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Abstract: In this paper, a new optimization algorithm called motion-encoded electric charged
particles optimization (ECPO-ME) is developed to find moving targets using unmanned aerial
vehicles (UAV). The algorithm is based on the combination of the ECPO (i.e., the base algorithm)
with the ME mechanism. This study is directly applicable to a real-world scenario, for instance the
movement of a misplaced animal can be detected and subsequently its location can be transmitted
to its caretaker. Using Bayesian theory, finding the location of a moving target is formulated as an
optimization problem wherein the objective function is to maximize the probability of detecting the
target. In the proposed ECPO-ME algorithm, the search trajectory is encoded as a series of UAV
motion paths. These paths evolve in each iteration of the ECPO-ME algorithm. The performance of
the algorithm is tested for six different scenarios with different characteristics. A statistical analysis
is carried out to compare the results obtained from ECPO-ME with other well-known metaheuristics,
widely used for benchmarking studies. The results found show that the ECPO-ME has great
potential in finding moving targets, since it outperforms the base algorithm (i.e., ECPO) by as much
as 2.16%, 5.26%, 7.17%, 14.72%, 0.79% and 3.38% for the investigated scenarios, respectively.

Keywords: electric charged particles optimization; motion-encoded; probabilistic target finding;

unmanned aerial vehicles

1. Introduction

Currently, unmanned aerial vehicles (UAVs) are among the most promising research
tools of interest due to their potentials for use in numerous practical applications [1-3].
UAVs are especially suitable for surveillance and rescue tasks. They are highly capable of
working under harsh environmental conditions. Moreover, they can connect with a
sensor-rich work environment, ideal for dealing with a variety of tasks [4]. In the case of
searching for a lost target using UAVs, several factors are taken into consideration. One
of those is the ‘golden time’, a critical period when the probability of finding the target
becomes maximal [5]. This probability decreases rapidly with time, due to several factors
such as the terrain, weather conditions, attenuation of the initial particulars, the target
dynamics, etc.

Therefore, while formulating the problem of searching for a lost target by UAVs, it
is required to find a path that can maximize the target detection probability within a given
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flight time. Usually, the target position information and other search conditions play
crucial roles in such formulations [6,7]. Such search problems are found in the literature
as probability functions where uncertainties are considered using initial assumptions.
Besides, sensor models and search conditions are adequately incorporated in the problem
formulation. Articles [6,8] proposed a Bayesian approach to deal with the objective
functions of detection probability evaluation of UAV flight paths.

Article [9] proposed a novel path tracking mechanism for high-speed autonomous
vehicles based on the combination of model predictive control (MPC) and a PID-speed
controller. A lane-level multilayer map model has been proposed in [10] to ease the
tracking of a UAV or any other autonomous vehicle, even in a complicated network. A
self-assessment based method [11] was used to solve a cooperative search problem, where
autonomous vehicles can cooperate. This method was checked on different
communication structures and excellently performed in scalability, design complexity,
and communication skill. The UAV-based search problem is represented as a control
system problem in [12] where the detection and collection of data can work
simultaneously with coverage control.

In [7,13], the stochastic Markov process was proposed to represent deterministic
target dynamics, meaning that the search scenarios will not affect the process. The initial
search map can be modeled as a multivariate normal distribution, where the mean and
the variance are computed using the initial information of the target position. While
modeling the sensor, continuous Gaussian variable [6] and binary variable [14] are both
used with the binary states defined as ““detected”” and ““non-detected”.

Because of the involvement of multiple probabilistic variables, such search problems
are complex in nature.

The complexity of the search problem varies between NP-hard [15] to NEXP-
complete [16]. The former refers to the nondeterministic polynomial-time hardness, while
the latter refers to nondeterministic exponential-time completeness. In NEXP-complete
type problems, the number of solutions increases exponentially along with the flight time
and search dimension. Therefore, solving such a problem by classical methods like
differential calculus to find the exact solution is understandably impractical. Therefore,
approximated heuristic methods are mostly used. Typical optimization algorithms used
in this field include genetic algorithms (GA) [17], ant colony optimization (ACO) [14], one-
step look ahead greedy search algorithm [6], k-step look ahead greedy search algorithm
[7], Bayesian optimization approaches (BOA) [8], branch and bound approach [18], cross-
entropy optimization (CEO) [19], gradient descend methods [20,21], limited depth search
algorithms [22], neural networks [23] etc. Among the used algorithms, Refs. [8,14,19,22]
presented are the algorithms capable of using more than one UAV for search purposes,
thus speeding up the search process.

On the other hand, Ref. [6,7] proposed algorithms to support a specific design of the
search problem. However, it is noted that most of the used methods can successfully track
moving targets using the binary model of sensor detection. Recently, [24] proposed using
motion-encoded particle swarm optimization (MPSO) to solve UAVs’ moving-target
search problem. The paper also compared the results with some well-known
metaheuristic approaches. It was 24% more efficient in detection and 4.71 times more
time-efficient than the original PSO. A review paper [25] nicely gathers all the intelligent
optimization algorithms that have been tried on UAV dependent swarm search
applications.



Sensors 2021, 21, 6568

3 of 27

The literature identifies different approaches adopted to certify the optimal search
divergence, such as target dynamics, constraints, assumptions, and searching
mechanisms. The complex nature of optimal search, particularly for fast-moving targets,
makes optimal problem formulation and solution strategizing challenging. However,
recent advancements in sensors, UAV technologies, and communications have opened up
new opportunities for research in the field. The solution must be highly robust in terms of
search capacity and possess the properties of a methodical optimization tool like
adaptability, computational efficiency, optimality, etc.

Electric charged particle optimization (ECPO) is a new metaheuristic optimization
algorithm that was proposed by Bouchekara in 2020 [26]. The algorithm is established
based on the interaction phenomenon between electrically charged particles. Different
strategies of interacting behavior have made this algorithm a robust one and suitable for
application on diverse applications. ECPO is a promising optimization tool that has been
compared with several state-of-the-art optimization algorithms. It was tested and verified
with a set of 30 functions and one real-life engineering problem. This algorithm resembles
an intuitive sense of the motion of an apparently stray and lost animal in the wilderness
and thus is expected to give results of analogical significance. However, motion encoding
feature has been added with the ECPO in this paper for the first time to improve the
searching capabilities of the algorithm for UAV dynamic target search problems.

This paper proposes a motion-encoded electric charged particle optimization (ECPO-
ME) algorithm to solve the problem of moving target search. Some of the main features of
the paper are highlighted below:

- The formulation of the optimization problem with a suitable objective function and
the required constraints represents the targeted problem accurately.

- The use of motion-encoding mechanism with ECPO to increase the efficacy of the
algorithm. This duo has neither been tried before in the literature nor in solving any
optimization problems.

- Comparing the proposed mechanism with 10 commonly used metaheuristic
optimization algorithms strengthens the logic of using it in moving target search
applications. It is also compared with MPSO, used in a recently published research
paper to solve a similar optimization problem.

- The presentation of the convergence curves for all the used optimization methods in
a single plot to ease the comparison of their performance.

The simulation results demonstrate the superiority of ECPO-ME over all other
optimization algorithms in solving the problem of moving target search, which is crucial
in ascertaining the presence and position of a misplaced animal in vast landscapes.
Additionally, we prove that the motion-encoding strategy improved the efficacy of the
ECPO algorithm by a considerable margin.

The remaining paper is structured as follows: Section 2 contains the problem
formulation and the objective function development. Section 3 presents the optimization
algorithm details to solve the addressed problem. Section 4 exhibits the simulation
problem, and, finally, Section 5 draws the concluding remarks of the article.

2. Problem Formulation

The problem addressed in this work is formulated as a search problem that entails
modeling of the target, sensor, and belief map, as presented in [24]. These three aspects of
the problem formulation are discussed in Sections 2.1-2.3, respectively and the objective
function is developed in Section 2.4.

2.1. Target Model

Consider the variable x € X, which represents the unknown location of the target in
the search problem. To begin the search, the probability distribution function (PDF) which
could be any suitable probability distribution based on the target’s most recent
information (for example the target’s most recently known position) is used to model the
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target’s location. For example, reference [24] discussed using a normal distribution
centered on the last known location or a uniform distribution if there is no information
about the target’s location. The PDF is represented using the belief map, b(x,), which is
a grid map with each cell marked with the probability of the target being in that cell. The
belief map is developed by discretizing the search space into a grid of S, x S, cells with
their associated probabilities such that if the target is in the search space, then
Z(xoes)b(xo) =1

The target navigation pattern can be modelled as a Markov process. In this work, we
assume a conditionally deterministic target whose navigation pattern depends upon the
target’s initial position, x,. Therefore, probability that a target moves from cell x,_; to x,
p(x¢|x,—_,) called the transition function is known for all cells x; € S. As such, if the
target’s initial position is known, then the target’s entire path will be known, which is a
standard assumption in target search problems [14].

2.2. Sensor Model

The UAV is equipped with a sensor that carries out independent observations z, at
each time step t. An observation is classified based on the results of a detection algorithm;
if detected, z, = D, otherwise, z, = D,. However, the observation likelihood, p(z;|x.),
given sensor model, captures the fact that z, = D, does not guarantee the presence of a
target, due to imperfection of the sensor and detection algorithm. Hence it is quite clear
that, for a target location y;, the likelihood of no detection can be obtained as:

p(ﬁtl)(t) =1-pD¢lxe) 1)

Here p(D|x,,) and p(D.|x,) represent the likelihood of detection and the likelihood of no
detection, respectively.

2.3. Belief Map Update

Given sensor observations, Z;. = {z;,..,2;} and initial distribution b(y,), a
Bayesian approach can be used to develop the belief map of the target, b(x;). As with all
Bayesian approaches, prediction and update operations are required. With the help of
Bayesian approaches, both the prediction and update operations can be carried out. For
the prediction step, the target motion model is used to propagate the belief map over time
according to the equation:

) = ) pGtelte-b(e-) @)

Xt—1€S

where: b(x;—1) is the previous belief map such that b(x;—1) = p(¥t-1l21..—1) i.e., the
conditional proability of target being at x,_; given observations up to t —1; and the
update step involves multiplying the latest conditional observation by b(x,):

b(x,) = UP(Ztl)(t)B(xt) 3)

The normalization factor n;,which measures the probability that the target is inside
the search area (i.e., X,,esb(x¢) = 1), is defined as:

me=1/ ) plr b 4)

XtES

2.4. Objective Function

Bayesian theory considerations mean that the probability that the target is not
detected at time ¢ during any observation, r; = p(D;|z;;_,) depends upon two factors:
the latest belief map from the prediction phase (2), and the no-detection likelihood (1).
This probability r, is defined as:
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re = p(Delxe)b(xy,), (5)
which is applicable across the entire search space. From (4) and (5) r, = 1/n,, and z, = D,
represents a “no detection” event. The combined probability of failing to detect the target
over the period of 1to t R, = p(D;.;) becomes:
t

R, = Hrk =Ryq1¢ (6)

k=1
And the probability of detecting the target for the first time at time t is given as:
t—1
Pe = nrk(l — 1) =R1(1—1) @)
k=1
Therefore, the probability of detecting the target in t steps is a summation of p, over
t steps known as the cumulative probability P; is given by:

t
Pt=zpk=pt—1+pt 8
k=1
Note that the cumulative probability P, = 1 — R, is different from p.
Hence for a finite search time over a time period {1, ..., N}, the goal of the search
strategy is to determine a search path 0 = (04, ..., 0y) that could maximize the cumulative
probability P,. Therefore, the search objective function is:

J :ipt )

3. Motion-Encoded Electric Charged Particles Optimization (ECPO-ME) Algorithm
3.1. Description

The ECPO [26], being inspired by the electric charged particles (ECPs) interactions,
is a population-based heuristic algorithm. In the description of the algorithm, the
following internal parameters are used:

nECP: the total number of ECPs,

MaxITER: the maximum number of iterations,

nECPI: the number of ECPs which are interacting with themselves in one of the three
strategies,

naECP: the archive pool size.

The ECP is assumed to search for a better solution by consequent interaction of
charged particles in the selected strategy. While interacting, the best particle attracts the
comparatively worst one, whereas the worst particle repels the best one. The ECPO is
explained in detail in the following sub-section.

3.2. Pseudocode

Algorithm 1 presents the pseudocode for ECPO. All the steps are elaborately
described in the following sub-sections.

Algorithm 1 ECPO pseudocode

1 Inputs ObjFunction (objective function), ProblemSize (dimension of the problem),
nECP (number of ECPs), nECPI (number of ECPs in interaction), Strategy,
naECP (size of the archive pool) and MaxITER (maximum number of
iterations)

2 Output ECPye¢

3 Initialization()




Sensors 2021, 21, 6568

6 of 27

4 for Iter = 1: MaxITER
5 Selection()

6 Interaction()

7 BoundsCheck()

8 Diversification()

9 PopulationUpdate()
10 end for

3.3. Algorithm
3.3.1. Initialization

The working procedure of ECPO starts by generating nECP charged particles within
the search space, like all other metaheuristic approaches. The particles are then sorted
according to their fitness. To generate the charged particles, a random normal distribution
procedure has been adopted.

3.3.2. Archive Pool

Along with the generated population, a separate archive of naECP is created with the
best ECPs and is denoted by archiveECP. In this archive, only the best quality ECPs are
stored and updated with each iteration.

3.3.3. Selection

The performance of the algorithm much depends on the successful selection
operation of ECPs. In this stage, nECPI number of particles are arbitrarily selected from
the generated population, sorted according to their fitness, starting from the best to the
worst. The particles selected in this phase will go through the next phase- interaction.

3.3.4. Interaction

As aforementioned, not all ECPs interact, only few of them do which are specified by
nECPL. In the interaction phase, the selected nECPI particles interact among themselves,
in one of the predetermined strategies. To illustrate clearly, let us assume that nECPI =3
which are sorted as best to worst and denoted as ‘“ECP1, “ECP2, and “ECPs. The best
particle among all the particles is denoted as ECPrest. It is worth mentioning that the
procedure will remain same for any other value of nECPI. Although any value for nECPI
can be used, from the authors experience nECPI = 2 and nECPI = 3 give good results
compared to other values.

Strategy 1

In strategy 1, only the best ECP, also known as the ECP,.s gets interacted with
another ECP at the time. Therefore, this strategy generates two new ECPs (ECPyey, and
ECPipew,) for the case of three interacting ECPs. The whole procedure is presented in
Figure 1.
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ECP1new1 ECp1new2

ECP, ECP,

For ECP1

() (d)
For ECP2

ECP; ECP;

ECP,

For ECPs
Figure 1. [llustration of the interaction between ECPs for strategy 1.
For ECP;:

At first, it gets affected by ECP2 and ECPrest, simultaneously, to move to ECPyyey,-
Then, ECPs and ECPrest affected ECP1 to move to ECPypey,-
The required force to move ECP1 up to ECPypey, is represented as:

F = Fpest1 + Faq (10)
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where: F,; represents the force of ECP2 on charge particle ECP1 whereas Fyesyy is the
force on ECP1 from ECPbest.
These two forces can be expressed as follows:

Fpest1 = B X (ECPbest - ECPI) (11)

F,, = Bx (ECP, —ECP,) (12)

where f is a randomly generated number through any of the distribution mechanisms,
such as normal distribution or gamma distribution.

As discussed earlier, ECPrest attracts ECP1, whereas ECP: repeals ECP1, because ECP1
is better than ECP2 and worse than ECPrest.

Therefore, the total force pushing ECP:1 towards ECPye,, is given by (as
demonstrated in Figure 1a):

ECPypen, = ECP, +F
= ECPy + Fpest1 + Foq (13)
= ECP, + B X (ECPyost — ECP;) + B X (ECP, — ECP,)

Similarly, the required force pushing ECP1 towards ECPyyey, is as follows:

ECPyyey, = ECPy +F
ECPl + Fbestl + F31 (14)
ECP, + B X (ECPppss — ECP;) + 8 X (ECP; — ECPy)

It is illustrated in Figure 1b.
For ECP,:

ECP1 and ECPrest affects simultaneously to move to ECP,,ey, - Similarly, ECP2 is
affected by ECPs and ECPrest simultaneously for moving to ECP,ew, - These two scenarios
are illustrated in Figure 1c,d, respectively.

For ECP;:

This last and third particle, ECPs is affected by ECP1 and ECPrest, simultaneously, to
move to the new particle, ECPsye,,, . Later, ECPs gets affected by ECP2 and ECPbest together
to create ECPs,ey, (Figure lef).

Equations (13) and (14), used for ECP1, are like the ones used for ECP2 and ECPs.
They have not been rewritten here to avoid repetition.

Strategy 2

In the second strategy, the ECPrest does not interact with all of the remaining ECPs;
rather, it associates with selected ones. Therefore, in the presented illustration, all the three
interacting ECPs will create one new ECP, each, which is called ECP.,, (where i
represents the indexing of the selected ECP).

For ECP;:

ECP1 gets affected by ECP2 and ECPs, simultaneously, which will lead it to move
towards ECPypeyw. The resulting force for this movement is given by:

F = FZl + F31 (15)

where: F,; refers to the force of ECP: for ECP1 and F3; represents the force of ECPs on
the first charged particle, ECP:.
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Therefore, the required force of pushing ECP:1 towards ECPp, is given by (as
shown in Figure 2a):

ECPlnew = ECP]_ + Fl
ECP, + Fyy + Fyy (16)
ECP, + B x (ECP, — ECP,) + B x (ECP, — ECP;)

For ECP,:

The second particle (ECP) is affected by ECP1 and ECPs, simultaneously, to create
the movement towards ECP,ey. The resulting force for this incident is denoted by:

F = Flz + F32 (17)
where: F,, refers to the force between ECP1 and ECP: whereas F;, represents the force
between ECPs and ECP-.

For ECP;:

The ECP3 gets affected by first and second particles, together, with the following
force:

F = Fi3+ Fy3 (18)

where: Fi3 is the force between ECP1 and ECPs whereas F,; represents the force between
ECP:2 and ECPs.

Figure 2b,c represents the forces to move ECP2 to ECPaew and ECP3 to ECPsnew,
respectively. At the same time, the equation of the force equation will be like the one
presented in (16).

ECI:)1new

@

(a) For ECP1
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Fa2
ECP,

<. @

(b) For ECP:

(c) For ECPs

Figure 2. Interaction between ECPs— (a) ECP;, (b) ECP:, and (c) ECPs for Strategy 2.

Strategy 3

This strategy uses Strategies 1 and 2, both in generating the new ECPs. Therefore, in
the case of nECPI =3, a total of 9 new ECPs will be available, where strategies 1 and 2 will
generate 6 and 3 ECPs, respectively.

The product of the interaction phase is a new population of ECPs, which is denoted
as newECP. Its size is the same as the original population size, whatever the nECPI or the
interaction strategy. This means that the product of the interaction phase will generate,
for instance, 35 particles if the initially generated population is 35 particles.

3.3.5. Checking the Bounds

This phase checks whether any new ECPs created in the interaction phase have been
generated outside the search space. To verify this, all of the new ECPs are checked. If any
particles are found outside the search space, they will be brought back within the assigned
boundary.

3.3.6. Diversification

Some part of the new ECP population needs to be diversified with a specific
probability, known as the probability of diversification (Pd). In this algorithm, the
diversity operator collects information from newECP and archiveECP. The pseudocode
of the diversification phase is presented in Algorithm 2.

3.3.7. Diversification

Some part of the new ECP population needs to be diversified with a specific
probability, which is known as probability of diversification (Pd). In this algorithm, the
diversity operator collects information from newECP and archiveECP. The pseudo code
of the diversification phase is presented below in Algorithm 2.
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Algorithm 2 Pseudocode for the diversification phase
1 For i = 1: newECP
2 For j = 1: ProblemSize

3 If rand < Pd

4 select a random ECP from the archive pool (k)
5 newECP(i,j) = archiveECP(k, j)

6 End If

7 End For

3.3.8. Population Update

The new population is modified in this phase and stored in the previously created
archive pool. The best nECP particles, from rank 1 to nECO, will generate the new
population. It will go through an iterative procedure again, as described before.

3.3.9. Criteria for Termination

There could be several ways of terminating for the discussed algorithm. However, in
this current ECPO version, the iteration continues for a specified number of times
(MaxITER) and then stops. The MaxITER is an important parameter for the ECPO-ME
algorithm. It is determined by trying various values and selecting the optimal one. It is
obvious that increasing MaxITER will improve the results in most cases, but, at the same
time, it will take more time to get the results. Inversely, decreasing MaxITER might lead
to less efficient results, since the algorithm might need more iteration to converge to the
global minimum. It is therefore suggested to optimally determine the MaxITER parameter.

3.3.10. Constraint Handling

The constraints in ECPO are handled by changing the constrained optimization
problems to unconstrained using the penalty factor technique. In this technique, if an ECP
fails to fulfill the constraint demand, a penalty factor will be imposed on the objective
function. The higher the severity of the violation, the bigger will be the penalty term.

3.3.11. Motion Encoding (ME)

ECPO has yet to undergo any modification or upgrade as a new metaheuristic
optimization algorithm. However, this paper has added a motion-encoding feature to the
existing approach [26] to improve the search capability of ECPO. It has helped the
algorithm cope with the challenging task of searching the dynamic targets within a limited
time frame. Therefore, there is the need to encode the particle positions to find the global
solution easily. To achieve this, a position needs to be defined as a multi-dimensional
vector that can represent the search path [24].

In this paper, UAV motion is used to encode the particle positions. Each searching
path is thus seen as a set of UAV motion segments instead of the traditional nodal concept.
Thus, the movement of a UAV from one cell to another is tracked accordingly to run the
optimization process. The whole mapping procedure of ECPO-ME is such that the
particles search the motion space, not the cartesian space.

4. Application, Results, and Discussion

In this section, the performance of the proposed ECPO-ME-based search algorithm
is assessed under different scenarios and compared with several other optimization
algorithms. All the scenarios and algorithms have been implemented and simulated using
the commercial software MATLAB. All calculations were done using a computer
equipped with Inter Core i7- 6500U CPU, 2.59 GHz, 8 GB RAM, running the Windows 10
operating system.
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4.1. Scenarios

Six scenarios are used, some of which are similar to the ones investigated in [24]. All
the scenarios have same grid size (w, =w, =40) but different initial position (or
location) of the UAV, target motion model P(x;|x;_;) and belief map b(x,). The tested
scenarios are depicted in Figure 3. The probability map is color-coded (cells with higher
probabilities of target presence are colored with warmer colors), the UAV’s initial position
is indicated with a white circle, and the dynamics of the moving target are outlined with
white arrows.

0.02 4
12 0.015
0.01 4

0.005

5 10 15 20 25 30 35 40
x (cell)

(a) Scenario A

<107

0.02
14 0.015
0.01

0.005

5 10 15 20 25 30 35 40
x (cell)

(b) Scenario B

<107

5 10 15 20 25 30 35 40
x (cell)

(c) Scenario C
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5 10 15 20 25 30 35 40
x (cell)

(d) Scenario D

<107

0.02
14 0.015
0.01

0.005

40

5 10 15 20 25 30 35 40
x (cell)

(e) Scenario E

<107

0.02
14 0.015

0.01

y (cell)

0.005

40

5 10 15 20 25 30 35 40
x (cell)

(f) Scenario F

Figure 3. Search scenarios.

Scenario A: This scenario has two areas with higher probabilities, located near each
other and moving towards the east. However, the likelihood of the upper area is slightly
higher than the lower area. The UAV is situated in the middle of the search space. This
scenario is depicted in Figure 3a.

Scenario B: In this scenario, there are two areas with high probabilities that are
equally spaced from the initial position of the UAV along the y-axis of the search space.
However, the probability of the upper area is slightly higher than that of the lower area.
Both areas move towards the south-west. The UAV is located at the middle of the search
space, and the corresponding scenario is depicted in Figure 3b.

Scenario C: In this scenario, picturized in Figure 3c, only one dense area moves
towards the southeast. This scenario tests the adaptability of the searching algorithm. The
UAV is located at the middle of the x-axis and under the target along the y-axis of the
search space.
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Scenario D: In this scenario, there is only one dense area, like in Scenario C. However,
the target is moving towards the UAV in this scenario, which is initially located at the
south-west region of the search space. This scenario is depicted in Figure 3d.

Scenario E: This scenario, depicted in Figure 3e, consists of two probability areas that
are equally spaced from the initial position of the UAV along the x-axis of the search space,
and the target is moving towards the north. However, the probability of the right area is
slightly higher than that of the left area. The UAYV is located in the middle of the search
space.

Scenario F: In this scenario, two probability areas are the same distance apart from
the initial position of the UAV, and the target is moving towards the north-east. However,
the probability of the lower area is slightly higher than the upper area. The UAV, along
with the areas, is on the south-west side of the search space. This scenario is depicted in
Figure 3f.

4.2. Comparing Algorithms

As mentioned before, the proposed algorithm results are compared to ten well-
known algorithms, which are described in the following subsections.

Motion-encoded particle swarm optimization (MPSO): This algorithm is an
improved version of the famous PSO algorithm using the ME mechanism. PSO is inspired
by the social behavior of bird flocking or fish schooling [27,28]. In the PSO a population
of particles (each particle has a position and a velocity) evolves during iterations. During
each iteration, the position and velocity of each particle are updated using the best
solution achieved by each particle so far, and the overall best solution. The MPSO has
been used in [24] to solve a similar problem to the one solved in this paper, i.e., finding a
moving target using UAVs. As reported in [24] the obtained results using MPSO were
better than some versions of the PSO and many other optimization algorithms. Therefore,
it will be interesting to compare the results obtained using the proposed approach with
those obtained using MPSO.

Most-valuable-player algorithm (MVPA): This algorithm is an optimization
algorithm that optimizes the problem at hand by considering a population of players that
compete against each other (individually and in teams) to win the trophy of the most
valuable player (individually) and the championship (in teams) [29].

Differential evolution (DE): DE is a population-based optimization algorithm relying
on a variety of evolutionary processes. A specific member of the population, representing
the solution, iteratively improves itself from one generation to another. This algorithm is
famous for its stability and versatility, specifically among population-based search
algorithms [30]. The standard DE method does not require gradient information
trivializing the condition of differentiability. After the occurrence of a randomly chosen
evolutionary event, if a candidate gives a better solution, the adaptation is accepted for
that candidate; otherwise, its traits remain unchanged for the next generation. The process
is repeated until pre-defined termination criteria are met.

Genetic algorithm (GA): GA was first used by Holland in 1975 based on Darwin’s
theory of evolution [31]. Now it is one of the most famous metaheuristics and has been
used in many research fields. The objective of the GA is to maximize the payoff of
candidate solutions in the population against a cost function (or a fitness function) from
the problem domain using three operators: selection, recombination, and mutation.

Electrostatic discharge algorithm (ESDA): This algorithm is an optimization
algorithm inspired by electrostatic discharge (ESD). In this algorithm, objects (population
of objects) work in a given environment (search space). If these objects are near each other,
the ESD may occur (sometimes between two objects and sometimes between three objects).
If ESD occurs on a victim object couple of times, the object or some of its components is/are
damaged, and it/they must be changed [32].

Biogeography-based optimization (BBO): BBO is also an evolutionary algorithm
inspired by nature. As evident from the name, its equations are modeled on biogeography,
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which covers the distribution and growth of living beings through space and time. Three
events decide the fitness of each candidate in every generation: speciation, migration, and
extinction. Like DE, BBO maintains the population of candidates solutions after every
biogeographic event [33]. Once the termination criterion is met, the candidate with the
best objective function is considered the optimal solution.

Artificial bee colony (ABC): ABC is another nature-inspired optimization algorithm
based on the foraging pattern of a bee swarm. The bees in a colony belong to either of the
three groups; employed, onlookers, and scouts. The employed ones look for the food
source around the hive, where the location of the food represents the optimal solution,
and the amount of nectar in a food source is equivalent to the fitness value. Once all
employed bees bring the food, the onlookers evaluate the quantity of food and determine
the next trip of employed bees. Scouts replace a depleted source with a randomly located
new food source [34]. All these metaphors are implemented mathematically and
iteratively give the optimal solution in a search space.

Gravitational search algorithm (GSA): GSA models the optimization formulation
using Newton’s gravitational laws and laws of motion. Many variants of GSA have been
obtained by modifying its parameters, including Kbest, velocity, and position. The mass
interaction under Newtonian mechanics governs the convergence of the solution. Every
mass exerts a force on another mass under a fixed gravity determining the fitness function.
Based on the interaction, the velocity and position of each agent are updated [35]. The
process continues till the termination criteria are met. Ultimately, the solution converges
to the optimal solution.

Teaching-learning-based optimization (TLBO): The TLBO algorithm is inspired by
the teaching-learning process. In this algorithm, there are two phases, namely the teacher
phase and the learner phase. In the first phase, the population of students improves their
knowledge with the teacher who is the best solution among the population. However, in
the learner phase, the students interact to improve their knowledge [36].

Black-hole (BH) algorithm: This algorithm is inspired by the black hole theory, a
region of spacetime where no object, particle, or even light can escape from it due to its
strong gravity. In this algorithm, the population of stars moves in space. If a star
approaches the black hole (within a radius called the Schwarzschild radius), it is absorbed
by the hole, and a new star is generated to keep the same number of stars over the
iterations [37,38].

4.3. Results

The proposed algorithm and the comparing ones were applied to the UAV dynamic
target search. Each algorithm has been run 30 times with a population of size 30 and 300
as the maximum number of iterations. The remaining parameters related to each
algorithm are selected as recommended in the literature. Table 1 presents the ‘BEST’, the
‘MEAN’, the ‘MEDIAN, the “WORST’, the ‘Standard Deviation (SD)” and the ‘Feasibility
Ratio (FR)" for each algorithm and each scenario. The FR is defined as the percentage of
the successful runs over the total number of attempted runs. The following comments can
be made from Table 1:

- For Scenario A, the proposed ECPO-ME algorithm obtained the best results for the
‘BEST’, the ‘'MEAN’" and, the ‘"MEEDIAN values. The TLBO algorithm obtained the
highest “‘WORST” and ‘SD’ Values.

- For Scenario B, the TLBO obtained a slightly better value than the ECPO-ME in terms
of the ‘BEST’ values. However, the ECPO-ME obtained the best results of the ' MEAN’,
the ‘MEDIAN, the "WORST’ and the ‘SD’ values compared to the remaining
algorithms.

- For Scenario C and Scenario D, the proposed ECPO-ME outperformed the other
algorithms in terms of the statistical performance indicators used in this study. It is
worth mentioning that the DE achieved equally good results to ECPO-ME in terms
of the ‘BEST’ values.
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- For Scenario E, the proposed ECPO-ME showed better performance than all the
remaining algorithms in terms of the ‘BEST’, the 'MEAN’ and the ‘"MEDIAN values
while the DE achieved better results in terms of the “WORST” and the ‘SD’ values.

- For Scenario F, the proposed ECPO-ME achieved a better result than all the
remaining algorithms in terms of the ‘BEST’, the ‘MEDIAN’ and the "WORST" values,
while the TLBO was better in terms of the ' MEAN" and ‘SD’ values.

- All algorithms gave an FR equal to 100, which reflects that all of them could find a
solution (i.e., a path) in all the runs and for all the investigated scenarios except for
the ABC algorithm for Scenario D (FR = 93.33%).

- For scenarios with high probability regions, like Scenario C and Scenario D, the
likelihood of finding the target is higher because there is no need to divide or spread
the chances of finding the target in other areas.

Table 1. Statistical analysis of the obtained results using each algorithm. The bold in table shows the best results.

ECPO-ME ECPO MPSO MVPA DE GA ESDA BBO ABC GSA TLBO BH
BEST 0.20551 020116 0.18138 0.19810 020197 0.16030 0.18885 0.19948 0.18511 0.19572 020485 0.18101

MEAN  0.19239  0.16555 0.06021 0.11085 0.18960 0.13368 0.14730 0.17851 0.14966 0.04258 0.19207 0.13570

Sconapio o _MEDIAN 019118 08091 003225 (0.12225 08942 03315 (0.15159 08132 0.16003 0.00095 09115 0.13742
WORST _ 0.18209  0.03135 0.00000 0.00002 0.17250 0.10551 009942 0.11788 0.00131 0.00000 0.18303 0.06931

SD 0.00593  0.04174 006305 006100 000630 0.01466 0.02609 0.01696 0.03707 0.06203 0.00587 0.02547

FR 100 100 100 100 100 100 100 100 100 100 100 100

BEST 027634 026252 022652 026014 027466 022486 023978 026156 024424 0.18925 0.27689 0.23919

MEAN 025724 023126 0.10670 017272 024516 0.18563 0.18328 021522 0.19452 0.05717 025216 0.19299

Sconnpiop MEDIAN 025620 024153 0.11274 019613 024909 018932 08379 023196 02019 004139 025462 0.19735
WORST 023530  0.14698 001105 003688 0.14928 0.15175 0.11802 0.11055 0.01471 0.00009 022876 0.13430

D 0.00964  0.02539 005659 006069 002339 001860 0.03786 0.04466 0.04892 0.05281 001293 0.02803

FR 100 100 100 100 100 100 100 100 100 100 100 100

BEST 0.68662  0.64070 058442 064361 0.68662 054835 0.64221 066811 061142 051114 067221 0.60402

MEAN  0.64158 052614 030143 037015 062170 046797 047561 055109 049444 022860 0.63269 049182

, MEDIAN  0.64997 055979 031420 039419 0.63538 047210 048670 059358 052423 023693 0.63631 0.50913
Seenario C o SR eT 057162 026147 000240 001434 035432 036236 027549 023189 026933 000000 055967 0.36322
D 0.02876  0.10643 0.17289 0.15426 006193 0.05306 0.08845 0.10633 0.09406 0.13620 0.03111 0.07498

FR 100 100 100 100 100 100 100 100 100 100 100 100

BEST 055431 049309 047090 046095 0.55431 040220 051444 050274 046497 033458 053742 0.39930

MEAN 048849 038766 024390 031673 045452 029675 031233 035144 - 020418 046575 028810

Sconaiop _MEDIAN 049887 038931 023998 (02675 044347 029698 030451 033692 - 0.0486 046263 027994
WORST 040148 026634 004982 009241 032458 021807 0.18826 022614 - 0.00002 037301 0.18647

sD 0.03120 005620 0.08177 009298 0.06339 004411 007879 007564 -  0.08891 004044 0.05650

FR 100 100 100 100 100 100 100 100 9333 100 100 100

BEST 020518 020358 0.18901 0.18726 020477 0.17868 0.18686 0.20130 0.19559 0.17188 020518 0.16870

MEAN  0.19008 0.17367 0.11979 0.13986 0.18615 0.13753 0.14400 0.17809 0.16200 0.07077 0.18893 0.13598

Sconapiop MEDIAN 018870 0.18154 0.12904 014625 (0.18395 0.14029 014865 0.17725 0.16468 007634 (.18330 0.13544
WORST 017187  0.11000 000021 002299 0.17277 0.09305 0.04521 0.15401 0.04478 000012 0.16969 0.07844

SD 0.00801  0.02362 0.05092 003505 0.00787 001839 0.03434 001107 0.02810 0.05553 0.00867 0.02228

FR 100 100 100 100 100 100 100 100 100 100 100 100

BEST 022728 021985 0.16005 0.17661 022195 0.16416 020217 022195 020572 017721 022175 0.18615

MEAN 020007  0.18020 0.07334 0.10851 0.19650 0.10638 0.13038 0.19142 0.15022 0.06385 0.20008 0.13070

Scenariop _MEDIAN 021024 018573 00729 013450 020160 011310 0.14440 020465 0.15892 0.03687 020930 0.13941
WORST _ 0.16650  0.08188 000129 000564 0.13640 004128 0.03171 008111 0.00041 0.00070 0.16648 0.02830

sD 001978 0.03226 005025 005427 002234 003378 0.04813 003334 005207 006128 0.01820 0.04135

FR 100 100 100 100 100 100 100 100 100 100 100 100

Figures 4-9 depict the optimal search paths obtained for the tested algorithms for
Scenario A, Scenario B, Scenario C, Scenario D, Scenario E, and Scenario F, respectively.
In these figures, the sketched path represents the searching path. However, the belief map
reflects the target at the last step. This map can be compared with the initial map,
illustrated in Figure 3, to see the evolution of the target. It can be seen from these figures
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that, in all scenarios, the proposed ECPO-ME algorithm was capable of following the
target paths and, thus, finding out the highest probability region.

Furthermore, the convergence curves of all algorithms are given in Figure 10. It can
be seen from these curves that the ECPO-ME algorithm achieves the best results in almost
all the investigated scenarios.
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Figure 4. Search paths for Scenario A, obtained using the tested algorithms.
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Figure 5. Search paths for Scenario B, obtained using the tested algorithms.
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Figure 6. Search paths for Scenario C, obtained using the tested algorithms.
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Figure 7. Search paths for Scenario D, obtained using the tested algorithms.
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Figure 8. Search paths for Scenario E, obtained using the tested algorithms.
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Figure 9. Search paths for Scenario F, obtained using the tested algorithms.
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Figure 10. Convergence curves of the ECPO-ME for all scenarios.

4.4. Discussion

The analysis of the obtained results leads to the conclusion that the proposed ECPO-
ME algorithm has capability to perform better than many of the well-known and widely
used optimization algorithms. For instance, for Scenario A, the ECPO-ME has
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outperformed the remaining algorithms by 13.30%, 3.74%, 1.75%, 28.20%, 8.82%, 3.02%,
11.02%, 5.00%, 0.32%, 13.54%, respectively. Another example is for Scenario B, the ECPO-
ME has outperformed the remaining algorithms (except TLBO) by 5.26%, 21.99%, 6.23%,
0.61%, 22.89%, 15.25%, 5.65%, 13.14%, 46.02%, and 15.53%, respectively.

The success of the ECPO-ME lies first in the search ability of the ECPO itself and
secondly, in the motion-encoding mechanism introduced to the ECPO for the first time.

It has been proven earlier that ECPO is superior in terms of its ability to search for
the optimal solution, and hence ranked among the top five algorithms in doing so. Yet,
the proposed enhancement, ECPO-ME outperforms its predecessor in terms of its search
ability, one of the primary reasons for ECPO-ME’s superior performance, as recorded in
Table 1.

For the second point, implementing the motion-encoding mechanism with the ECPO
has improved its performance for finding a moving target with a UAV. The ME
mechanism has prevented the algorithm from generating invalid paths during the search
process. Furthermore, the ME mechanism has transformed the search procedure from a
cartesian space to a motion space, which has improved the adaptation of ECPO-ME to the
dynamics of the target.

5. Conclusions

In this work, a new approach based on the electric charged particles optimization
algorithm and the motion-encoding mechanism is presented to search the moving targets
using unmanned aerial vehicles. The ME mechanism transforms the cartesian problem
into a motion-based problem. The search path is then transformed into a series of motions
where the UAV is restricted to the neighbor cells of the current location cell. Extensive
simulations (six different scenarios with different complexities) and comprehensive
comparisons with other well-known optimization algorithms (ten algorithms) have
shown that the proposed approach is highly effective and reliable in searching moving
targets using UAVs. Such an approach is highly suitable to use in cattle management,
where the animals can be considered the moving targets that are prone to get lost while
grazing.

The challenges for future works are multiple. One axis is to investigate the use of
multiple UAVs instead of a single UAV, as done in this paper. Many approaches can be
adopted, like allocating each UAV to a region, or having all of them search the highest
regions. Another interesting point can be the investigation of information sharing between
the UAVs, which may significantly improve the search procedure. Another challenging
task or research axis can be extending this study to multiple moving targets instead of just
one or two targets. The mixture of both axis of research, i.e., using multiple UAVs to search
for multiple targets, can lead to a large-scale optimization problem, which is another
challenging task to be investigated in the future.

Furthermore, in this paper, only one objective has been considered, with the
cumulative probability, P;. Including other objectives, such as fuel consumption by the
UAVs or avoidance of any forbidden areas, can define future work extending that
reported here. The problem in hand will then become a multi-objective one. From an
application point-of-view, this research can be extended to a real-life scenario, wherein
the motion of a moving animal can be detected to communicate its location to a nearby
control center for further action.
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