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Abstract: The territory of the Republic of Serbia is vulnerable to various natural disasters, among
which forest fires stand out. In relation with climate changes, the number of forest fires in Serbia has
been increasing from year to year. Protected natural areas are especially endangered by wildfires.
For Nature Park Golija, as the second largest in Serbia, with an area of 75,183 ha, and with MaB
Reserve Golija-Studenica on part of its territory (53,804 ha), more attention should be paid in terms
of forest fire mitigation. GIS and multi-criteria decision analysis are indispensable when it comes
to spatial analysis for the purpose of natural disaster risk management. Index-based and fuzzy
AHP methods were used, together with TOPSIS method for forest fire susceptibility zonation.
Very high and high forest fire susceptibility zone were recorded on 26.85% (Forest Fire Susceptibility
Index) and 25.75% (fuzzy AHP). The additional support for forest fire prevention is realized through
an additional Internet of Thing (IoT)-based sensor network that enables the continuous collection
of local meteorological and environmental data, which enables low-cost and reliable real-time fire
risk assessment and detection and the improved long-term and short-term forest fire susceptibility
assessment. Obtained results can be applied for adequate forest fire risk management, improvement
of the monitoring, and early warning systems in the Republic of Serbia, but are also important
for relevant authorities at national, regional, and local level, which will be able to coordinate and
intervene in a case of emergency events.

Keywords: forest fire susceptibility; GIS; remote sensing; random forest (RF); IoT sensor net-
works; fire outbreak occurrence; fuzzy analytic hierarchy process (fuzzy AHP); technique for order
of preference by similarity to ideal solution (TOPSIS)

1. Introduction

The territory of the Republic of Serbia is the most vulnerable by earthquakes, land-
slides, riverine and torrential floods, hailstorms, droughts, and forest fires, which are the
most frequent and the most destructive natural disasters regarding huge material damage
and loss of human lives. In the last few decades, upward trends in both the number
of forest fire events and burned areas have been confirmed in Europe. In relation with
climate changes, during the high-temperature summer months, the number of forest fires
in Serbia has been increasing from year to year. Forest area in the Republic of Serbia covers
27,200 km2, which is approximately 31.1% of the country area [1]. During the period from
1990 to 2005, around 43,000 ha of Serbian forest and overgrown forest soil were ruined as a
consequence of forest fires. Within this period, the largest number of fires was registered in
2000, as 13,201 ha of forest and overgrown forest soil was burnt in 339 fires [2].
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Analyzing the number of forest fires, Lukić et al. [3] found that the number of forest
fires increased in Serbia during the period from 2000 to 2012, but this was non-significant.
The largest number of fires (28,546) happened in 2007 in Serbia, when the highest air
temperature was recorded on July 24th in the meteorological station Smederevska Palanka
(temperature of 44.9 ◦C). The year 2012 saw the longest heatwaves during the summer and
the worst drought since the beginning of observations in Serbia. More than 1000 forest fires
occurred during that time. According to Unkašević and Tošić [4,5], the last few decades in
Europe have been characterized by the steepest temperature increase since the beginning of
the twentieth century. Vuković et al. [6] predicted that in the near future (2016–2035), mean
temperature in Serbia is expected to increase by 1 ◦C on average, with larger differences in
summer than in autumn. Based on that prediction, an increase in the number and intensity
of forest fires is expected.

In accordance with the results of previous research and future climate change scenarios,
the topic of research is of great importance, especially in the context of improving protection
of nature in the most sensitive ecological areas. Protected natural areas are particularly
vulnerable to forest fires. The emergence of this natural disaster can cause irreversible
damage to those sensitive ecosystems and even cause the extinction of certain species.
In the recent past, examples of fires in protected natural areas in Serbia have not been
so uncommon. According to the most accurate data, 7.66% or 677.950 ha of the total
surface area of Serbia is under legal protection, which is based on the Law of Nature
Protection [7]. The Nature Park Golija is the second largest protected area in the country,
and it covers about 11% of the total protected areas in Serbia. The fact that it is one of
largest protected areas in Serbia, known for its geodiversity and biodiversity, and also that
the part of this protected area is a UNESCO MaB reserve, emphasizes its importance for
nature conservation. Unfortunately, this area has not been spared by the occurrence of
wildfires in recent years.

The vulnerability of the forest area to a fire is dependent on diverse factors such
as vegetation, topography, and distance from roads, rivers, and human settlements [8],
beyond the weather. The objective of this paper is to determine zones of different forest
fire susceptibility using Geographic Information System (GIS) and multi-criteria decision
analysis (MCDA) in order to enable adequate forest fire risk management in protected
natural area such as Nature Park Golija. The use of GIS is unavoidable today when it comes
to spatial-related research. This is of utmost importance in order to achieve appropriate
understanding of environment and the processes that take place in it. One of the key
processes of MCDA is its ability to combine the values of multiple criteria with a single
evaluation score for each alternative decision [9]. Thus, the integration of MDCA methods
in the spatial domain provides a proper framework for fire risk assessment [10].

In order to identify the regions susceptible to fire and determine forest fire risk, various
studies have been carried out worldwide. Among many methods used for modelling of
forest fire susceptibility are index-based method [11,12], fuzzy analytic hierarchy process
(AHP) [9,10,13,14], and fuzzy analytic network process (ANP) [15]. Since conventional AHP
technique might not be adequate to provide effective decision in forest fire susceptibility
mapping, fuzzy AHP technique has been used to address this issue by enabling decision
makers to define approximate preferences through fuzzy numbers. This gives a much better
and more precise representation of the relationship between criteria and alternatives [16].

The most significant contribution of this research is that the fuzzy AHP method was used
for the first time for forest fire susceptibility assessment in Serbia. The fact that it was used on
the territory of one of the most important protected natural areas reinforces that significance.
Additionally, it compares results of index-based methods and fuzzy AHP using the technique
for order of preference by similarity to ideal solution (TOPSIS) method. No less important is
the fact that the data and software (QGIS, RStudio) used for forest fire susceptibility zonation
is completely open source. Zero cost provided in such a way should help better forest fire
risk management for communities that have a low budget when it comes to nature protection.
Although it is well known that historical data of forest fires that occurred in certain areas and
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relevant meteorological data are important for comprehensive forest fire risk assessment, this
paper shows that it is possible to perform suitable forest fire susceptibility zonation even if
such datasets are not available. Another contribution of this paper is the improvement of
classification of land use/land cover/vegetation based on the remote sensing data and the
improvement of the random forest (RF) method in such a classification.

As stated, in this study, we deployed the fuzzy AHP method without historical data of
forest fires that occurred in a given area (Nature Park Golija) and relevant meteorological
data used as inputs. In some previous studies [14,15,17–20], meteorological data, marked
also as climate or weather data, were used as inputs to fuzzy AHP methods, along with
other parameters (i.e., topographic, vegetation, human), in order to assess forest fire
susceptibility. It can be argued that by using local meteorological data, i.e., data collected
by the sensors densely deployed in area of interest, we could further improve quality of
the forest fire susceptibility assessment in a long-term manner (i.e., monthly or yearly by
using averaged data) or in a short-term manner (i.e., daily by using current data). Such an
approach would also allow us to gather and use more precise information regarding the
influence of global climate changes on local climate parameters (for the given area), which
cannot be ignored in the current situation. In the case of protected natural areas (such as
NP Golija), this improved insight could be beneficial not only for forest fire prevention,
but also for wildlife preservation. Additionally, the inherent real-time nature of the sensor
network operation enables us to observe other possible applications in forest fire prevention,
detection, and monitoring such as real-time forest fire risk assessment and detection.
Thus, as an addition, we here present a general framework for Internet of Thing (IoT)-based
sensor networks that could be established in the given area of Nature Park Golija in order
to enable continuous collection of local meteorological data. This general solution is here
designed based on the comprehensive overview and analysis of the previously suggested
solutions and communications technologies for this purpose. The general description of
the proposed IoT-based sensor network is given in Section 4, as well as the discussion
regarding the choice of its elements (i.e., communications architecture, set of weather and
environmental parameters used for forest fire detection and fire risk assessment, etc.), while
the adopted fuzzy AHP inference methods used for the real-time fire risk assessment and
detection, as well as for the improved the forest fire susceptibility assessment, are briefly
presented in Section 2.4.

The main objectives of this research are 1) creation of forest fire susceptibility maps
with emphasized zones of very high and high susceptibility, 2) designing a proper sensor
network in order to improve early warning systems, and 3) obtaining adequate spatial data
that will help forest fire mitigation and risk management.

Study Area

The study area of this research is Nature Park Golija established in 2001, which
is situated in the south-western part of Serbia. The core area and largest part of this
nature park is Mt. Golija, with its highest peak Jankov kamen at 1833 m above sea level.
It is characterized by dynamic relief dissection with various geomorphological objects and
phenomena, which are spreading through a 32 km-long mountain region into altitude zones
from 416 m to 1833 m. The major mountain ridge is spreading in the north–south direction
from the highest mountain peak to the Valley of the Golijska Moravica river at 620 m. As a
result of the complex composition of geological structures, various geosites are placed into
the research area, and some of them are of great scientific and educational importance as
objects of geoheritage (e.g., Upper Cretaceous rudist limestones geosites) [21].

According to the geographical position of the Nature Park Golija territory (43.233445◦–
43.55110◦ N; 20.15034◦–20.57040◦ E) and complex climate zonation in relation with altitude,
three climate regions can be differentiated: climate zone up to 700 m with the characteristics
of moderate continental climate influenced by the surrounding mountains, modified region
(700–1.300 m) with long and severe winters and short and fresh summers, and mountain
region (over 1.300 m altitude) with subalpine climate. The average annual air temperature
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is about 9.5 ◦C in the region up to 500 m altitude (the real value is slightly lower due to
the geographical position of the meteorological stations). Considering the large difference
between these altitude belts, the area of about 1000 m altitude has an average annual
temperature of about 6.5 ◦C (Sjenica) and 5 ◦C (Bele Vode, Golija). The average annual
precipitation in the region ranges from 572 to 1.077 mm, and the advantage is that about
55–65% of precipitation is excreted in the vegetation period from April to October. Com-
pared with the average value, the largest fluctuations in precipitation are recorded in
October, November, and May [22].

The diversity and specificity of the Nature Park Golija area biotope determines the
high diversity of flora, vegetation, fauna, and ecosystems that are characterized by a
marked degree of representativeness, autochthonous features, and authenticity of nature.
Of the special scientific and ecological importance is vegetation associated with tertiary
relict species Greek maple (Acer heldreichii Orph ex. Boiss.), which is also endemic for
some mountains of the Balkan Peninsula. Forests with Greek maple on Mt. Golija are
best developed predominantly on slopes (15–20◦) exposed to the north, northeast, and
northwest from altitudes between 1400 and 1750 m. Greek maple can be found in all
floristic combinations of mixed deciduous–coniferous forests in the study area, although its
ecological optimum is mixed deciduous–coniferous forests, and as a species, its optimum
is in subalpine beech forests. This fact emphasizes the importance of Golija as refugial
habitat, as one of the centers of distribution of Greek maples in the Balkan Peninsula [23].

The vegetation is characterized by zonal distribution caused by changes in abiotic
factors (e.g., climate, characteristics of soil, etc.) with increase in altitude. In relation
to changes with altitude, there are generally two zones of vegetation: (1) mesophylous
beech, mixed beech, and coniferous forests; (2) mountain coniferous forests. At the lowest
altitudes of the beech forest belt, prevalence has montane beech forests (Fagenion moesiacae
montanum) on the various types of acid soils and suballiance of beech fir forests Abieti-
Fagenion moesiacae on the deep, brown, and moderately acid soils, which cover the mid-
montane belt. A particular forest type of European spruce, European fir, and beech (Piceo,
Abieti, Fagetum) is the most productive forest type and the most complex type with the
richest floristic composition on the Mt. Golija. The subalpine beech forests (Fagenion
moesiacae subalpinum) are characterized by low and much branched habit, with a short
growing season on the different soil types on the limestone or siliceous geological base [24].
The highest forest belt is composed of spruce forests (Piceion excelsae) on the various
mountain soils.

The Nature Park Golija covers an area of 75,183 ha comprising the municipalities
of Ivanjica, Kraljevo, Raška, Novi Pazar, and Sjenica (36.32% of total area is under state
ownership status, and 63.68% is under private ownership status). In order to protect
complex natural values of study area, protection regimes have been established [25–27].
The area of the most rigorous protection status (first protection regime) occupies the total
area of 553.80 ha (it comprises 18 localities). The area of the second protection regime
occupies 3883.10 ha (20 localities are protected under this regime). The most liberal
protection status (third protection regime) has a major part of Nature Park Golija, or
70,746.10 ha [27–29]. The division of Nature Park territory into protection zones is depicted
in Figure 1. Previous data are of great importance in the process of managing the natural
values and features of the park, especially the ones related to the management of forest
fire as a natural disaster or equally as a man-made disaster. Since the zone with the first
protection regime is the most important for biodiversity conservation in the protection of
natural areas in Serbia, it is necessary to analyze forest fire susceptibility on the protection
regime level for the purpose of protection from this disaster.
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Figure 1. Location of Nature Park Golija and UNESCO Man and Biosphere (MaB) Reserve Golija-
Studenica in Serbia Zones of protection regimes in the Nature Park Golija.

The impact of the climate and other physical–geographical conditions that may trigger
forest fire occurrence is analyzed by Živanović and Vukin [30]. They found that the lowest
values of the optimal relief slope for the influx of solar radiation on Golija Mt. are in June
(8◦) and the highest values are in December and January (61◦). The optimal angle for the
influx of solar energy throughout the year is 33◦ to the horizontal surface. The minimum
energy is on the slopes oriented toward the north, where the probability of fire occurrence
and the uncontrolled spread of fire is lower. Maximum radiation measured on a monthly
basis is on the surfaces oriented towards the south during July on the slopes from 10◦ to
15◦, when the fire risk is the highest [30].

The part of the Nature Park Golija along with the Studenica Monastery has been
declared a UNESCO Man and Biosphere (MaB) Reserve (53,804 ha) under the name Golija-
Studenica in 2001. The UNESCO MaB Programme is aimed towards establishing the
functional protection of nature in balance with humans and their social and economic
development. The richness of biological communities of Nature Park Golija is recognized in
the context of an internationally harmonized approach of nature protection as a program of
the important areas for different groups of biotas. The fact that there are only two UNESCO
MaB Reserves in Serbia, and that Studenica Monastery is a UNESCO World Heritage Site,
gives great importance to this area. The NP Golija is one of the 43 internationally important
areas from the territory of Serbia for bird fauna (IBA) and one of the 40 prime butterfly
areas (PBA) in Serbia. At the same time, it has international significance as one of the 61
important plant areas (IPA) in the territory of Serbia. Nature Park Golija is also one of the
61 national localities of the Emerald ecological network, and it will be part of the European
ecological network Natura 2000 after the accession process of Serbia to the EU.

2. Materials and Methods
2.1. Forest Fire Susceptibility Index

It is well known that the high probability of the forest fire occurrence is predetermined
with a specific state of climatic elements in a certain area, but it is also important to
determine where fire would most likely emerge under certain conditions. Therefore, it is
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necessary to analyze other natural conditions that determine whether a certain territory
is more or less susceptible to forest fires, especially the type of vegetation and terrain
topography. Additionally, it is important to determine the scope and character of human
activities, since man is the main cause of this disaster [31]. Forest fire susceptibility is
calculated on the basis of the following formula [11]:

RC = 7 Vt + 5 (S + A) + 3 (Ds + Dr) (1)

where RC is the Forest Fire Susceptibility Index, Vt is vegetation type index, S is slope
index, A is aspect index, Ds is distance from settlements index, and Dr is distance from
roads index.

Each factor is analyzed separately and classified with the assigned values from
1 to 5, where 5 indicates the highest and value 1 indicates the lowest susceptibility to
the occurrence of forest fires. Vegetation type is the most important factor for determining
forest fire susceptibility. Coniferous vegetation, which contains resins and oils, is most
susceptible to fire occurrence. Dry shrubs are also suitable for the occurrence of this disaster,
while in broad-leaved forests, the probability is significantly reduced. Topography is an
important physiographic factor that affects the fire proneness of the area [11]. Fire spreads
faster at higher slopes by preheating, drying, and increasing the combustion of the avail-
able fuels in the canopy [32,33]. Fire travels most rapidly up steeper slopes and the least
rapidly down slopes; therefore, terrain slope must be given significant importance in the
determination of forest fire susceptibility. One aspect is another feature of topography that
must be taken into account. It determines the amount of solar radiation that a particular
area receives and affects the humidity of the vegetation.

Forests that are located next to roads, or have roads that pass through them, are
more fire prone. Therefore, it is important to obtain data consisting of all roads in the
research area. Here, not only paved or dirt backfilled roads used for vehicle movement are
taken into account. The database should contain all the paths by which people can move
through the forest, since human presence increases the probability of forest fire occurrence.
Forests located near settlements are more vulnerable to fire, because people living there
can cause an accidental fire [11]. All manmade structures, especially residential buildings,
should be taken into account.

Since in Serbia, many forest fires each year occur near the agricultural areas, due to
the widespread but very irresponsible custom of preparing agricultural areas for the new
agricultural season by burning them, distance from such areas must be taken into account
in order to perform adequate forest fire susceptibility zonation. Therefore, the existing
Forest Fire Susceptibility Index formula must be modified, so that it contains the distance
from agricultural areas index (Df). The lower-weighted value of the Df index stems from
the fact that this is a protected natural area with a lower intensity of agricultural production.
The new formula is:

RC = 7 Vt + 5 (S + A) + 3 (Ds + Dr) + 2 Df (2)

Table 1 shows the distribution of values on different classes of used parameters.
Coniferous forest, terrain slopes with value over 35 degrees, slopes oriented to the south,
and also areas that are the least remote to residential and other buildings types, roads, and
agricultural areas are considered the most susceptible to forest fire occurrence.
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Table 1. Values of classes in factors.

Class
Value Vt S [◦] A [◦] Ds [m] Dr [m] Df [m]

5 Coniferous
forest >35 S (157.5–202.5) <500 <150 <200

4 Mixed forest;
shrub 25–35 SE (112.5–157.5);

SW (202.5–247.5) 500–1000 150–300 200–400

3 Broad-leaved
forest 10–25 E (67.5–112.5);

W (247.5–292.5) 1000–1500 300–450 400–600

2 Agricultural
areas; grassland 5–10 NE (22.5–67.5);

NW (292.5–337.5) 1500–2000 450–600 600–800

1 Artificial areas;
barren rocks <5 N (0–22.5,

337.5–360) >2000 >600 >800

Terrain slope and aspect were derived from a 25-meter cell size digital elevation model
over Europe (EU-DEM) [34]. Slope, expressed in degrees, was then reclassified based on
certain values with assignment of values from 1 to 5 to each class. Distance from residential
buildings and other buildings types and roads was calculated according to data digitized
from open satellite imagery. Vector data (buffer zones) were then rasterized to layer with
the same cell size and projection of layers with data obtained from EU-DEM.

Vegetation type index was calculated on the basis of the random forest (RF) classifica-
tion of Sentinel-2 multispectral imagery. Remote sensing technology can be used to obtain
forest information from areas with rough terrain or that are difficult to reach. Therefore, it
is necessary to explore the potential of remote sensing data to obtain adequate information
about forest types [35]. The random forest (RF) algorithm is an influential method of col-
laborative learning developed for classification, regression, and unsupervised learning [36].
The objective of RF is to identify the appropriate model for analyzing the relationship
between independent variables and a dependent variable for weight determination for
each factor [1].

Sentinel-2 images Level-1C from 11 July 2017, 19 October 2017, and 22 April 2018 [37]
were used for the purpose of obtaining the vegetation types in Nature Park Golija.
With semi-automatic classification plugin (SACP) in QGIS software, the atmospheric correc-
tion of Sentinel-2 granules was performed, together with converting to reflectance, image
mosaicking, and clipping to the nature park area. The following Sentinel-2 bands were
used: blue (492 nm central wavelength), green (560 nm), red (665 nm), NIR (833 nm), and
SWIR1 (1614 nm), for each aforementioned date. All bands have a spatial resolution of
10 m, except SWIR1 of which the spatial resolution is originally 20 m, but was automatically
resampled to 10 m with SACP. Along with them, the Normalized Difference Vegetation
Index (NDVI) and Bare Soil Index (BSI) were also used for each aforementioned date, in
order to distinguish different types of vegetation more precisely, but also to distinguish
artificial land cover and barren soil/rock. NDVI and BSI indexes are calculated as follows:

NDVI = (ρNIR − ρRed) / (ρNIR + ρRed) (3)

BSI = ((ρSWIR1 + ρRed) − (ρNIR + ρBlue)) / ((ρSWIR + ρRed) + (ρNIR + ρBlue)) (4)

where ρBlue, ρRed, ρNIR, and ρSWIR1 are the reflectance from the blue band (B02), red
band (B04), near-infrared band (B08), and shortwave-infrared band 1 (B11), respectively.

The training/test dataset consisted of 3.2 km2 digitized data classified in 8 classes:
artificial areas, agricultural areas, grassland, shrub, broad-leaved forest, mixed forest,
coniferous forest, and barren soil/rocks. Polygon data were transformed to point data, so
they match 10 m pixels from the Sentinel-2 bands. Vegetation type data for Nature Park
Golija were extracted based on RF in RStudio by the best combination of used Sentinel-
2 bands, NDVI, and BSI, with an overall accuracy of 97.7% and a kappa coefficient of
0.97. Vegetation type index was obtained by the classification of random forest raster
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data according to Table 1. Distance from agricultural areas index (Df) was obtained from
vegetation type data, by creating a vector layer with appropriate buffer zones of and
rasterizing to layers with the same cell size and projection of layers with data obtained
from EU-DEM.

2.2. Fuzzy AHP

Since the weight values for factors in the aforementioned forest fire susceptibility
formula were pre-assigned, there is a justified need for a more objective distribution of the
weighting values for each factor that is used for forest fire susceptibility determination.
In order to obtain such distribution, the fuzzy AHP method was used. It should be
emphasized that that in this case, same parameters with the same class values as for the
Forest Fire Susceptibility Index calculation were used. The difference is in the weighted
values of each factor used.

Fuzzy sets were introduced for the first time by Zadeh [38] in the form of object classes
with a continuum of membership grades. Fuzzy AHP is a technique of incorporating
vagueness or fuzziness of human thoughts in decision making [16]. In the fuzzy AHP
model, a combination of AHP and fuzzy sets is used to weight the contributing factors in
forest fire occurrence [10] and to model forest fire susceptibility. This modelling method
uses expert ideas to express the importance and priority of each factor that contributes to
forest fire occurrence. The fuzzy sets enter into the modelling process to express uncertainty
and to obtain more accurate results than the ordinary AHP method [39].

The constituent of a fuzzy system is a fuzzy number. In this paper, for forest fire
susceptibility assessment, a triangular fuzzy number was used, which is characterized by
the form of the affiliation function µ(x). The triangular fuzzy number is defined by the values
lij, mij, and uij (provided that lij ≤ mij ≤ uij). The given values determine the boundaries
of the fuzzy set, where the x-axis shows the size of the fuzzy number (left and right
distribution), and the y-axis shows the degree of affiliation of the fuzzy number (between
0 and 1) [9,40]. The fuzzy AHP method involves the process of fuzzification of Saaty’s
scale [41]. The conversion of Saaty’s numerical to the fuzzy AHP scale was performed using
a triangular fuzzy number with a predefined confidence interval [40,42,43].

The first phase of fuzzy AHP method involves creating a fuzzy comparison matrix Ã
at each level of the hierarchical structure using a triangular fuzzy number and fuzzy Saaty’s
scale [10,44–47]. After creating the fuzzy comparison matrix, it is necessary to calculate the
value of the fuzzy synthetic extent (Si) for each element [9,10,44,48–50]. In the next phase,
calculation of the degree of possibility that M2 = (l2, m2, u2) ≥M1 = (l1, m1, u1) should be
carried out [9,45,49].

In the following, it is needed to analyze the degree of possibility that the convex fuzzy
number is greater than the k convex number Mi (i = 1,2, . . . , k) and is defined by the
expression [9,48–50].

V(M ≥M1, M2, . . . , Mk) = V[(M ≥M1) and (M ≥M2) and . . . and (M ≥Mk)] =
= min V(M ≥Mi), i = 1,2, . . . , k

(5)

Assume that
d′ (Ai) = min V(Si ≥ Sk); k = 1,2, . . . , n; k 6= i (6)

From the previous step arises the weight vector W’, and through normalization, the
vector is reduced to the form W [9,48–50],

W′ = (d′ (A
1

), d′ (A
2

), . . . , d′ (A
n

))T (7)

W = (d(A1), d(A2), . . . , d(An))T (8)

where W is a non-fuzzy number [9,48].
The final phase of the procedure represents the calculation of comparison matrix

consistency. The comparison matrix, created using a triangular fuzzy number, needs a
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process of defuzzification. Further, it is needed to calculate the degree of consistency (CR),
which represents the ratio of the index of consistency (CI) and the random index (RI), of
which the value depends on the number of the compared criteria (n) [9]. The results of the
comparison are considered consistent if the condition CR < 0.10 is met [9].

2.3. TOPSIS Method and Classification

In order to successfully analyze and compare forest fire susceptibility data obtained
by applying these two methods, the TOPSIS method (technique for order of preference
by similarity to ideal solution) is used. Its purpose is to optimize the process of ranking
variant solutions from the most optimal to the least optimal, taking into account the
characteristics of evaluation criteria and values of priority coefficients associated to them.
It implies the existence of a decision matrix, and the initial step of the procedure involves
the normalization of the decision matrix for each of the criteria, separately (rij) [51–53].
The next step involves creating a weighted normalization decision matrix (aij), where the
values obtained in the previous step (rij) and the values of the weight vectors (wj) are
multiplied for each criteria [51,54].

rij =
xij√

∑n
j=1 xij

2
(9)

aij = wij
xij√

∑n
j=1 xij

2
(10)

Third step involves the identification of ideal variant (Vj+) and anti-ideal variant (Vj−)
values for each criterion. These values are directly related to the goal of the analytical
procedure and the nature of the criteria, i.e., they depend on whether maximization or
minimization is performed for a certain criterion during the evaluation [52,55].

Vj+ =
[(

maxVij
∣∣ j ∈ J

)
,
(
minVij

∣∣ j ∈ J′
)]

(11)

Vj− =
[(

minVij
∣∣ j ∈ J

)
,
(
maxVij

∣∣ j ∈ J′
)]

(12)

Identification of the ideal and anti-ideal ranked variants is performed in order to
calculate the value of the geometric distance of each of the variant solutions from the
mentioned values, i.e., in order to identify the values of deviations represented by di+ i di−
indicators [51–53,55,56].

di+ =

√√√√ n

∑
j=1

(
Vij −Vj+

)2 (13)

di− =

√√√√ n

∑
j=1

(
Vij −Vj−

)2 (14)

In the final phase, the value of the performance index (cli) is calculated for each of the
variant solutions, in order to rank them from the most optimal to the least optimal [51,52,54–56].

cli =
di−

[(di+) + (di−)]
(15)

Values of the performance index are in range from 0, for the most susceptible to forest fire
occurrence, to 1, for the least susceptible. Zones of different forest fire susceptibility for the
research area were classified based on the value of performance index according to Table 2.
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Table 2. Forest fire susceptibility zones classification according to performance index values.

Performance Index Value Forest Fire Susceptibility Zone

0.0–0.2 Very high
0.2–0.4 High
0.4–0.6 Medium
0.6–0.8 Low
0.8–1.0 Very low

2.4. Adopted Fuzzy AHP Methods for the Forest Fire Risk Assessment and Outbreak Detection

The adopted fuzzy AHP method, as discussed in Section 4.1, is based on the mea-
suring the meteorological parameters (temperature, relative humidity, wind speed, and
rainfall) and the concentrations of the chemical gases (oxygen, carbon monoxide, and
carbon dioxide) that are responsible for forest fire ignition. This real-time environmental
monitoring of the aforementioned forest fire risk factors is performed by a distributed
and IoT-based sensor network. Corresponding sensors are deployed in the given area,
with the decreasing node density as the forest fire susceptibility decreases, considering the
results of analysis with the fuzzy AHP method presented in Section 3. The sensor node
location is considered known due to planned deployment (i.e., the information could be
written in sensor node software, or the unique sensor node ID could be defined with the
corresponding location information written in the system database). Alternatively, each
sensor node can be equipped with a Global Positioning System (GPS) module, which would
increase the power consumption and cost of the sensor node. Each sensor periodically
collects the measured data and employs the fuzzy logic Mamdani inference system [57,58]
that has been adopted to analyze the complex environmental changes. Seven input vari-
ables measured by sensors are fuzzified using the four membership functions shown in
Figures 2 and 3. Different fuzzy sets are defined for each linguistic variable expressed as
“very low”, “low”, “normal”, “high”, and “extreme”, which is presented in Table 3.

Figure 2. Membership functions of meteorological variables, adopted from [57].
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Figure 3. Membership functions of chemical gases, adopted from [57].

Table 3. Fuzzy sets and fuzzy domains proposed for linguistic variables.

Variable Fuzzy Set Fuzzy Domain

Temperature (T) FST = {low, medium, high, extreme} [0, 100] ◦C
Humidity (H) FSH = {low, medium, high, extreme} [0, 100] %

Wind speed (Wspeed) FSW = {low, medium, high, extreme} [0, 240] km/h
Rainfall (R) FSR = {low, medium, high, extreme} [0, 100] mm/m3

Oxygen (O2) FSO2 = {low, medium, high, extreme} [0, 30] %
Carbon dioxide (CO2) FSCO2 = {low, medium, high, extreme} [0, 1000] ppm

Carbon monoxide (CO2) FSCO = {low, medium, high, extreme} [0, 100] ppm

The adopted fuzzy sets for the forest fire risk are designed according to the rule of 30,
which is considered as a relevant preventive model of forest fire risk [57]. This rule considers
measurements of temperature and wind speed above 30 ◦C and 30 km/h, respectively,
with the humidity values below 30%, as the environmental conditions that favor the forest
fires’ occurrence. The adopted fuzzy sets for the fire outbreak occurrence are proposed and
designed, [57], based on the occurrence of the unusual increases in carbon monoxide and
carbon dioxide levels above their typical environmental concentrations at forest areas, at
the same time as the occurrence of the unexpected oxygen level decrease below 21%.

Every measured environmental variable is compared with its average value. The num-
ber of consecutive measurements used to calculate this average value depends on the
current environmental conditions as summarized in Table 4. A comparison between
the last environmental measurement and its average is necessary to evaluate unusual
environmental changes and predict fire occurrence.
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Table 4. Measurement frequency and average calculation of fire risk factors.

Forest Fire Risk Fire Outbreak
Occurrence

Measurement
Frequency Average Calculation

Non-existent Non-existent 5 minutes Last 20 measurements
Low / 2 minutes Last 15 measurements
High / Continuous Last 10 measurements

Extreme 5–10 Continuous Last 5 measurements

The proposed fuzzy inference system has two output variables, i.e., forest fire risk
estimation and forest fire outbreak detection for the fire prevention and detection purpose,
respectively. In order to prevent fire occurrence, fuzzified values of the last measurement
and its average for meteorological variables (temperature, relative humidity, wind speed,
and rainfall) are compared with the aim of evaluating the existence and severity of forest
fire risks in the particular zone. Therefore, the considered output linguistic variable is the
existence of forest fire risks expressed as “nonexistent”, “low”, “high”, and “extreme”.
In order to detect fire occurrence, fuzzified concentrations of chemical gases (oxygen,
carbon monoxide, and carbon dioxide) are compared with the respective average values
in order to evaluate the probability that the fire outbreak recently occurred. The same
output linguistic variables were used to calculate the probability of fire detecting as for
fire prevention.

After application of the corresponding inference rules, the results obtained for the
input linguistic variables are aggregated into two output fuzzy sets and fuzzified into the
output membership functions showed in Figure 4.

Figure 4. Membership functions of output variables, adopted from [57].

Both output fuzzy sets are defuzzified with the centroid method [59], which calculates
the center of mass for the obtained output distributions. Hence, a non-fuzzy discrete
percentage of the forest fire risks and fire outbreak occurrence represents the result for the
fire prevention and detection tasks, respectively.

3. Results
Forest Fire Susceptibility Zonation

By analyzing data from layers that were used for forest fire susceptibility calculation,
it has been determined that coniferous forests, that are the most susceptible to forest fire
occurrence, cover 9.4% of total Nature Park Golija area, and mixed forest and shrub, that
is also highly susceptible, covers 22.3% of total area. The largest part of the nature park
is covered by broad-leaved forest (48.5%), which is moderately susceptible to forest fire
occurrence (Table 5, Figure 5).
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Table 5. Distribution of classes in factors in the total Nature Park Golija territory.

Class
Value Vt [%] S [%] A [%] Ds [%] Dr [%] Df [%]

5 9.44 1.32 10.31 66.98 71.50 62.74
4 22.25 13.21 23.94 26.47 22.69 18.54
3 48.47 66.79 28.23 5.68 4.86 9.69
2 17.91 13.87 25.91 0.86 0.82 4.93
1 1.93 4.81 11.61 0.01 0.12 4.11

Figure 5. Spatial distribution of classes in factors in Nature Park Golija.
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Slopes steeper than 35◦, which are the most prone to fires, occupy 1.3% of the total
research area. Highly prone areas with terrain slope between 25◦ and 35◦ are found
on 13.2% of the nature park, and moderately prone terrain with steepness from 10◦ to
25◦ covers the remaining 66.8%. South-oriented hillsides cover 10.3% of the total area.
The share of other classes of slope, aspect, as well as distance from buildings, roads, and
agricultural areas, in the total nature park area can be found in Table 5, and their spatial
distribution is shown in Figure 5.

For the calculation of the Forest Fire Susceptibility Index, predefined weighted values
of factors were used. For the calculation of forest fire susceptibility using the fuzzy AHP
method, a fuzzy comparison matrix was created (Table 6). For such comparison matrix,
consistency ratio (CR) equals 0.055; therefore, the results of the comparison are considered
as consistent. After the calculations weighted values (wj) of factors were obtained, which
are presented in Table 7.

Table 6. Fuzzy comparison pairwise matrix.

Vt A S Dr Ds Df

Vt 1, 1, 1 1, 2, 3 1.5, 2.5, 3.5 2, 3, 4 2, 3, 4 2, 3, 4
A 0.33, 0.5, 1 1, 1, 1 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3
S 0.29, 0.4, 0.67 0.33, 0.5, 1 1, 1, 1 1, 2, 3 1, 2, 3 1, 2, 3

Dr 0.25, 0.33, 0.5 0.33, 0.5, 1 0.33, 0.5, 1 1, 1, 1 1, 1, 1 1, 2, 3
Ds 0.25, 0.33, 0.5 0.33, 0.5, 1 0.33, 0.5, 1 1, 1, 1 1, 1, 1 1, 2, 3
Df 0.25, 0.33, 0.5 0.33, 0.5, 1 0.33, 0.5, 1 0.33, 0.5, 1 0.33, 0.5, 1 1, 1, 1

Table 7. Weighted values (wj) of factors obtained from the fuzzy AHP method.

Factors wj

Vt 0.311
A 0.233
S 0.196

Dr 0.108
Ds 0.108
Df 0.044

According to results obtained by using the index-based RC method for forest fire
susceptibility zonation very high susceptibility is represented on 0.5% of the total research
area. High susceptibility was determined on 24.2% of the territory. Medium susceptibility
is represented on 70.5% of the nature park area, and low on 4.8%. Area on which very low
fire susceptibility is determined is almost unnoticeable, which can be seen numerically in
Table 8 and graphically in Figure 6.

Table 8. Share of forest fire susceptibility zones in total nature park area.

Susceptibility Class RC [%] Fuzzy AHP [%]

Very high 0.48 0.49
High 24.23 23.19

Medium 70.51 69.05
Low 4.78 7.26

Very low 0.0002 0.01
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Figure 6. Forest fire susceptibility zones in the Nature Park Golija, according to the Forest Fire
Susceptibility Index method.

Because of similar mutual relation of weight coefficients that were calculated by using
the fuzzy AHP method and using the TOPSIS method for normalization and classification
of the results of both methods to determine forest fire susceptibility of the study area,
the results obtained by using the fuzzy AHP method are not much different from the
results obtained by using the previous method (Table 8, Figure 7). It was noted that there
was a slight increase in the area of very high susceptibility and also areas with very low
susceptibility. The biggest absolute difference was in the area covered by the zone of low
susceptibility. It can be said with great certainty that the results obtained by usage of
the fuzzy AHP method are more accurate. Areas with very high forest fire susceptibility
are the most present in the central parts of NP Golija, which are areas with coniferous
or mixed forest vegetation, south oriented steeper slopes, and with a significant share of
anthropogenic factor.
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Figure 7. Forest fire susceptibility zones in the Nature Park Golija, according to the fuzzy
AHP method.

When forest fire susceptibility zonation is analyzed from the protection zone point of
view in Nature Park Golija, it is determined that in areas in the first regime of protection,
which is most important for protection of nature and thus most vulnerable, 0.1% of total
areas in that zone are very highly susceptible to forest fire occurrence, and 32.0 to 32.4% of
areas are highly susceptible, depending on the applied method. In the second zone of the
protection regime, 0.7% of total areas are classified in the class of very high susceptibility
and about 34% in class of high susceptibility (Table 9). What is encouraging is that the
share of the zone with very high susceptibility to forest fires in the areas with the first
protection regime is significantly lower than in other regimes. On the other hand, the share
of the high susceptibility zone is significantly higher in the first protection regime than
in the entire nature park on average, which is why much more attention must be paid to
fire protection in such areas. For the areas in the second regime of protection, both very
high and high forest fire susceptibility classes are present in larger percentages than in
the total nature park area. This means that areas important for nature conservation are
much more vulnerable taking everything that is significant for forest fire risk management
into account.
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Table 9. Share of forest fire susceptibility zones in total area of different regimes of protection.

Susceptibility
Class

RC [%] Fuzzy AHP[%]
I II III I II III

Very high 0.11 0.70 0.47 0.11 0.69 0.48
High 32.44 34.17 23.49 32.04 34.11 22.38

Medium 66.22 63.01 71.05 65.59 61.80 69.56
Low 1.23 2.12 4.99 2.27 3.39 7.57

Very low 0.00 0.00 0.0002 0.00 0.01 0.01

By analyzing forest fire susceptibility in the area that belongs to MaB Reserve Golija-
Studenica, it has been determined that about 0.6% of the total reserve area belongs to the
class of very high susceptibility, 25.2 to 26.3% to the class of high susceptibility, depending
on the applied method, and 68 to 69.2% to the medium forest fire susceptibility class
(Table 10). The higher share of the zone with very high susceptibility indicates the greater
importance of the protection of the reserve area.

Table 10. Share of forest fire susceptibility zones in total MaB reserve area.

Susceptibility Class RC [%] Fuzzy AHP [%]

Very high 0.57 0.59
High 26.28 25.15

Medium 69.17 68.04
Low 3.97 6.21

Very low 0.00 0.003

4. General Description of Adopted IoT-Based System for the Forest Fire Monitoring

In this section, we give a general description and rationale for the adopted IoT-based
system, which enables the continuous collection of the meteorological data for the purpose
of improved forest fire susceptibility assessment in a long-term and short-term manner and
the real-time prevention and detection of forest fire in the Nature Park Golija. This system
must support all aforementioned functionalities, but also operate in the harsh environment
of Nature Park Golija under the conditions of the lowest possible influence on the natural
environment and wildlife in the given area. Additionally, the previously presented results
of forest fire susceptibility analysis by using the fuzzy AHP method (in Section 3) are taken
into the account regarding system architecture and the sensor node deployment strategy.

In order to support intended functions, the proposed system must contain the large
number of sensor nodes deployed in the given area. Due to the non-existent power grid in
the area and the difficult maintenance conditions (i.e., battery change), the sensor nodes
must operate on battery power supply, while these energy-constrained nodes could eventu-
ally be equipped with solar panels in order to prolong operating life at the cost of a higher
sensor node unit and network price, [60]. Additionally, due to the lack of communication
infrastructure, a natural choice to achieve sensor nodes’ connectivity in the given large-
scale sensor network and under the given environmental circumstances is the adoption
of wireless communication technologies that can support long-range communication and
low energy consumption. This leads to the choice of low-power wireless communication
technologies characterized with the energy-aware protocols and sets the demand to adopt
the lowest possible data rate between sensor nodes and central elements of the system that
are needed to support the given application demands. Therefore, the obvious choice is
to adopt the system architecture and operating principles in which all tasks that can be
achieved by the local processing in the sensor nodes, without the frequent communication
of measured data to the other network elements, should be realized in the edge processing
manner (i.e., in sensor nodes). In this case, sensor nodes will only communicate the final
results to the central elements of the system, thus minimizing the communication demand
and data rate in the network and overall energy consumption. However, this should be
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done in a manner that provides all necessary environmental sensory data needed in the
central element of the system (i.e., in the cloud).

In the following sub-section, the several design choices are presented with the appro-
priate discussion and explanation.

4.1. The Choice of Environmental Parameters for the Forest Fire Risk Prediction and Detection

In the case of the real-time early forest fire prediction and detection system, the main
demand is that it should be able to notify firefighters as quickly as possible in order to
minimize damage to wildlife, environment, infrastructure, and people caused by the
fire. In that sense, the most important requirements of the forest fire detection systems
include [61]: robust continuous monitoring, fast detection of fire outbreak, determination
of the exact location of fire, fast notification, and minimization of probability of false alarms
occurrence. The comprehensive state-of-the-art analysis of previously proposed forest
fire prediction and detection solutions shows that this system can be classified in several
categories [61,62]:

• Traditional human-based observation systems;
• Satellite-based systems;
• Optical and thermal sensors (cameras)-based systems;
• IoT-based sensor networks and wireless sensor networks (WSN)-based systems;
• Unmanned aerial vehicles (UAV)-based systems.

As defined in the Introduction, the main task of the sensor network observed in
this paper is the continuous measurement of meteorological parameters that can be col-
lected and used for the forest fire susceptibility assessment, while the real-time forest fire
prediction and detection is considered as a secondary (additional) task. In that sense,
the main meteorological parameters that should be gathered and delivered for the forest
fire susceptibility assessment are [17–20]: temperature, relative humidity, wind speed,
and rainfall.

Of all aforementioned systems, only the WSN and IoT-based sensor networks-based
systems inherently contain sensor nodes equipped with the set of sensors that measure
temperature, relative humidity, wind speed, and rainfall. The operating principles of
the other systems demand the use of other sensor types, i.e., video cameras sensitive to
the visible spectrum of smoke during the day and a fire during the night, infrared (IR)
thermal imaging cameras, IR spectrometers able to identify smoke, or light detection
and ranging systems (LIDAR) in optical and thermal sensor-based systems and UAV-
based systems. Thus, all systems, except WSN- and IoT-based sensor networks-based
systems are considered to be out of scope of this paper, although some of them may have
higher performance for the forest fire detection purposes under the given circumstances.
Of course, here, the adopted system can be complemented with different forest fire detection
components, but it would cause additional costs.

The literature review of IoT-based sensor networks and WSN-based systems intended
for the real-time forest fire risk prediction and fire outbreak detection showed the broad
set of possible meteorological and other parameters used in these systems. The following
is observed:

• The most commonly used set of parameters consists of: temperature (T), relative
humidity (H), wind speed (Wspeed), and rainfall (R), [17,18,57,63–72]. For this set
of parameters, the fuzzy AHP method is used [57,63,64,69] for the forest fire risk
prediction, sometimes with additional parameters for human behavior and environ-
ment [64], while these same parameters were also combined with the concentrations
of chemical gases (oxygen, carbon monoxide, and carbon dioxide) in order to detect
forest fire outbreaks [57]. Additionally, the same set of parameters is used as an input
for artificial neural networks (ANN) [66,68] or linear regression model [70], or to
calculate the fire weather index (FWI) [65,67,71,72] by using a pre-defined procedure,
for the purpose of forest fire risk prediction.
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• The narrowed set of parameters that include temperature and relative humidity is
proposed for the forest fire risk prediction in combination with other sensors, such as
vision sensors [73,74] with fusion realized using Dempster–Shafer evidential theory,
smoke and light intensity sensors [75,76], or light intensity and carbon monoxide
sensors [77] by using the fuzzy AHP method. The combined measurements of tem-
perature, relative humidity, and carbon monoxide are employed for forest fire risk
prediction with broad set of machine-learning algorithms [78], while the combined
measurements of temperature, relative humidity, carbon monoxide, carbon dioxide,
and smoke sensors are used as input in ANN [79,80].

• A several simple solutions were proposed in which temperature measurements are
combined with the measurements of smoke sensors or combustion sensors (i.e., com-
bined carbon dioxide and nitric oxide measurements) [81,82], or only temperature
measurements are used [83], for the forest fire detection by using ANN. Additionally,
a combination of temperature and carbon monoxide measurements is used in a simple
forest fire detection system [84] with the predefined decision criteria.

• Finally, a very complex solution in which soil parameters (soil temperature, soil mois-
ture), air parameters (air temperature, air moisture, carbon dioxide concentration,
wind direction, wind speed, precipitation, negative oxygen ion, PM 2.5), light parame-
ters (global radiation, light intensity, sunshine hours threshold, photo synthetically
active radiation), and plant parameters (needle-type stem moisture, non-destructive
stem moisture) is used for forest fire prediction [85].

Considering that the basic meteorological parameters (T, H, Wspeed, and R) must
be collected, and as a primary task of sensor network, we adopted the following set of
meteorological parameters (temperature, relative humidity, wind speed, rainfall) for the
real-time forest fire risk prediction, and in order to improve the performance of the real-time
fire outbreak detection, a set of sensors for chemical gases concentration (oxygen, carbon
monoxide, and carbon dioxide) is added. Additionally, by analyzing the presented wide
range of proposed solutions for the forest fire prediction and detection, as well as the fact
that there are no corresponding datasets available for the given area (that contain real-time
measurements labeled with the information on the fire outbreak occurrence), which are
needed for the training of ANN models or machine-learning algorithms, we here adopted
the fuzzy AHP method. Therefore, the final proposal similar to the one presented in [57]
is adopted for the real-time forest fire risk prediction and fire outbreak detection, which
includes a set of aforementioned seven parameters, with the fuzzy AHP method being
employed for the both tasks. More details are given in Section 2.4.

Finally, the same set of meteorological parameters (temperature, relative humidity,
wind speed, rainfall) is considered for the purpose of long-term and short-term forest fire
susceptibility assessment.

4.2. The Choice of Communication Technology for the IoT-Based Sensor Networks for Forest Fire
Prediction and Detection

The application of wireless sensor networks (WSN) that encompass a large number
of Internet of Things (IoT) devices [86] in real-time forest fire prediction and detection
has been proposed more than 15 years ago [87], with the argument that WSN can forecast
forest fire in a more efficient manner than the traditional satellite-based approaches [88].
However, WSN deployment in a large-scale forest area, such as NP Golija, imposes certain
challenges related to the power supply, maintenance, coverage, and infrastructure cost.
Short-range wireless technologies such as Wi-Fi, Bluetooth, and ZigBee [60,89] can use
less complex sensor nodes for fire detection systems but close to the inhabited areas.
On the other hand, long-range 3GPP technologies such as GSM, UMTS, and LTE can
provide Narrowband Internet of Things (NB-IoT) functionality [90] with the extended
coverage, but also require higher end-device complexity, which consumes more power and
license for frequency spectrum utilization. It is worth mentioning that substantial financial
resources are needed for the additional optical infrastructure, microwave links, or base
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stations if the forest area of interest lacks cellular or Wi-Fi coverage. The analysis of cellular
networks coverage in the area of interest, in NP Golija, shows that the existing networks
do not offer complete coverage. Due to the low economic interest of cellular network
operators and the strict environmental conditions that must be met in the protected areas
of NP Golija, the setting additional base stations in the area present an issue. A hybrid
solution comprised large-scale WSN connected to a cellular network via a corresponding
gateway seems to be a good trade-off between the aforementioned conflicting requirements.
Nevertheless, this network setup still requires dense WSN deployment with limited inter-
sensor distance and satisfactory cellular radio conditions at gateway locations.

Long-range wide-area network (LoRaWAN) technology [60,91–93] presents a good
candidate for this kind of application, since it supports both large coverage, which de-
creases the number of required sensor nodes, and low power consumption, which pro-
longs their lifetime. Moreover, LoRaWAN standard utilizes unlicensed industrial, sci-
entific, and medical (ISM) frequency low band with favorable radio conditions [94] and
is based on open protocols [93]. Hence, the application of LoRaWAN allows for cus-
tomization and large-scale deployment without dependence on regulator or standardiza-
tion body. The considered application demands low data rate, low power consumption
of sensor nodes, and long-range communication. Under these conditions, LoRaWAN
technology seems to be the most appropriate solution for wireless connectivity of sensor
nodes [60,92,93], in comparison to short-range and other long-range alternatives.
Additionally, in LoRaWAN networks, each sensor can be served by multiple gateways in
the area. With LoRaWAN, each uplink packet sent by the end-device will be received by all
gateways within reach. This arrangement significantly reduces the packet error rate (since
the chances that at least one gateway will receive the message are very high) and allows
for low-cost geolocation. The LoRaWAN technology also supports high security, which is
of great importance for the considered application.

The concept of the forest fire detection using LoRaWAN sensor networks is intro-
duced in [95] and subsequently experimented in laboratory conditions [81] and verified
in a real network deployment scenario [60,96]. These LoRaWAN forest fire monitoring
systems gather environmental data collected from LoRa sensor nodes via the LoRa gate-
way to the corresponding application server where the main data processing is carried
out. The fire estimation procedure is based on the 30–30–30 rule, which is not the most
efficient method, since a forest fire sometimes depends on the area where it is placed and its
topography [97]. Fuzzy logic and its analytic hierarchy process (AHP) method [98] can be
used here to enhance real-time environmental data analysis. Fuzzy theory is applied when
analyzing the causation of uncertain factors, which corresponds to this specific use case.
Seminal works [70] in this area developed fuzzy logic algorithms that estimate the probabil-
ity and direction of fire based on the status of membership functions that utilize measured
sensor data. Combined analysis of measured and historical data can significantly increase
forest fire prediction and detection accuracy. Further research [57,63,64] considered hu-
man behavioral (date and time) and environmental (road and population density) factors
together with weather data obtained from sensors as an input for their fuzzy reasoning
system, which gives the probability of fire occurrence. The authors in [57] deployed an
AHP-based fire spread estimator, which combines measured data with additional static
forest data such as water resources, landscape position, forest tracks, and vegetation to
better estimate the forest fire propagation once a fire outbreak is detected.

Considering the previous discussion, in this section, we adopted the IoT-based sensor
network for forest fire prevention, prediction, and detection, with the access network
realized in the form of LoRaWAN system architecture. As already stated, the fuzzy AHP
method is applied for the real-time tasks (forest fire risk prediction and fire outbreak
detection) and short-term and long-term forest fire susceptibility assessment, which utilizes
both real-time (i.e., collected by sensor networks in real-time) and static data.
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4.3. Overall System Description

Considering the previous discussion, we here propose the IoT-based system for the
real-time prevention, detection, and tracking of forest fire in the area of interest, which also
supports the continuous collection of all necessary meteorological parameters (temperature,
relative humidity, wind speed, rainfall) needed for the forest fire susceptibility assessment
in a long-term and short-term manner (by using existing data already used for the forest
fire susceptibility assessment described in Section 2 and the result shown in Section 3).

The first part of the system in an IoT-based sensor network consists of a large number
of sensor nodes that measure the local meteorological parameters (temperature, relative
humidity, wind speed, rainfall) and the concentration of chemical gases (oxygen, carbon
monoxide, and carbon dioxide) that are responsible for forest fire ignition. These sensor
nodes are equipped with sensors and are dispersed in the area of interest. Sensor nodes
should be deployed with the decreasing node density as the forest fire susceptibility de-
creases, considering the results of analysis with fuzzy AHP method presented in Section 3.
As evident from this analysis, less than 0.5% of the total NP Golija area belongs to the very
high forest fire susceptibility class, while around 24% and 70% of the total NP Golija area
belong to the high and medium forest fire susceptibility classes, respectfully. The low and
very low forest fire susceptibility classes cover much less percentage of total NP Golija
area. In order to ensure proper operational conditions for the proposed system, the relative
number of sensor nodes deployed in the same surface area must be dependent on the forest
fire susceptibility classes, in the ratio 5:3:2:1:1 for the very high, high, medium, low, and
very low susceptibility classes, respectfully. The planned deployment of a sensor node
enables a priori knowledge of their location, even without a GPS module. As discussed
before, each sensor node can be additionally equipped with a GPS module, which increase
flexibility in sensor node deployment and operation, but at the cost of the increased power
consumption and network cost. The location of sensor nodes should be carefully chosen in
the areas in which there are the most favorable conditions for the fire outbreak (i.e., in the
areas covered with pines and other coniferous trees, near the roads and picnic areas, on the
slopes facing south, etc.).

The sensor nodes are equipped with LoRa radio interface modules in order to es-
tablish bidirectional communication with the LoRaWAN gateways deployed in the area.
The required number of LoRaWAN gateways must be defined through radio planning
process so that the proper radio and service coverage is achieved (the coverage of gateways
is partially overlapped in order to enable multiple reception of sensor nodes messages for
the border regions in order).

Each sensor node periodically performs measurements and employs the fuzzy AHP
method described in Section 2.4 adopted to analyze the complex environmental changes
in order to calculate two output variables, i.e., forest fire risk estimation and fire outbreak
detection, for the real-time fire prevention and detection purpose, respectively. If the
percentage of the estimated forest fire risk is high, the node will send this information
with its location or ID towards the central element of the system (i.e., to the cloud server),
which will log this event and notify the emergency team through its corresponding web
platform. If the percentage of fire outbreak occurrence is also high, the node will send
the same information to the server but this time with the additional fuzzified input of
all meteorological variables in order to enable creation of appropriate database inputs of
such occurrences for the sake of further improvements of the system. Additionally, an
optional real-time task might be realized based on the aforementioned data. That is, further
processing might be performed by the central server by using the corresponding data
together with already stored information about vegetation type, slope index, and sensor
location, in order to calculate wind direction and predict the fire spread direction by using
the method defined in [57]. In both scenarios, values of the meteorological variables and
chemical gases concentrations related with fire prevention or detection procedures will be
stored in the central database for future purposes.



Sensors 2021, 21, 6520 22 of 29

One possible variant in the areas with the higher sensor node density is to organize
sensor node in clusters so that each sensor node has a corresponding cluster head, i.e., sen-
sor node equipped with a LoRa interface (LoRa node), which is deployed in the particular
zone. The cluster members perform the same tasks as in the previous case (when all nodes
are LoRa nodes) and send their messages through the wireless communication with the
cluster head (i.e., LoRa node) achieved by using short-range communication technologies,
e.g., ZigBee technology. The LoRa node in this case performs data aggregation and delivers
all data for its cluster to the central server.

Each sensor node sends a daily report with all the sensory data in standard format
for the meteorological parameters (a similar format can be used for data on gases), in
order to update the corresponding long-term database on a daily basis. These data are
used for the long-term and short-term forest fire susceptibility assessment. In case of
the long-term assessment (i.e., monthly or yearly), collected meteorological parameter
data (historical data) are averaged and included in the fuzzy AHP method described in
Sections 2.1–2.3 in its final sub-layer, similarly as in [17–20]. Thus, the overall long-term
forest fire susceptibility assessment will take into account local meteorological conditions.
This will also ensure proper assessment and fire prevention activities in the long term,
based on the local and more appropriate meteorological data. For the improved short-
term (daily) forest fire susceptibility assessment, we here propose that the daily reported
meteorological data are used to calculate the fire weather index (FWI) solely by four
meteorological variables as input ones (i.e., temperature, wind speed, relative humidity at
noon time, and accumulated precipitation during previous 24 h period) [17,65,67,71,99].
The FWI system produces six indices based on the referenced fuel type, that is: (1) fine fuel
moisture code (FFMC) that is calculated by using a function of temperature, wind speed,
relative humidity, and precipitation; (2) duff moisture code (DMC) that is calculated by
using a function of temperature, relative humidity, and precipitation; (3) drought code
(DC) that is calculated as a function of temperature and precipitation; (4) initial spread
index (ISI) that is calculated as a function of FFMC and wind speed; (5) buildup index
(BUI) that is calculated as a function of the DMC and DC; (6) FWI that is calculated as a
function of ISI and BUI. Alternatively, FWI can be calculated by using the fuzzy inference
method defined in [69]. So, calculated FWI values can be included in the fuzzy AHP
method described in Sections 2.1–2.3 in its final sub-layer, i.e., similarly as in [17], in order
to achieve short-term forest fire susceptibility assessment. For the long-term and short-term
forest fire susceptibility assessment, the calculation for each elementary area is performed
by using meteorological data averaged over the closest sensor nodes.

The long-term deployment of a proposed IoT-based system would enable the col-
lection of historical, meteorological, and other data. Such a database enables further
research, especially if all fire occurrence in the area is properly documented. This will
enable the application of more sophisticated inference methods (i.e., machine learning or
deep learning) that could further improve the forest fire prevention performance of the
overall system.

5. Discussion

The International Strategy for Disaster Reduction [100] encourages researchers to
promote the protection of the environment in order to reduce vulnerability to disasters.
Previous research has shown that protected areas can play a very important role in prevent-
ing or mitigating natural disasters [101,102]. Assessment and zoning of natural disaster
susceptibility, vulnerability, hazard, and risk are among the most important parts of natural
disaster management and mitigation. Therefore, it is necessary to constantly improve
necessary methods and to find new data sources that could be used for that purpose.
Climate change trends are such that the forest fire risk is likely to increase globally in the
near future. Most of the world countries will be affected that way. Many of them that are
not considered as wealthy and will have problems in dealing with this disaster because of
lack of funding for data and equipment, among other things. That is why it is important to
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consider different possibilities, methods, and datasets, which will be more affordable to
most parts of the world. The consequences of forest fires in protected natural areas, due
to their importance and characteristics, are the reason why forest fire management and
mitigation must be at the top of the priority list.

The application of GIS is indispensable for this type of research, because only with
its help can an adequate and complete spatial analysis be performed. All the necessary
parameters that are important for forest fire susceptibility assessment can be taken into
account. Together with remote sensing, GIS represents a very powerful tool that enables
the use of various methods and multi-criteria decision analysis.

The data and software that were used in this paper for forest fire susceptibility as-
sessment and zonation are completely open source. That kind of research could help
communities that have a low budget when it comes to nature protection and forest fire
risk management. This paper also shows that it is possible to perform suitable forest fire
susceptibility zonation even if historical data of forest fires that occurred in a certain area
and relevant meteorological data are not available. Of course, for comprehensive forest fire
risk assessment, more accurate datasets than those used for this research and also historical
forest fire occurrence, climate, and weather data should be considered. Not only that it
would provide more detailed results of forest fire risk assessment and zonation, even before
setting up a sensor network, but it would also allow more advanced methods to be used,
such as the application of artificial intelligence.

As already stated in the Introduction, the most significant contribution of this research
is that the fuzzy AHP method was used for the first time for forest fire susceptibility
assessment in Serbia. The fact that it was used on the territory of one of the most important
protected natural areas amplifies that significance. Additionally, it compares results of the
index-based method and fuzzy AHP using the TOPSIS method. The application of the
fuzzy AHP method is more adequate, because it is more objective. Although at first glance
there were no significant differences in the results of the applied methods, these differences
are still significant for the further design of the sensor network based on the obtained
results, as well as for the overall management of this disaster. For future research and
improvement of methods and results, using other techniques that give adequate results,
such as the fuzzy analytical network process (ANP) [15], or hybrid approaches [103], should
be considered.

The results obtained thanks to such research should be an integral part of spatial plans
and other planning documents. They should help those who manage protected natural
assets, such as the Nature Park Golija, to reduce the forest fire risk, as well as to prevent
possible consequences. The significance of this research is that it is not only applicable
to protected natural assets, but can also be applied to other spatial units. The research
should benefit state and local authorities, emergency management services, but also the
local population.

Another important goal of research presented in this paper, as stated in the Introduc-
tion, was to propose adequate system architecture and an underlying sensor network in
order to enable the continuous collection of local meteorological data in order to amend
and improve the forest fire susceptibility assessment performance achieved with the afore-
mentioned fuzzy AHP method (which does not use meteorological data). The main design
requirements for such a system were to enable gathering of local meteorological data,
i.e., data collected by the sensors densely deployed in area of interest, in order to further
improve the quality of the forest fire susceptibility assessment in a long-term manner (i.e.,
monthly or yearly by using averaged data) or in a short-term manner (i.e., daily by using
current data). Additional goals included system ability to perform real-time forest fire
risk assessment and fire outbreak detection, and to gather all necessary data for the future
research and improvements of the overall forest monitoring system, and the future use of
more advanced inference methods such as machine-learning and deep-learning models.
The specific characteristics of the chosen area (NP Golija) set additional demands regarding
power supply and efficiency, maintenance, use of long-range low-data-rate wireless tech-
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nology. Additionally, the proposed system had to be cost effective (as it was intended for
the large-scale usage and should be appropriate for the countries with the lower possible
budget for these purposes). The above requirements, as elaborated in Section 3, set a
specific set of demands in the sensor network and the overall system design.

Therefore, the comprehensive state-of-the-art analysis of possible system architecture
and sensor network operating and design principles was conducted, with the main re-
sults of that analysis presented in Section 3 through the elaborated discussion regarding
the choice of environmental parameters, which should be monitored, and the choice of
communication technology and architecture that is most suitable for the given application
requirements. The main choice was to include a set of weather and environmental param-
eters (temperature, humidity, rainfall, wind speed, as well as carbon monoxide, carbon
dioxide, and oxygen levels) for the long-term and short-term forest fire risk assessment (as
an additional part of the fuzzy AHP method based on the other variables) and the real-time
forest fire risk estimation and fire outbreak occurrence detection. We proposed modern and
advanced system architecture, in the form of an IoT-based sensor network with LoRaWAN
technology used in the access part (sensor network part) of the system in order to achieve
reliable, low-rate, low-power, low-cost, and long-range bidirectional communication of
sensor nodes. The supported security, reliability, and traffic demands in this network
absolutely satisfies all current and future demands and also enables the design of low-cost
and long-life sensor nodes for a large-scale, cost-effective, and low-maintenance system.
It can be argued that there are other possible solutions for the real-time forest fire risk
prediction and outbreak detection, such as those based on optical and thermal sensors or
UAV. This kind of system might offer better real-time forest monitoring performance than
the system adopted in this study. However, these systems do not include the ability for
the long-term collection of meteorological and environmental data, which was one of the
tasks, and can be viewed only as a possible additional segment, which would significantly
increase system cost and complexity. Thus, the proposed system architecture and sensor
network part fulfill all application requirements with the lower overall cost.

Finally, it should be noticed that the proposed general framework for an IoT-based sen-
sor network and the overall system presents only one possible solution.
However, based on the comprehensive analysis of so-far-proposed solutions, as was elabo-
rated in the previous sections, we concluded that this solution represents the most suitable
framework for design and deployment under the given requirements, especially the de-
mand for a low-cost solution. Of course, under different circumstances, i.e., larger possible
budget, other more advanced solutions could be envisioned.

6. Conclusions

Forest fire susceptibility zoning is one of the first and one of the unavoidable steps
in forest fire risk reduction and mitigation. It makes it possible to obtain data on where
forest fires are more likely to occur and to identify certain “hot spots” where their occur-
rence is most expected. Based on that, decisions can be made that will prevent possible
consequences, save the lives of people and other living beings, and preserve tangible and
intangible goods. Forest fire mitigation is especially important when it comes to protected
natural areas, due to their vulnerability.

Nature Park Golija is one of the most important protected natural areas in Serbia,
considering its size, geodiversity, biodiversity, and the fact that its largest part is the
UNESCO MaB Reserve Golija-Studenica. According to the Forest Fire Susceptibility Index
method, 24.71% of the nature park territory is considered to be in the zones of very high
and high forest fire susceptibility, and according to the fuzzy AHP method, that share is
23.68%. Those figures are very unfavorable; therefore, in areas that are considered to be of
higher susceptibility, it is necessary to intensify the implementation of measures in order
to reduce forest fire risk. When considering forest fire susceptibility in the MaB reserve,
zones of very high and high forest fire susceptibility are recorded on 26.85% (Forest Fire
Susceptibility Index) and 25.75% (fuzzy AHP).



Sensors 2021, 21, 6520 25 of 29

The design and deployment of the proposed IoT-based sensor network and the over-
all system that encompasses real-time measurements, forest fire risk prediction, and fire
outbreak detection present a cost-effective, reliable, and flexible long-term solution for
the collection of meteorological data and data on fire outbreak occurrence, and for the
improved short-term and long-term forest fire susceptibility assessment, which will cer-
tainly enable a more advanced forest fire prediction, detection, and monitoring activities.
Additionally, due to the constant collection of all-important data, this system could be
continuously improved through the usage of more advanced inference techniques (i.e.,
machine learning and deep learning), without substantial investments.

Obtained results can be applied for adequate forest fire risk management, improve-
ment of the monitoring, and an early warning system in the Republic of Serbia. The forest
fire susceptibility maps and spatial data obtained by research are of the utmost importance
for decision makers for better preparedness, coordination, and intervention in the case
of forest fire occurrence. The lessons learned from the study area will help scale up the
forest fire susceptibility assessment on the territory of the whole country, and especially in
protected natural areas.
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24. Mišić, V. The suborder of beech forests in Serbia. In The Vegetation of Serbia II; Sarić, M., Ed.; Serbian Academy of Sciences and
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