second particles, together, with the following 
force: ܨ = ଵଷܨ  + ଶଷ (18)ܨ

where: ܨଵଷ is the force between ECP1 and ECP3 whereas ܨଶଷ represents the force between 
ECP2 and ECP3. 

Figure 2b,c represents the forces to move ECP2 to ECP2new and ECP3 to ECP3new, 
respectively. At the same time, the equation of the force equation will be like the one 
presented in (16). 

 
(a) For ECP1 
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(b) For ECP2 

 
(c) For ECP3 

Figure 2. Interaction between ECPs—(a) ECP1, (b) ECP2, and (c) ECP3 for Strategy 2. 

Strategy 3 
This strategy uses Strategies 1 and 2, both in generating the new ECPs. Therefore, in 

the case of nECPI = 3, a total of 9 new ECPs will be available, where strategies 1 and 2 will 
generate 6 and 3 ECPs, respectively. 

The product of the interaction phase is a new population of ECPs, which is denoted 
as newECP. Its size is the same as the original population size, whatever the nECPI or the 
interaction strategy. This means that the product of the interaction phase will generate, 
for instance, 35 particles if the initially generated population is 35 particles. 

3.3.5. Checking the Bounds 
This phase checks whether any new ECPs created in the interaction phase have been 

generated outside the search space. To verify this, all of the new ECPs are checked. If any 
particles are found outside the search space, they will be brought back within the assigned 
boundary. 

3.3.6. Diversification 
Some part of the new ECP population needs to be diversified with a specific 

probability, known as the probability of diversification (Pd). In this algorithm, the 
diversity operator collects information from newECP and archiveECP. The pseudocode 
of the diversification phase is presented in Algorithm 2. 

3.3.7. Diversification 
Some part of the new ECP population needs to be diversified with a specific 

probability, which is known as probability of diversification (Pd). In this algorithm, the 
diversity operator collects information from newECP and archiveECP. The pseudo code 
of the diversification phase is presented below in Algorithm 2. 
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Algorithm 2 Pseudocode for the diversification phase 
1 For i = 1: newECP 
2    For j = 1: ProblemSize 
3        If rand < Pd 
4            select a random ECP from the archive pool (k) 
5            newECP(i, j) =  archiveECP(k, j) 
6        End If 
7 End For 

3.3.8. Population Update 
The new population is modified in this phase and stored in the previously created 

archive pool. The best nECP particles, from rank 1 to nECO, will generate the new 
population. It will go through an iterative procedure again, as described before. 

3.3.9. Criteria for Termination 
There could be several ways of terminating for the discussed algorithm. However, in 

this current ECPO version, the iteration continues for a specified number of times 
(MaxITER) and then stops. The MaxITER is an important parameter for the ECPO-ME 
algorithm. It is determined by trying various values and selecting the optimal one. It is 
obvious that increasing MaxITER will improve the results in most cases, but, at the same 
time, it will take more time to get the results. Inversely, decreasing MaxITER might lead 
to less efficient results, since the algorithm might need more iteration to converge to the 
global minimum. It is therefore suggested to optimally determine the MaxITER parameter. 

3.3.10. Constraint Handling 
The constraints in ECPO are handled by changing the constrained optimization 

problems to unconstrained using the penalty factor technique. In this technique, if an ECP 
fails to fulfill the constraint demand, a penalty factor will be imposed on the objective 
function. The higher the severity of the violation, the bigger will be the penalty term. 

3.3.11. Motion Encoding (ME) 
ECPO has yet to undergo any modification or upgrade as a new metaheuristic 

optimization algorithm. However, this paper has added a motion-encoding feature to the 
existing approach [26] to improve the search capability of ECPO. It has helped the 
algorithm cope with the challenging task of searching the dynamic targets within a limited 
time frame. Therefore, there is the need to encode the particle positions to find the global 
solution easily. To achieve this, a position needs to be defined as a multi-dimensional 
vector that can represent the search path [24]. 

In this paper, UAV motion is used to encode the particle positions. Each searching 
path is thus seen as a set of UAV motion segments instead of the traditional nodal concept. 
Thus, the movement of a UAV from one cell to another is tracked accordingly to run the 
optimization process. The whole mapping procedure of ECPO-ME is such that the 
particles search the motion space, not the cartesian space. 

4. Application, Results, and Discussion 
In this section, the performance of the proposed ECPO-ME-based search algorithm 

is assessed under different scenarios and compared with several other optimization 
algorithms. All the scenarios and algorithms have been implemented and simulated using 
the commercial software MATLAB. All calculations were done using a computer 
equipped with Inter Core i7- 6500U CPU, 2.59 GHz, 8 GB RAM, running the Windows 10 
operating system. 
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4.1. Scenarios 
Six scenarios are used, some of which are similar to the ones investigated in [24]. All 

the scenarios have same grid size ൫ݓ௫ = ௬ݓ = 40൯  but different initial position (or 
location) of the UAV, target motion model ܲ(ݔ௧|ݔ௧ିଵ) and belief map ܾ(ݔ଴). The tested 
scenarios are depicted in Figure 3. The probability map is color-coded (cells with higher 
probabilities of target presence are colored with warmer colors), the UAV’s initial position 
is indicated with a white circle, and the dynamics of the moving target are outlined with 
white arrows. 
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(c) Scenario C 
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(d) Scenario D 

 
(e) Scenario E 

 
(f) Scenario F 

Figure 3. Search scenarios. 

Scenario A: This scenario has two areas with higher probabilities, located near each 
other and moving towards the east. However, the likelihood of the upper area is slightly 
higher than the lower area. The UAV is situated in the middle of the search space. This 
scenario is depicted in Figure 3a. 

Scenario B: In this scenario, there are two areas with high probabilities that are 
equally spaced from the initial position of the UAV along the y-axis of the search space. 
However, the probability of the upper area is slightly higher than that of the lower area. 
Both areas move towards the south-west. The UAV is located at the middle of the search 
space, and the corresponding scenario is depicted in Figure 3b. 

Scenario C: In this scenario, picturized in Figure 3c, only one dense area moves 
towards the southeast. This scenario tests the adaptability of the searching algorithm. The 
UAV is located at the middle of the x-axis and under the target along the y-axis of the 
search space. 
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Scenario D: In this scenario, there is only one dense area, like in Scenario C. However, 
the target is moving towards the UAV in this scenario, which is initially located at the 
south-west region of the search space. This scenario is depicted in Figure 3d. 

Scenario E: This scenario, depicted in Figure 3e, consists of two probability areas that 
are equally spaced from the initial position of the UAV along the x-axis of the search space, 
and the target is moving towards the north. However, the probability of the right area is 
slightly higher than that of the left area. The UAV is located in the middle of the search 
space. 

Scenario F: In this scenario, two probability areas are the same distance apart from 
the initial position of the UAV, and the target is moving towards the north-east. However, 
the probability of the lower area is slightly higher than the upper area. The UAV, along 
with the areas, is on the south-west side of the search space. This scenario is depicted in 
Figure 3f. 

4.2. Comparing Algorithms 
As mentioned before, the proposed algorithm results are compared to ten well-

known algorithms, which are described in the following subsections. 
Motion-encoded particle swarm optimization (MPSO): This algorithm is an 

improved version of the famous PSO algorithm using the ME mechanism. PSO is inspired 
by the social behavior of bird flocking or fish schooling [27,28]. In the PSO a population 
of particles (each particle has a position and a velocity) evolves during iterations. During 
each iteration, the position and velocity of each particle are updated using the best 
solution achieved by each particle so far, and the overall best solution. The MPSO has 
been used in [24] to solve a similar problem to the one solved in this paper, i.e., finding a 
moving target using UAVs. As reported in [24] the obtained results using MPSO were 
better than some versions of the PSO and many other optimization algorithms. Therefore, 
it will be interesting to compare the results obtained using the proposed approach with 
those obtained using MPSO. 

Most-valuable-player algorithm (MVPA): This algorithm is an optimization 
algorithm that optimizes the problem at hand by considering a population of players that 
compete against each other (individually and in teams) to win the trophy of the most 
valuable player (individually) and the championship (in teams) [29]. 

Differential evolution (DE): DE is a population-based optimization algorithm relying 
on a variety of evolutionary processes. A specific member of the population, representing 
the solution, iteratively improves itself from one generation to another. This algorithm is 
famous for its stability and versatility, specifically among population-based search 
algorithms [30]. The standard DE method does not require gradient information 
trivializing the condition of differentiability. After the occurrence of a randomly chosen 
evolutionary event, if a candidate gives a better solution, the adaptation is accepted for 
that candidate; otherwise, its traits remain unchanged for the next generation. The process 
is repeated until pre-defined termination criteria are met. 

Genetic algorithm (GA): GA was first used by Holland in 1975 based on Darwin’s 
theory of evolution [31]. Now it is one of the most famous metaheuristics and has been 
used in many research fields. The objective of the GA is to maximize the payoff of 
candidate solutions in the population against a cost function (or a fitness function) from 
the problem domain using three operators: selection, recombination, and mutation. 

Electrostatic discharge algorithm (ESDA): This algorithm is an optimization 
algorithm inspired by electrostatic discharge (ESD). In this algorithm, objects (population 
of objects) work in a given environment (search space). If these objects are near each other, 
the ESD may occur (sometimes between two objects and sometimes between three objects). 
If ESD occurs on a victim object couple of times, the object or some of its components is/are 
damaged, and it/they must be changed [32]. 

Biogeography-based optimization (BBO): BBO is also an evolutionary algorithm 
inspired by nature. As evident from the name, its equations are modeled on biogeography, 
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which covers the distribution and growth of living beings through space and time. Three 
events decide the fitness of each candidate in every generation: speciation, migration, and 
extinction. Like DE, BBO maintains the population of candidates solutions after every 
biogeographic event [33]. Once the termination criterion is met, the candidate with the 
best objective function is considered the optimal solution. 

Artificial bee colony (ABC): ABC is another nature-inspired optimization algorithm 
based on the foraging pattern of a bee swarm. The bees in a colony belong to either of the 
three groups; employed, onlookers, and scouts. The employed ones look for the food 
source around the hive, where the location of the food represents the optimal solution, 
and the amount of nectar in a food source is equivalent to the fitness value. Once all 
employed bees bring the food, the onlookers evaluate the quantity of food and determine 
the next trip of employed bees. Scouts replace a depleted source with a randomly located 
new food source [34]. All these metaphors are implemented mathematically and 
iteratively give the optimal solution in a search space. 

Gravitational search algorithm (GSA): GSA models the optimization formulation 
using Newton’s gravitational laws and laws of motion. Many variants of GSA have been 
obtained by modifying its parameters, including Kbest, velocity, and position. The mass 
interaction under Newtonian mechanics governs the convergence of the solution. Every 
mass exerts a force on another mass under a fixed gravity determining the fitness function. 
Based on the interaction, the velocity and position of each agent are updated [35]. The 
process continues till the termination criteria are met. Ultimately, the solution converges 
to the optimal solution. 

Teaching–learning-based optimization (TLBO): The TLBO algorithm is inspired by 
the teaching-learning process. In this algorithm, there are two phases, namely the teacher 
phase and the learner phase. In the first phase, the population of students improves their 
knowledge with the teacher who is the best solution among the population. However, in 
the learner phase, the students interact to improve their knowledge [36]. 

Black-hole (BH) algorithm: This algorithm is inspired by the black hole theory, a 
region of spacetime where no object, particle, or even light can escape from it due to its 
strong gravity. In this algorithm, the population of stars moves in space. If a star 
approaches the black hole (within a radius called the Schwarzschild radius), it is absorbed 
by the hole, and a new star is generated to keep the same number of stars over the 
iterations [37,38]. 

4.3. Results 
The proposed algorithm and the comparing ones were applied to the UAV dynamic 

target search. Each algorithm has been run 30 times with a population of size 30 and 300 
as the maximum number of iterations. The remaining parameters related to each 
algorithm are selected as recommended in the literature. Table 1 presents the ‘BEST’, the 
‘MEAN’, the ‘MEDIAN, the ‘WORST’, the ‘Standard Deviation (SD)’ and the ‘Feasibility 
Ratio (FR)’ for each algorithm and each scenario. The FR is defined as the percentage of 
the successful runs over the total number of attempted runs. The following comments can 
be made from Table 1: 
- For Scenario A, the proposed ECPO-ME algorithm obtained the best results for the 

‘BEST’, the ‘MEAN’ and, the ‘MEDIAN values. The TLBO algorithm obtained the 
highest ‘WORST’ and ‘SD’ Values. 

- For Scenario B, the TLBO obtained a slightly better value than the ECPO-ME in terms 
of the ‘BEST’ values. However, the ECPO-ME obtained the best results of the ‘MEAN’, 
the ‘MEDIAN, the ‘WORST’ and the ‘SD’ values compared to the remaining 
algorithms. 

- For Scenario C and Scenario D, the proposed ECPO-ME outperformed the other 
algorithms in terms of the statistical performance indicators used in this study. It is 
worth mentioning that the DE achieved equally good results to ECPO-ME in terms 
of the ‘BEST’ values. 
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- For Scenario E, the proposed ECPO-ME showed better performance than all the 
remaining algorithms in terms of the ‘BEST’, the ‘MEAN’ and the ‘MEDIAN values 
while the DE achieved better results in terms of the ‘WORST’ and the ‘SD’ values. 

- For Scenario F, the proposed ECPO-ME achieved a better result than all the 
remaining algorithms in terms of the ‘BEST’, the ‘MEDIAN’ and the ‘WORST’ values, 
while the TLBO was better in terms of the ‘MEAN’ and ‘SD’ values. 

- All algorithms gave an FR equal to 100, which reflects that all of them could find a 
solution (i.e., a path) in all the runs and for all the investigated scenarios except for 
the ABC algorithm for Scenario D (FR = 93.33%). 

- For scenarios with high probability regions, like Scenario C and Scenario D, the 
likelihood of finding the target is higher because there is no need to divide or spread 
the chances of finding the target in other areas. 

Table 1. Statistical analysis of the obtained results using each algorithm. The bold in table shows the best results. 
  ECPO-ME ECPO MPSO MVPA DE GA ESDA BBO ABC GSA TLBO BH 

Scenario A 

BEST 0.20551 0.20116 0.18138 0.19810 0.20197 0.16030 0.18885 0.19948 0.18511 0.19572 0.20485 0.18101 
MEAN 0.19239 0.16555 0.06021 0.11085 0.18960 0.13368 0.14730 0.17851 0.14966 0.04258 0.19207 0.13570 

MEDIAN 0.19118 0.18091 0.03225 0.12225 0.18942 0.13315 0.15159 0.18132 0.16003 0.00095 0.19115 0.13742 
WORST 0.18209 0.03135 0.00000 0.00002 0.17250 0.10551 0.09942 0.11788 0.00131 0.00000 0.18303 0.06931 

SD 0.00593 0.04174 0.06305 0.06100 0.00630 0.01466 0.02609 0.01696 0.03707 0.06203 0.00587 0.02547 
FR 100 100 100 100 100 100 100 100 100 100 100 100 

Scenario B 

BEST 0.27634 0.26252 0.22652 0.26014 0.27466 0.22486 0.23978 0.26156 0.24424 0.18925 0.27689 0.23919 
MEAN 0.25724 0.23126 0.10670 0.17272 0.24516 0.18563 0.18328 0.21522 0.19452 0.05717 0.25216 0.19299 

MEDIAN 0.25820 0.24153 0.11274 0.19613 0.24909 0.18932 0.18379 0.23196 0.20196 0.04139 0.25462 0.19735 
WORST 0.23530 0.14698 0.01105 0.03688 0.14928 0.15175 0.11802 0.11055 0.01471 0.00009 0.22876 0.13430 

SD 0.00964 0.02539 0.05659 0.06069 0.02339 0.01860 0.03786 0.04466 0.04892 0.05281 0.01293 0.02803 
FR 100 100 100 100 100 100 100 100 100 100 100 100 

Scenario C 

BEST 0.68662 0.64070 0.58442 0.64361 0.68662 0.54835 0.64221 0.66811 0.61142 0.51114 0.67221 0.60402 
MEAN 0.64158 0.52614 0.30143 0.37015 0.62170 0.46797 0.47561 0.55109 0.49444 0.22860 0.63269 0.49182 

MEDIAN 0.64997 0.55979 0.31420 0.39419 0.63538 0.47210 0.48670 0.59358 0.52423 0.23693 0.63631 0.50913 
WORST 0.57162 0.26147 0.00240 0.01434 0.35432 0.36236 0.27549 0.23189 0.26933 0.00000 0.55967 0.36322 

SD 0.02876 0.10643 0.17289 0.15426 0.06193 0.05306 0.08845 0.10633 0.09406 0.13620 0.03111 0.07498 
FR 100 100 100 100 100 100 100 100 100 100 100 100 

Scenario D 

BEST 0.55431 0.49309 0.47090 0.46095 0.55431 0.40220 0.51444 0.50274 0.46497 0.33458 0.53742 0.39930 
MEAN 0.48849 0.38766 0.24390 0.31673 0.45452 0.29675 0.31233 0.35144 - 0.20418 0.46575 0.28810 

MEDIAN 0.49887 0.38931 0.23998 0.32675 0.44347 0.29698 0.30451 0.33692 - 0.20486 0.46263 0.27994 
WORST 0.40148 0.26634 0.04982 0.09241 0.32458 0.21807 0.18826 0.22614 - 0.00002 0.37301 0.18647 

SD 0.03120 0.05620 0.08177 0.09298 0.06339 0.04411 0.07879 0.07564 - 0.08891 0.04044 0.05650 
FR 100 100 100 100 100 100 100 100 93.33 100 100 100 

Scenario E 

BEST 0.20518 0.20358 0.18901 0.18726 0.20477 0.17868 0.18686 0.20130 0.19559 0.17188 0.20518 0.16870 
MEAN 0.19008 0.17367 0.11979 0.13986 0.18615 0.13753 0.14400 0.17809 0.16200 0.07077 0.18893 0.13598 

MEDIAN 0.18870 0.18154 0.12904 0.14625 0.18395 0.14029 0.14865 0.17725 0.16468 0.07634 0.18830 0.13544 
WORST 0.17187 0.11000 0.00021 0.02299 0.17277 0.09305 0.04521 0.15401 0.04478 0.00012 0.16969 0.07844 

SD 0.00801 0.02362 0.05092 0.03505 0.00787 0.01839 0.03434 0.01107 0.02810 0.05553 0.00867 0.02228 
FR 100 100 100 100 100 100 100 100 100 100 100 100 

Scenario F 

BEST 0.22728 0.21985 0.16005 0.17661 0.22195 0.16416 0.20217 0.22195 0.20572 0.17721 0.22175 0.18615 
MEAN 0.20007 0.18020 0.07334 0.10851 0.19650 0.10638 0.13038 0.19142 0.15022 0.06385 0.20008 0.13070 

MEDIAN 0.21024 0.18573 0.07296 0.13480 0.20160 0.11310 0.14440 0.20465 0.15892 0.03687 0.20930 0.13941 
WORST 0.16650 0.08188 0.00129 0.00564 0.13640 0.04128 0.03171 0.08111 0.00041 0.00070 0.16648 0.02830 

SD 0.01978 0.03226 0.05025 0.05427 0.02234 0.03378 0.04813 0.03334 0.05207 0.06128 0.01820 0.04135 
FR 100 100 100 100 100 100 100 100 100 100 100 100 

 
Figures 4–9 depict the optimal search paths obtained for the tested algorithms for 

Scenario A, Scenario B, Scenario C, Scenario D, Scenario E, and Scenario F, respectively. 
In these figures, the sketched path represents the searching path. However, the belief map 
reflects the target at the last step. This map can be compared with the initial map, 
illustrated in Figure 3, to see the evolution of the target. It can be seen from these figures 
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that, in all scenarios, the proposed ECPO-ME algorithm was capable of following the 
target paths and, thus, finding out the highest probability region. 

Furthermore, the convergence curves of all algorithms are given in Figure 10. It can 
be seen from these curves that the ECPO-ME algorithm achieves the best results in almost 
all the investigated scenarios. 

 

Figure 4. Search paths for Scenario A, obtained using the tested algorithms. 
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Figure 5. Search paths for Scenario B, obtained using the tested algorithms. 
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Figure 6. Search paths for Scenario C, obtained using the tested algorithms. 
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Figure 7. Search paths for Scenario D, obtained using the tested algorithms. 
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Figure 8. Search paths for Scenario E, obtained using the tested algorithms. 
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Figure 9. Search paths for Scenario F, obtained using the tested algorithms. 
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(a) Scenario A 

 
(b) Scenario B 

 
(c) Scenario C 
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(d) Scenario D 

 
(e) Scenario E 

 
(f) Scenario F 

Figure 10. Convergence curves of the ECPO-ME for all scenarios. 

4.4. Discussion 
The analysis of the obtained results leads to the conclusion that the proposed ECPO-

ME algorithm has capability to perform better than many of the well-known and widely 
used optimization algorithms. For instance, for Scenario A, the ECPO-ME has 
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outperformed the remaining algorithms by 13.30%, 3.74%, 1.75%, 28.20%, 8.82%, 3.02%, 
11.02%, 5.00%, 0.32%, 13.54%, respectively. Another example is for Scenario B, the ECPO-
ME has outperformed the remaining algorithms (except TLBO) by 5.26%, 21.99%, 6.23%, 
0.61%, 22.89%, 15.25%, 5.65%, 13.14%, 46.02%, and 15.53%, respectively. 

The success of the ECPO-ME lies first in the search ability of the ECPO itself and 
secondly, in the motion-encoding mechanism introduced to the ECPO for the first time. 

It has been proven earlier that ECPO is superior in terms of its ability to search for 
the optimal solution, and hence ranked among the top five algorithms in doing so. Yet, 
the proposed enhancement, ECPO-ME outperforms its predecessor in terms of its search 
ability, one of the primary reasons for ECPO-ME’s superior performance, as recorded in 
Table 1. 

For the second point, implementing the motion-encoding mechanism with the ECPO 
has improved its performance for finding a moving target with a UAV. The ME 
mechanism has prevented the algorithm from generating invalid paths during the search 
process. Furthermore, the ME mechanism has transformed the search procedure from a 
cartesian space to a motion space, which has improved the adaptation of ECPO-ME to the 
dynamics of the target. 

5. Conclusions 
In this work, a new approach based on the electric charged particles optimization 

algorithm and the motion-encoding mechanism is presented to search the moving targets 
using unmanned aerial vehicles. The ME mechanism transforms the cartesian problem 
into a motion-based problem. The search path is then transformed into a series of motions 
where the UAV is restricted to the neighbor cells of the current location cell. Extensive 
simulations (six different scenarios with different complexities) and comprehensive 
comparisons with other well-known optimization algorithms (ten algorithms) have 
shown that the proposed approach is highly effective and reliable in searching moving 
targets using UAVs. Such an approach is highly suitable to use in cattle management, 
where the animals can be considered the moving targets that are prone to get lost while 
grazing. 

The challenges for future works are multiple. One axis is to investigate the use of 
multiple UAVs instead of a single UAV, as done in this paper. Many approaches can be 
adopted, like allocating each UAV to a region, or having all of them search the highest 
regions. Another interesting point can be the investigation of information sharing between 
the UAVs, which may significantly improve the search procedure. Another challenging 
task or research axis can be extending this study to multiple moving targets instead of just 
one or two targets. The mixture of both axis of research, i.e., using multiple UAVs to search 
for multiple targets, can lead to a large-scale optimization problem, which is another 
challenging task to be investigated in the future. 

Furthermore, in this paper, only one objective has been considered, with the 
cumulative probability, ௧ܲ. Including other objectives, such as fuel consumption by the 
UAVs or avoidance of any forbidden areas, can define future work extending that 
reported here. The problem in hand will then become a multi-objective one. From an 
application point-of-view, this research can be extended to a real-life scenario, wherein 
the motion of a moving animal can be detected to communicate its location to a nearby 
control center for further action. 
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