
sensors

Article

HEAD Metamodel: Hierarchical, Extensible, Advanced, and
Dynamic Access Control Metamodel for Dynamic and
Heterogeneous Structures

Nadine Kashmar 1,*, Mehdi Adda 1 and Hussein Ibrahim 2

����������
�������

Citation: Kashmar, N.; Adda, M.;

Ibrahim, H. HEAD Metamodel:

Hierarchical, Extensible, Advanced,

and Dynamic Access Control

Metamodel for Dynamic and

Heterogeneous Structures. Sensors

2021, 21, 6507. https://doi.org/

10.3390/s21196507

Academic Editors: Xabier Larrucea

and Juan José Unzilla

Received: 2 September 2021

Accepted: 23 September 2021

Published: 29 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Département de Mathématiques, Informatique et Génie, Université du Québec à Rimouski,
300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada; mehdi_adda@uqar.ca

2 Institut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC G4R 5B7, Canada;
hussein.ibrahim@itmi.ca

* Correspondence: nadine.kashmar@uqar.ca

Abstract: The substantial advancements in information technologies have brought unprecedented
concepts and challenges to provide solutions and integrate advanced and self-ruling systems in
critical and heterogeneous structures. The new generation of networking environments (e.g., the
Internet of Things (IoT), cloud computing, etc.) are dynamic and ever-evolving environments. They
are composed of various private and public networks, where all resources are distributed and accessed
from everywhere. Protecting resources by controlling access to them is a complicated task, especially
with the presence of cybercriminals and cyberattacks. What makes this reality also challenging is the
diversity and the heterogeneity of access control (AC) models, which are implemented and integrated
with a countless number of information systems. The evolution of ubiquitous computing, especially
the concept of Industry 4.0 and IoT applications, imposes the need to enhance AC methods since the
traditional methods are not able to answer the increasing demand for privacy and security standards.
To address this issue, we propose a Hierarchical, Extensible, Advanced, and Dynamic (HEAD) AC
metamodel for dynamic and heterogeneous structures that is able to encompass the heterogeneity of
the existing AC models. Various AC models can be derived, and different static and dynamic AC
policies can be generated using its components. We use Eclipse (xtext) to define the grammar of our
AC metamodel. We illustrate our approach with several successful instantiations for various models
and hybrid models. Additionally, we provide some examples to show how some of the derived
models can be implemented to generate AC policies.

Keywords: access control; metamodel; policy; hierarchy; security and privacy; IoT; Industry 4.0;
heterogeneous

1. Introduction

The current generation of networking environments, referring to dynamic and ever-
evolving environments, such as the Internet of Things (IoT), cloud computing, etc., with
several millions of users who need access to information stored in distributed data centers
and servers via various types of devices (wearable devices, mobile phones, tablets, . . .),
makes the process of controlling access challenging and very complicated. Moreover, the
emergence of ubiquitous computing with heterogeneous devices, platforms, etc., especially
the concept of Industry 4.0 and IoT applications, releases new prospects to traditional
information systems and access control (AC) methods by merging new technologies and
services for seamless access to information sources at anytime and anywhere [1–3]. This
reality, in addition to the heterogeneity of the AC models that are implemented in the
different centralized and distributed computing environments, makes the process of con-
trolling access even more complicated, as the method of AC should answer the needs

Sensors 2021, 21, 6507. https://doi.org/10.3390/s21196507 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5327-1758
https://orcid.org/0000-0002-9177-2967
https://doi.org/10.3390/s21196507
https://doi.org/10.3390/s21196507
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21196507
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21196507?type=check_update&version=2

Sensors 2021, 21, 6507 2 of 29

of any computing environment by including the heterogeneity of AC models, and being
upgradable and dynamic to follow possible technology progressions [4,5].

Moreover, AC policies are among the most significant security mechanisms that are
essential to increase the privacy and confidence of an information system. Up to the present
time, AC research and real-world AC implementations to define and enforce AC policies
broadly fall under one of the five stages:

1. Traditional AC models discretionary access control (DAC), mandatory access control
(MAC), role-based access control (RBAC), attribute-based access control (ABAC) [4,6];

2. Hybrid models, by means of combining features of two or more AC models, for
example, hybrid RBAC/ABAC model [7];

3. Extended AC models, by means of adding new component(s) to a model to enhance
its features, for example, [8];

4. Abstract AC models, by means of abstracting a model and adding new components
to it, then deriving different instances of it, for example, [9];

5. AC metamodels, by means of including all of the above, for example, [10].

In the literature, different AC models are implemented to define and enforce AC
policies in order to specify users’ access rights to resources and verify that they can only
access resources they are allowed to in a given context. In Figure 1, we illustrate the notion
of heterogeneous structures, which include heterogeneous systems, platforms, networks,
and devices, in addition to the heterogeneity of the implemented AC models to define
and enforce different AC policies, such as password policy, network access policy, remote
access policy, etc. With the evolution of technology trends, it is realized that traditional
models, hybrid models, extended AC models, and abstract AC models no longer meet the
increasing demand of privacy and security standards; in other words, they are currently
insufficient to handle all the AC requirements [5]. To enhance AC methods, the era of
developing AC metamodels began within the decade to serve as unifying frameworks
with advanced AC features that are able to include most features of AC models in order
to define a larger set of AC policies and upgrade the defined policies [5,10,11]. The AC
metamodel should allow security experts and system administrators to create the needed
components to define/upgrade any static and dynamic AC policy since controlling users’
access and the actions they perform on information cannot be ignored when developing
strategies related to information security [6,12]. An information system (IS) must follow
up the evolution of security threats by designing and including modern security concepts
and practices and incorporating them with the information system development life cycle
(SDL). With the evolution of SDL, various studies have focused on the importance of
collaboration and communication between software operators and developers. Recently,
the need for security prompted the collaboration between developers and operators by
involving security experts from the start of SDL [13,14].

However, implementing AC methods in complicated and distributed environments
with several millions of users who might be assigned to different levels of roles, categories,
groups, etc., and who request access to millions of objects, which might be distributed
also in levels in several sites, need a generic, dynamic, and extensible AC metamodel that
supports the hierarchy of components, for example, objects, roles, categories, actions, and
maybe conditions. Unfortunately, despite the existing metamodels tackling specific issues
related to certain computing environments, they lack some essential features and have
several limitations (summarized in Section 2) [5,6,11]. Our concern in this paper falls under
the fifth stage of developing AC methods. For this purpose, we propose a Hierarchical,
Extensible, Advanced, and Dynamic (HEAD) AC metamodel with unconventional features
to assist developers and security experts to include its components in designing secure ISs
that conform to organizational AC security policies. In this paper, we tackle the generic,
dynamic, extensible, and hierarchical limitations of the existing metamodels. We propose
the kernel elements of the HEAD metamodel (a preliminary and general instance of our
metamodel is presented in [10]); we unify the concepts of the heterogeneous AC compo-
nents and include them under a generic metamodel concept. We explain how different

Sensors 2021, 21, 6507 3 of 29

AC components can be defined, instantiated to derive various models from the HEAD
metamodel, and illustrate several scenarios to show its dynamism and extensibility. Addi-
tionally, we show how our metamodel supports the feature of hierarchy for all components,
which is essential to define policies in, for example, a hierarchical organizational structure
where, for example, several users might be assigned to several roles in a hierarchy and
have permission to access several objects also in a hierarchy. However, the contribution of
this paper can be summarized as follows:

• Proposing an advanced AC metamodel with generic, dynamic, and extensible char-
acteristics; it can also be considered a foundation stone to solve other limitations
in existing AC metamodels, including collaboration and interoperability between
various models.

• Providing a solution for the need of component hierarchy in AC models (e.g., objects,
actions, roles, categories, contexts, etc.).

• Developing a language to express AC requirements, and to serve as a basis for pro-
ducing AC decisions for access requests.

• Providing a grammar language that is simple and flexible to appropriately express
AC policy requirements.

• Assisting developers and security experts to include unified and generic components
in designing secure ISs that conform to the organizational AC security policies.

Systems/Platforms Networks & connectivity Things/Resources

RBAC

RBAC

ABAC

ABAC

Figure 1. The dynamic and heterogeneous structures.

The remainder of this paper is organized as follows. In Section 2, we review the related
works in this domain. In Section 3, we explain how we unify the common concepts of
heterogeneous AC models, then we present the HEAD metamodel with its kernel elements
based on the unified concepts. In Section 4, we design the tools for metamodel instantiation.
We use the Eclipse Xtext framework to define the domain-specific language (DSL) of our
metamodel, and then we explain the metamodel characteristics. In Section 5, we show
how the HEAD metamodel provides a generic base to include all components of AC
models and is able to derive various models (also hybrid models) instances. We also
represent several scenarios to show its dynamicity, extensibility, and how it supports the
hierarchy of different components. In Section 6, we illustrate some examples of how AC
policies can be generated, using the HEAD metamodel. Section 7 concludes this paper with
future perspectives.

2. Related Works

As mentioned earlier, different AC implementations to define and enforce AC policies
have been presented in the literature over the decades. In this section, we summarize

Sensors 2021, 21, 6507 4 of 29

the proposed AC models, starting from traditional AC models reaching to the motif of
AC metamodels.

The traditional AC models are DAC, MAC, RBAC, and ABAC [6]. In DAC, mapping
users to operations on an object often takes the form of an access control matrix, while
MAC is based on the concept of security levels assigned to subjects and objects to control
the direction of information flow and users’ operations. In these models, AC decisions
are based on the identity of the user, and they are inadequate in dynamic computing
environments where the sharing of information between systems and users from diverse
security domains is common [5,8]. Thereafter, the RBAC model is proposed to provide
a more generalized model than DAC and MAC. In RBAC, if users are assigned to a role,
then they are granted a set of permissions. This model is insufficiently flexible for several
scenarios and makes administration potentially heavy in very large systems [11,15], for
example, systems with several local branches and abroad (e.g., banks), where hundreds of
users need to be assigned to roles to determine their permissions. Additionally, it does not
support dynamic attributes (e.g., time of day), for example, to prevent users from accessing
any information after their working hours. Furthermore, due to continuous technology
developments, the demand for a more generic and dynamic AC model has grown, and
thus, the ABAC model is proposed. In ABAC, AC decisions are based on the attributes
of users (subjects), attributes of objects being accessed, and attributes of environment
(context). One of the ABAC model’s limitations is the difficulty to calculate the resulting
set of permissions for a given user [5,6,15,16].

Due to continuous technology growth and the appearance of distributed systems and
because of some shortfalls in each of the traditional models [10,17], different approaches
are proposed in the literature to enhance AC methods by combining features of two or
more AC models, called hybrid models. A hybrid model is proposed by Kaiwen and
Lihua in [18], based on attribute and role, to solve the shortage on the environment of
large-scale dynamic users by solving the aspect of permissions assignment and policy
management. Another hybrid RBAC/ABAC model approach is presented in [19] for
multi-domain information systems. To find a model that supports dynamic attributes and
handle relationship between roles and attributes to provide better AC features in dynamic
environments, Kuhn et al. in [20] address the idea of adding attributes to RBAC. Moreover,
Rajpoot et al. [7] integrate RBAC and ABAC models by associating attributes with subjects,
objects and the environment, allowing the request context to be considered in making AC
decisions. In [21], a hybrid model merging RBAC and ABAC is proposed to enhance the
dynamic features of RBAC and to provide ease of administration, tight security, dynamic
behavior, and efficient separation of duty implementation. Additionally, Kim et al. in [22]
propose the MAC/RBAC model by configuring RBAC and MAC features to be applied in
the domains where access has to be checked for both authorized roles and security levels
together, for example, in the hospital domain, government domain, and military domain.

Moreover, to enhance an AC model in order to define additional rules, some AC
models are extended by adding new component(s) to them. For example, in [23], a survey
of an extended RBAC model in cloud computing is presented. In addition, an ABAC model
extension is presented in [8], called hierarchical group and attribute-based access control
(HGABAC), where groups and hierarchies of subjects and objects are added. Another
ABAC extension is proposed in [9], named the higher-order attribute-based access control
model (HoBAC); it extends the basic concepts (subjects, objects, and contexts) of the model
with aggregation operations that provide hierarchies, and many other examples. As well,
in [24], the RBAC model is abstracted to the meta-level in order to support the delegation
of users’ rights, which allows a user without any specific administrative privileges to
delegate their access rights to another user; hence, a delegation metamodel is proposed for
specifying RBAC and RBAC-based delegation features. In [25], Adda and Aliane proposed
a generic ABAC metamodel to generate a wide variety of AC models related to the ABAC
model that is suitable for all computing environments.

Sensors 2021, 21, 6507 5 of 29

The current generation of networking environments impose the need to focus on
developing more advanced AC features, especially since the existing AC models—hybrid
models, extended AC models, and abstract AC models—have reached their limits and are
currently insufficient to meet the needed AC requirements [5,17]. What makes this fact
challenging is the heterogeneity of everything—networks, applications, devices, etc.—in
addition to the heterogeneity of AC models. Hence, the notion of AC metamodels has
existed for almost a decade [11]. They are proposed to work as frameworks to allow
instantiating various models, and allow defining and enforcing a larger set of AC policies.
These metamodels are proposed to include most of the features and components of AC
models, which are employed in the core metamodel structure [5,11]. Hence, the more
features they include, the more they allow defining a larger set of AC rules.

In the literature, several metamodel approaches are proposed for different computing
environments. A unified AC modeling language is proposed in [26] as an extension
for Barker’s metamodel [27] to support object and action hierarchies. The aim of their
language is to define hybrid AC policies by allowing categories to be associated with
other categories and finding hierarchical associations between them. A subject may be
assigned to a category, which could be a role, a class, a group, a security level, etc. Barker’s
approach includes features of MAC, DAC, and RBAC, and is named the category-based
access control metamodel (CBAC). Another approach is proposed by Bertolissi et al. in [28]
for distributed environments and is based on the CBAC metamodel, where the user’s
request can be passed to other sites and evaluated in a distributed manner. An integration
metamodel for hybrid policies to concurrently handle DAC, MAC, and RBAC models
is proposed by Abd-Ali et al. in [29]. Alves et al. in [30] propose a CBAC metamodel
extension to study the interaction between obligations and permissions and expand a
general notion of obligation for the existing AC models. A category-based access control
(CatBAC) metamodel for highly flexible and dynamic environments, specifically for cloud
computing services, is proposed by Khamadja et al. in [31], to allow security administrators
in various company sites to find a concrete model with the constraints and specificities of
each site. To handle security and privacy in cloud service development and operations, Xia
et al. in [32] propose the cloud security and privacy metamodel (CSPM). To facilitate the
analysis and manipulation of security requirements for web services for the representation
of web content management systems (WCMS) AC policies and to automatically extract the
AC information in the domain of WCMS, a metamodel approach is presented by Martínez
et al. [33].

Generally, the metamodels are proposed to address the notions of including various
hybrid AC models features in the core metamodel structure, to encompass AC models and
allow extending them by adding new components, and to find a generic structure that
could include the most possible features of AC models. Nevertheless, the proposed AC
metamodels have several limitations and lack some essential characteristics [5,11,34], and
can be summarized as follows:

• They do not include all features of the common AC models, so they are not generic
enough;

• They do not support the ability of defining new entities and building relationships
between them in order to describe larger set of AC rules, for example, due to changing
environmental conditions, so they are not dynamic enough to follow technology
upgrades;

• They do not include the possibility of defining new components and attributes in
addition to the defined ones, so they are not extensible and the defined policies cannot
be extended;

• They do not support the feature of hierarchy for components;
• They do not handle or support the feature of collaboration and interoperability be-

tween the various AC models;
• They do not tackle the issue of migrating AC policies from one model to another.

Sensors 2021, 21, 6507 6 of 29

In this paper, our concern is to provide solutions for the limitations of generality,
dynamism, extensibility, and hierarchy.

3. Formalization of Access Control Policies

A security policy is a definition of a set of rules and guidelines on which access is
granted or denied for a user in any organization or industry sector. The following are some
general examples of AC rules:

• Before check-in, each worker has to wear a face mask.
• The maximum number of visitors in each room is 15.
• Machine operators can only enter the labs during working hours.

To define a policy, a set of concepts are defined and formulated to form rules. For
example, in the above rules we have subjects (e.g., worker, operator), objects (e.g., face-
mask, machine, room), actions (e.g., wear, visit, enter), attributes (e.g., maximum number,
working hours), and many other concepts could be included in a defined policy, such as
permission, role, group, etc.

3.1. Unifying Access Control Concepts of Heterogeneous Security Policies

In the literature, several types of AC models are implemented; these models can be
defined as frameworks for making authorization decisions. Each model is formulated
based on AC concepts. The following are some examples:

• The DAC model includes subject, object, and action concepts.
• The MAC model includes subjects, object, security level, and operation concepts.
• The RBAC model includes subject, object, role, permission, and action concepts.
• The ABAC model includes subject attributes, object attributes, context attributes,

condition, and action concepts.

Consequently, we can find that security policies include common concepts and at-
tributes that are common to all AC models [10]. These concepts can be summarized as
follows:

1. A set of concepts (and attributes) to describe subjects and objects.
2. A set of concepts (and attributes) that describe the authorized subjects.
3. A set of concepts (and attributes) that explain the different access rights.
4. A set of concepts (and attributes) that set various constraints and conditions.
5. A set of concepts (and attributes) that describe the context (environmental context) to

access objects.

To unify them and make them adaptable to all AC models, we classify them into
explicit, implicit (authorization units and procedural units), and setting concepts as illus-
trated in Figure 2. Note that each of the classified groups may include additional concepts.
EXPLICIT concepts are those that refer to something that is real and exists (e.g., subjects
and objects). IMPLICIT concepts are those that refer to something described or explained
in the guidelines or rules. Implicit concepts include AUTHORIZATION UNITs (e.g., roles,
security levels . . .) and PROCEDURAL UNITs (actions, permissions . . .). SETTING refers
to concepts that are included to have more accurate and regulated access to resources (e.g.,
context, constraints . . .).

Sensors 2021, 21, 6507 7 of 29

action
subject

object

permission

role

operation

group

category

context condition

Setting

Explicit

implicit Authorization units
procedural units

Figure 2. Unifying heterogeneous concepts of AC models.

3.2. HEAD Metamodel

The key responsibility of an AC metamodel is to define a language for specifying
several AC models; usually, this level describes generic concepts. Examples of meta-
objects (or meta-concepts) at the meta-modeling layer are the following: class/entity,
attribute, component, and others. An AC model is an instance of the metamodel. The
key responsibility of the model is to define a language that describes a security policy.
Examples of objects (or concepts) at modeling layer are subjects, objects (or resources),
actions, and other concepts; this level explains how these objects work together. At the
system layer where users interact, the actual AC policies are expressed by a security expert
for a given AC model instance(s). Note that in this section, we use the term “component”
instead of “concept”. Table 1 gives a summary about the meta-modeling layers and details
of our approach.

Table 1. Metamodeling layers and details.

Metamodeling
Layers

Details

Description Elements

Metamodel Describes the models to be instantiated explicit, implicit, authorization unit, procedural unit, setting

Model Metamodel instance, e.g., RBAC model, ABAC model . . . subject, object, role, action, permission . . .

System Model instance, e.g., RBAC policy, hybrid policy . . . Alice, Bob, manager, nurse, prescription, device . . .

Our AC metamodel aims first to describe the AC policy at the abstract level that
is autonomous from the enforcement of this policy. Accordingly, instead of modeling
the AC policy by using the concrete components of subject, object, permission, action,
etc., we define the meta-policy by using the abstract components of explicit, implicit, and
setting, then instantiate the concrete components to model the needed policy. The main
characteristics of the HEAD metamodel are as follows (Figure 3):

• It unifies the heterogeneous components of AC models.
• It is generic enough to include the common AC models and other models.
• It is dynamic and includes the feature of defining components (and attributes for all

components).
• It is extensible since it allows extending the already derived AC models.
• It supports the hierarchy for any type of components.

Sensors 2021, 21, 6507 8 of 29

Implicit

attributes

Explicit

attributes

accesstype

0..*

0..*

0..*

0..* 0..*
Setting

attributes

ProceduralUnit

attributes

AuthorizationUnit

attributes 0..*

ExHierarchy0..*

StHierarchy0..*

auHierarchy0..* puHierarchy0..*

assign perform

settings has

0..*

0..* 0..*

0..*

0..*

0..*

0..*

Figure 3. HEAD metamodel: the kernel elements.

Unifying the heterogeneous components of AC models and grouping them based
on their functionality would allow instantiating an unlimited number of components
related to the meta-component. Another essential characteristic is its generic structure,
where all components of common AC models can be defined and new ones can also be
defined. In other words, it is not restricted to the common models and it can also be
used as a base to derive new models. Additionally, unlimited levels of hierarchy could be
defined for all components whether they belong to explicit, implicit, or setting concepts.
An AC metamodel that supports the hierarchy of components is an essential characteristic
and cannot be ignored with the current distributed and complex structures of computing
environments and the existing resources.

3.2.1. Kernel Elements: HEAD Metamodel

In this section, we present the kernel elements (meta-components) of our metamodel
and the relationships between them.

• EXPLICIT (Ex): a set of explicit components that represent the real and the existing
entities, such as subjects and objects in any organization or industry sector. The class
EXPLICIT has a composition association with the sub-classes AUTHORIZATION
UNIT and PROCEDURAL UNIT, which are the inheritance of the abstract IMPLICIT
class.

• IMPLICIT (Im): a set of implicit components that represent the described components.
For example, subjects are classified or assigned to some other component(s) (e.g.,
roles), or the processes or functions that can be performed (e.g., actions). Two other
sub-classes that are inherited from the Implicit super-class are the AUTHORIZATION
UNIT (AU) components and the PROCEDURAL UNIT (PU) components.

– AUTHORIZATION UNIT (AU): a set of authorization units. It is a subclass
which should be specialized to create specific authorization units (aui, sub-index
i specifies the unit type), such as roles, categories, security levels, etc., to which
some Ex units (e.g., subjects) can be assigned, An AU example is as follows:
- aui: role (manager, doctor, . . .)
- auj: category (age > 18, temperature < 38◦, . . .)
Hence, AU includes role and category components

– PROCEDURAL UNIT (PU): a set of procedural units. It is a subclass which should
be specialized to create specific procedural units (pui, sub-index i specifies the
unit type) such as actions, permissions, operations, etc., to which some Ex units

Sensors 2021, 21, 6507 9 of 29

(e.g., objects) can be assigned. In other words, it represents operations that can be
performed by Ex units (e.g., subjects) on some other Ex units (e.g., objects), a PU
example is as follows:
- pui: action (read, write, . . .)
- puj: operation (turn on/off, open, close, . . .)
Hence, PU includes action and operation components.

• SETTING (St): a set of setting components. It represents the concepts that are in-
cluded to have more accurate and regulated access to resources, for example, context,
contextual conditions, constraints, etc. The setting components actually provide our
metamodel with high flexibility and expressiveness. They could include other compo-
nents (explicit, implicit, or/and other setting) to construct the needed expression(s).
For example, A context expression and contextual conditions can be expressed in
terms of AU, PU, Ex, and St components.

3.2.2. Hierarchies and Associations

The concept of hierarchy is important to define multiple levels of components, such as
roles, actions, objects, etc. It reflects the structure of an organization and, for example, the
respective responsibilities/priorities of the hierarchical components. Figure 4 represents
some examples of hierarchy in an organization or industry sector. In our metamodel,
there are four basic sets of components: Ex (set of explicit entities/classes), AU (set of
authorization unit entities/classes), PU (set of procedural unit entities/classes), and St
(set of setting entities/classes). Our metamodel provides support for creating hierarchy
for classes of AU (e.g., role hierarchy Figure 4a), PU (e.g., action hierarchy Figure 4b), Ex
(e.g., object or resource hierarchy, Figure 4c), and St (e.g., context hierarchy, Figure 4d) by
aggregating AU, PU, Ex, and St entities. These hierarchical relationships are depicted by an
aggregation association in Figure 3.

(a)

Actions

Private network access

Update Read Write

Public network access

Send Receive view

(b)

Roles

Consultant Dean

Director Team leader

Projects

Folders

Objects

Engineering

Project A Project B

Sales

Tax
declarations

(c)

Context

Context
User

User
profile

Context
Environment

Local

Time Location

Network

Type

Context
Service

Version

(d)

Figure 4. Examples for hierarchy of (a) roles; (b) actions; (c) objects; and (d) contexts.

The association between Ex and AU is to assign, for example, zero or many (0..*)
subjects to roles, groups, categories or other AUs. The association between AU and PU and
PU and Ex is to represent which AUs are able to perform zero or many PUs (e.g., actions,
permissions . . .) and access some, for example, objects or services. Note that Im components
(AUs and PUs) might have zero or many St (e.g., contextual and/or non-contextual con-
straints) before accessing/performing tasks on Ex components. Moreover, the metamodel
provides support for formulating AC models and hybrid models for different policies by
allowing AUs to be associated with other AUs, PUs to be associated with other PUs, Ex

Sensors 2021, 21, 6507 10 of 29

components to be associated with other Ex components, and St components to be associated
with other St components. As shown in Figure 3 a self-association edge exists on each of the
classes. Note that in some models, we might have an empty set of AU, or St, for example,
in the DAC model, AU is an empty set since explicit components are not assigned to AUs.

3.2.3. Meta-Policy and Policy

In this section, we explain the notions of meta-policy and policy of the HEAD meta-
model; note that the theoretical foundations of the HEAD metamodel are not included in
this paper. The meta-policy is expressed using the meta-components of Ex, Im, and St, in
the following way:

Metapolicy = 〈Ex, Im, St〉

Based on this meta-policy, different AC policy definitions can be expressed as follows:

• To define RBAC policy:

– Ex = {subject, object}
– Im = {AU = role, PU = permission}

Hence, Policy = 〈subject, object, role, permission, action〉
Meaning that a subject assigned to role has permission(s) to access object(s) and
perform action(s).

• To define a hybrid MAC/RBAC policy:

– Ex = {subject, object}
– Im = {AU = role, securitylevel, PU = permission, action}

Hence, Policy = 〈subject, object, role, securitylevel, permissions, actions〉
Meaning that, subjects who are assigned to specific roles and security levels
have permissions to access objects that are classified to some security levels and
perform some actions.

Thus, the policy is expressed using model components, which are derived from the
meta-components of meta-policy.

An AC policy is a set of rules that determine users’ access rights within a given
information system. These rules constitute a definition of the AC requirements for the
system. The process of implementing the AC mechanisms to make the system follow the
defined rules is called enforcement. In this paper, our concern is to constitute the definition
of AC requirements for a system.

4. Defining the Grammar of HEAD Metamodel

In the literature, several AC models, such as MAC, DAC, RBAC, ABAC, and many
other hybrid models are formulated based on the definition of security rules. Depending on
the model, the type of rules and the components (or entities) they employ are different. The
remarkable advantage of our metamodel is that it supports the definition of AC policies for
all these models and allows the implementation of generic tools to derive them. To handle
this idea, the metamodel must allow defining the different components and attributes, then
expressing models using them.

This section addresses the definition of the grammar of the DSL for our AC meta-
model; the grammar we have created is listed in Figure 5. Our grammar definition can be
interpreted as follows:

1. Lines 1 to 39: to instantiate the needed AC model(s) components, the hierarchies, and
the attributes.

– Lines 1 to 6: the block of defining all model components. ‘Metamodel’ is the root
class for the definition of parser rules. The used keywords ‘policy’ and ‘end’,
in line 3, are used to indicate the start and end of creating policy components.
Note that our metamodel is able to create one or more policy types (e.g., MAC
policy and RBAC policy). Each defined rule generates one decision (line 5).

Sensors 2021, 21, 6507 11 of 29

– Lines 7 to 9: the declaration of attribute(s) name(s) and datatype(s); also, arrays
can be declared.

– Lines 10 to 15: the definition of the policy name (e.g., RBAC) and the sub-blocks
(inside the main block of policy) of the Ex, Im, and St components. To create a
policy, at least one or more explicit/implicit element(s) must be declared; also,
we could have zero or more setting element(s). To define the sub-block of Ex
and St elements, the keywords ‘explicit’ and ‘setting’ are used, respectively, at
the beginning, and ‘end’ at the end. Note that the ‘Implicit’ parser rule (line 13)
has two elements, ‘AuthorizationUnit’ and ‘ProceduralUnit’ (lines 23 to 27).

– Lines 16 to 18: the alternatives of attribute data types.
– Lines 19 to 22: the creation of Ex components, their attributes, and their hierar-

chies.
– Lines 23 to 27: the creation of sub-blocks of Im elements (AUs and PUs). The

keywords ‘authorization’ and ‘procedural’ are used to indicate the beginning of
each sub-block, and ‘end’ at the ending.

– Lines 28 to 31: the creation of AU components, their attributes, and hierarchies.
– Lines 32 to 35: the creation of PU components, their attributes, and hierarchies.
– Lines 36 to 39: the creation of St components, their attributes, and hierarchies.
– Note that attributes could be defined for all components, and an unlimited

number of levels for components hierarchy can be created.

1- Metamodel:
2- {Metamodel}
3- 'policy' (policy+=Policy)+ 'end'
4- 'rule:'
5- decision=Decision
6- ;
7- Attribute:
8- name=ID (array ?='[' (length=INT)? ']')? ":" type=AttType
9- ;
10- Policy:
11- name=ID ('('attributes+=Attribute+')')?
12- 'explicit' (explicit+=Explicit)+ 'end'
13- (implicit+=Implicit)+
14- ('setting'(setting+=Setting)* 'end')?
15-;
16- AttType:
17- 'String'|'int'|'boolean'|'char'|'float'
18- ;
19- Explicit:
20- name=ID ('(' attributes+=Attribute+')')?
21- ('['heirarchy+=Explicit+']')?
22- ;
23- Implicit:
24- {Implicit}
25- ('authorization' authunit+=AuthorizationUnit* 'end')?
26- 'procedural' procunit+=ProceduralUnit* 'end'
27- ;
28- AuthorizationUnit:
29- name=ID ('(' attributes+=Attribute+')')?
30- ('['heirarchy+=AuthorizationUnit+']')?
31- ;
32- ProceduralUnit:
33- name=ID ('(' attributes+=Attribute+')')?
34- ('['heirarchy+=ProceduralUnit+']')?
35- ;
36- Setting:
37- name=ID ('(' attributes+=Attribute+')')?
38- ('['heirarchy+=Setting+']')?
39- ;
40- Decision:
41- (('(' attributes+=Attribute*')')?
42- '{' (explicit+=[Explicit|QualifiedName]
43- ('(' (wth+=[Attribute|QualifiedName])* ')')?)
44- ('[' (authunit+=[AuthorizationUnit|QualifiedName] ('('wth+=[Attribute|QualifiedName]*')')?)* ']')?
45- ('{' procunit+=[ProceduralUnit|QualifiedName] ('('wth+=[Attribute|QualifiedName]*')')?)?
46- => '{'
47- (explicit+=[Explicit|QualifiedName]
48- ('('(wth+=[Attribute|QualifiedName])* ')')?
49- ('['(authunit+=[AuthorizationUnit|QualifiedName] ('('wth+=[Attribute|QualifiedName]*')')?)*']')?
50- '{'
51- (
52- procunit+=[ProceduralUnit|QualifiedName] ('('wth+=[Attribute|QualifiedName]*')')?
53- ('{' (setting+=[Setting|QualifiedName] ('(' wth+=[Attribute|QualifiedName]* ')')?)*'}')?
54-)+
55- '}'
56-)+
57- ('}')?
58- '}'
59- '}' '-->' id+=ID)+
60- ;
61- QualifiedName:
62- ID('.' ID)*
63- ;

Figure 5. HEAD Metamodel: The Grammar.

Sensors 2021, 21, 6507 12 of 29

2. Lines 40 to 63: to define a policy (set of rules), based on the instantiated components
and attributes with the access request decision. Note that, using our grammar def-
inition, rules (and hybrid rules) can be expressed in different ways, for example, a
subject can access object(s) and perform an operation(s), or an object can be accessed
by a subject(s) and perform an action(s).

– Line 40: the parser rule ‘Decision’, is the beginning of specifying and expressing
a rule which ends with a decision (‘–>’ id+=ID, line 59).

– Line 41: after using the keyword ‘rule’ (line 4), some attributes can be created, for
example, ruletype, rulenumber, etc.

– Lines 42 and 44: the block of rule definition starts with an open curly braces ‘{’.
A rule is started by specifying an Ex component (e.g., subject or object) and its
attributes. In some models, explicit components are assigned to some AUs, for
example, in RBAC subjects are assigned to roles, and in MAC subjects/objects
are assigned to security levels. Note that Ex-AU assignment is optional ‘?’ in
expressing a rule, depending on the expressed model (line 44).

– Line 45: it is optional to define a nested block for a procedural unit, for example
permission in RBAC, to express a policy.

– Line 46: the beginning of expressing another nested block after specifying an Ex
component and assigning it to some AU(s), or defining some PU(s).

– Lines 47 to 49: same interpretation of lines 42 to 44. Hence, the beginning of a
rule could be expressed as follows, for example:

- A subject can access object(s) . . .
- An object can be accessed by a subject(s) . . .
- A subject assigned to a role has permission to access object(s) . . .
- A subject assigned to a security level can access object(s) assigned to some

security levels . . .

– Lines 47 to 56: the sign ‘+’ in ‘)+’, line 56, indicates that what is included between
lines 47 to 56 can be expressed more than once within a rule.

– Lines 50 to 55: the start and end of a sub-block of specifying what PUs (e.g.,
actions) an Ex unit can perform. Note that it is optional to include some St (e.g.,
conditions) while expressing a rule. The sign ‘+’ in ‘)+’, line 54, indicates that
what is included between lines 51 and 54 can be expressed more than once.

– Line 57 to 59: closing the main block with some of opened sub-blocks.
– Line 59: indicates the end of rule expression with the decision ID. Note that the

sign ‘+’ in ‘)+’indicates that a set of rules can be defined within a policy.

In Section 5, we explain with examples how our metamodel grammar could be
expressed to define different rules, and show how it is generic, dynamic, extensible, and
supports a hierarchy of components.

5. Deriving Access Control Models

In this section, we show how our metamodel structure is (1) generic and able to
derive instances of different models and hybrid models, (2) dynamic and allows defining
new components in addition to the existing ones, also the relationships between them,
(3) extensible to upgrade any defined policy, and (4) supportive of the feature of defining
hierarchies.

The key responsibility of the model is to define a language that describes a security
policy. Examples of entities at modeling layer are: subjects, objects (or resources), actions,
and other entities. This metamodeling layer explains the way of how these entities work
togather. Henceforth, we use the term “entity” instead of “component”. Note that in this
paper, we consider the environmental context.

Sensors 2021, 21, 6507 13 of 29

5.1. Generality

In this section, common models (DAC, MAC, RBAC, and ABAC), in addition to
some hybrid models, are instantiated, using the HEAD metamodel, and show how dif-
ferent AC rules can be expressed using the defined grammar (Figure 5). The models in
Figures 6, 8, 10, 12, 14 and 16 illustrate class instances with the same colors of EXPLICIT,
IMPLICIT, and SETTING classes of Figure 3.

5.1.1. Discretionary Access Control Model (DAC)

In DAC, subjects determine how some other subjects can access their objects [35]. It is
based on the identity of three key entities shown in Figure 6, the Ex entities are subject and
object, and the Im entity is operation (PU instance). Subjects can control access rights to
their objects by determining what operations can be performed by other subjects.

operation

0..1

0..*

0..1

0..*

subject

attributes

object

attributes

action

attributes

Figure 6. DAC model instance.

Based on our grammar definition, in Figure 7a (lines 1 to 4), we define DAC entities
(and the needed attributes), and their instances are shown in Figure 7b. The DAC policy
is expressed in lines 6 to 13 starting with the keyword ‘rule’, and since a policy is a set of
rules, we define the attribute ‘ruleid’ to indicate the rule number. Note that any rule could
have allow, deny, mixed, etc., decisions. Hence, the rule can be interpreted as follows:

A subject with name = name-value can access object with type = type-value and perform
some operation(s) op = op-value(s).

Figure 7. (a) DAC Policy Definition; (b) DAC entities.

5.1.2. Mandatory Access Control Model (MAC)

In MAC, access rights are based on the concept of security levels associated with each
subject and object, where actions are derived. A security level for a subject is called the
clearance level and for an object is called the classification level [6]. In Figure 8, the Ex
entities are subject and object, and the Im entities are security level (AU instance), and
operation (PU instance). Clearance levels are assigned to subjects and objects, and based
on these levels, AC rights are specified.

Sensors 2021, 21, 6507 14 of 29

0..*0..1

0..* 0..1

0..*

0..1

0..*

0..1 security level

attributes

operation

attributes

subject

attributes

object

attributes

Figure 8. MAC model instance.

In Figure 9a (lines 1 to 5), we define MAC entities (and the needed attributes), and
their instances are shown in Figure 9b. The MAC policy is expressed in lines 7 to 16,
starting with the keyword ‘rule’, and the attribute ‘ruleid’ to indicate the rule number. Note
that any rule could also have allow, deny, mixed, etc., decisions. Hence, the rule can be
interpreted as follows:

A subject with name = name-value which is assigned to a securitylevel = clearancelevel-
value can access object with securitylevel = classificationlevel-value and perform some
operation(s) op = op-value(s).

In MAC, for example, the BLP (Bell–LaPadula) model, a subject is allowed to read an
object if its clearance level is greater than or equal to the object’s classification level [6].

Figure 9. (a) MAC policy definition; (b) MAC entities.

5.1.3. Role-Based Access Control Model (RBAC)

In RBAC, subjects are given access based on their roles (e.g., engineer and doctor). In
Figure 10, the Ex entities are subject and object, and the Im entities are role (AU instance),
and permission and action (PU instances). Subjects can be assigned to different roles
(roles can be associated to several subjects), and each role is a group of permissions to
perform some actions. As mentioned earlier, our metamodel provides support for creating
hierarchies by aggregating some concepts. As shown in the figure, hierarchies for objects
(resources), roles, and actions can be created [35].

Sensors 2021, 21, 6507 15 of 29

1..* 1..*

0..*

0..*

0..*

0..1

0..1 0..*

role

attributes

action

attributes
permission

attributes

subject

attributes

object

attributes

Figure 10. RBAC model instance.

In Figure 11a (lines 1 to 6), RBAC entities (and the needed attributes) are defined,
using our defined metamodel language; their instances are shown in Figure 11b. RBAC
policy is expressed in lines 8 to 23. RBAC rule can be interpreted as follows:

A subject with name = subjectname-value assigned to a role roletype = role-value has
the permission to access object name = objectname-value and perform action act = act-
value1, and action act = act-value2 if condition expr = condition-expression is true.

Note that the ‘act’ attribute might have read value for the first action and write for the
second action.

Figure 11. (a) RBAC policy definition; (b) RBAC entities.

5.1.4. Attribute-Based Access Control Model (ABAC)

In the ABAC model, AC rights are evaluated at the time that the actual request is
made; it uses subject, object, and environmental (context) attributes to determine access
decisions. In Figure 12, the Ex entities are the subject attributes and object attributes (which
represent subjects and objects); the Im entities are permission and action (PU instances); the
St entities are context expressions and attributes. Subjects with some attributes are allowed
to perform some actions on objects with some other attributes based on some conditions
and constraints in the defined policy.

Sensors 2021, 21, 6507 16 of 29

0..*

0..*0..*

0..*

0..*

0..*

0..*

0..*

0..1

0..*

subject

attributes

0..1

0..*

object

attributes

context

attributes

action

attributes

constraint

 +expression

Figure 12. ABAC model instance.

In Figure 13a (lines 1 to 9), ABAC attributes, which represent subjects, objects, actions,
and context, are defined; the instances are shown in Figure 13b. ABAC policy is expressed
in lines 11 to 21. A rule can be interpreted as follows:

A subject with address = address value, and . . . attributes can access object with type = type
value, and . . . attributes and perform an action act = act-value1, and act = act-value2 when
expression if location = location-value is true.

Note that the ‘act’ attribute might have update for the first action and delete for the
second action.

Figure 13. (a) ABAC policy definition; (b) ABAC entities.

5.1.5. Hybrid Models

A hybrid AC model combines features of two or more AC models. Using the grammar
of the HEAD metamodel, various hybrid models can also be instantiated. Figure 14
represents a hybrid MAC/RBAC model instance.

Sensors 2021, 21, 6507 17 of 29

0..*

0..*

0..*

0..1

1..* 1..*

0..*

0..*

0..1 0..*

action

attributes

subject

attributes

object

attributes

permission

attributes

role

attributes

security level

attributes

0..1

0..1

Figure 14. Hybrid MAC/RBAC model.

In Figure 15a (lines 1 to 5), we define MAC/RBAC entities (and the needed attributes),
and their instances are shown in Figure 15b (subject, object, security level, role, action, and
permission). A hybrid MAC/RBAC policy is expressed in lines 7 to 19, with the attribute
‘ruleid’ to indicate rule number. A MAC/RBAC rule can be interpreted as follows:

A subject which is assigned to role = roletype-value and securitylevel = clearancelevel-
value has a permission to access object(s) with securitylevel = classificationlevel-value and
perform some action(s) act = act-value.

Figure 15. (a) MAC/RBAC policy definition; (b) MAC/RBAC entities.

Another hybrid model example is illustrated in Figure 16, which represents an in-
stance of the hybrid RBAC/ABCA model. In this hybrid model, to determine subject’s role,
a role is added as an attribute to the subject entity.

Sensors 2021, 21, 6507 18 of 29

0..*

0..*0..*

0..*

0..*

0..*0..1

0..*

0..*

0..1

0..*

subject

attributes

object

attributes

context

attributes

permission

attributes

role

0..*0..1action

attributes

constraint

+expression

Figure 16. Hybrid RBAC/ABAC model.

In Figure 17a (lines 1 to 9), we define the RBAC/ABAC entities and attributes, and
their instances are shown in Figure 17b (subject attributes, object attributes, action, permis-
sion, context, and contextual attributes). A hybrid RBAC/ABAC policy is expressed in
lines 10 to 24. A rule can be interpreted as follows:

A subject with attributes address = address-value and role = role-value has a permis-
sion to access an object(s) with attribute(s) type = type-value and perform an action where
act = act-value when context-expression if location = location-value and time = time-value
are true.

Figure 17. (a) RBAC/ABAC policy definition; (b) RBAC/ABAC entities.

As shown above, various AC models can be instantiated using the HEAD metamodel;
hence, it is generic and able to include any AC feature for any model, and is also flexible
enough to define the needed AC policies (also hybrid policies).

5.2. Dynamism

Along with technology upgrades, several security threats appear. To conquer them,
security solutions must be regularly updated and stay amenable to follow and track the

Sensors 2021, 21, 6507 19 of 29

evolution of these threats. Protecting resources against security threats has become a crucial
concern in the development of IS and requires setting up trusted AC policies. The HEAD
metamodel exceeds the features of the existing metamodels since it considers that AC
is becoming more and more important for open, ubiquitous, and critical systems. An
AC metamodel must be flexible and upgradable, due to changing conditions or updating
rules. In other words, its structure should be dynamic and describe how its properties
can be adjusted over time to define a larger set of static and dynamic AC policies. Hence,
a dynamic metamodel allows defining new types of attributes, for example, contextual
attributes, and new components, in addition to the relationships between them to upgrade
and formulate different AC models. In this section, we assume some scenarios as examples
to show the dynamism of the HEAD metamodel.

• Scenario 1: Assume that an RBAC model is already formulated to define a policy for
an organization. Hereinafter, due to some organizational changes and updates, the
following occurrs:

a. Some users who are already assigned to certain roles need to be assigned, based
on their roles, to security levels.

b. Some other users now should be directly assigned to levels.
c. Both users in (a) and (b) are only allowed to access some sensitive objects (e.g.,

documents), which are also classified into levels based on their sensitivity.

Hence, some of already defined rules must be updated, and new rules must be defined.
Figure 18 is an example of how the HEAD grammar is dynamic. Lines 2 to 5 indicate
the already defined RBAC entities (with the attributes), and lines 13 to 21 indicate the
already defined RBAC rules. Lines 22 to 31 indicate that some RBAC rules are updated
to express hybrid MAC/RBAC rules. As we can see, in line 24, some subjects who are
assigned to some roles are now assigned to some security levels, and in line 26, some
objects are assigned to some security levels. Lines 32 to 38 indicate the definition of
new MAC rules.

Figure 18. Dynamic AC metamodel: Scenario 1.

Sensors 2021, 21, 6507 20 of 29

• Scenario 2: Assume that an ABAC model is already formulated, and the policy is
already defined in an organization. Suppose that the organization has departments
dept1, dept2, and dept3. However, due to some changing conditions, a new static and
dynamic AC rules must be defined and others must be updated. The updated policy,
due to new changing conditions, states the following:

a. Dynamic rule: subjects (users) in dept2 and dept3 are not allowed to access
some objects after three failed password attempts (assuming that another level of
authentication is needed before accessing the objects).

b. Static rule: some subjects in dept1 can determine what operations, (i) other
subjects can perform, and (ii) some other subjects with the specific role can
perform, on their objects.

Clearly, some already defined rules must also be updated, and new rules must be
defined. As shown in Figure 19, the red and blue indicators refer to the modifications
and the new expressions for rules. To answer the needed updates, in line 3, two
additional attributes are defined as well as the attribute ‘countPW’ in line 8 to count
the number of failed attempts while entering the password ‘PW’. Another St entity is
instantiated named condition (line 9) to check the subject’s department and role based
on (a) and (b) of the above policy updates. Lines 12 to 22 indicate that some ABAC
rules are updated to answer the needed modifications in (a). As we can see, an action
can be performed on an object if the following are true:

– The answer of condition (line 17) is true (the condition is true if the value of the
dept attribute is equal to that of dept2 or dept3).

– Another authentication level is verified by entering the correct password ‘PW’ and
another condition (contextualCondition) must return true (contextualCondition
is true if the value of ‘countPW’ is less than or equal to three).

Note that the condition is verified at a certain point in time, specifically when some-
thing occurs. Hence, this rule deals with the dynamic behavior of the subjects. Note
that our grammar is able to express a rule in another way starting with the object.
As well, to answer the requirements in (b)-(i) and (b)-(ii), a new rule is expressed in
lines 24 to 37.

(i) An object with attribute type = type-value can be accessed by subjects with
attribute address = address-value and perform some action act = act-value1, and
some other action act = act-value2 if their dept = dept-value (dept1).

(ii) An object with attribute type = type-value can be accessed by subjects with
attribute address = address-value and perform some action act = act-value1, and
some other action act = act-value2 if their dept = dept-value and their role =
role-value.

As expressed in Scenarios 1 and 2, we can find that new types of attributes and entities
can be defined to describe a larger set of rules to express (then enforce) static and dynamic
policies. The above scenarios show the Dynamism of the HEAD metamodel, which comes
after its Generality feature.

Sensors 2021, 21, 6507 21 of 29

Figure 19. Dynamic AC metamodel: Scenario 2.

5.3. Extensibility

Developing a generic and dynamic AC metamodel enables developing other important
features, such as extensibility. An extensible AC metamodel means that new entities (or
attributes) could be defined and integrated with already derived models to support new
AC features in addition to the previous ones.

In this section, we assume that an RBAC model is already defined, and the needed
policy is expressed in an organization. Due to new procedures and upgrades in the
organization, the users who are already assigned to specific roles need to be classified into
groups. For example, subjects who are assigned to role1 are classified into two groups,
(group11 and group12), and subjects who are assigned to role2 are classified into three
groups, (group21, group22, and group23). Besides the already defined permissions for
role1 and role2, other permissions need to be specified based on user-group assignments.
Hence, users’ permissions are specified based on their roles, groups, and roles and groups.
Figure 20 illustrates an extension for RBAC policy to support the notion of groups. The
red indicators show the newly defined entities/attributes in addition to the existing ones
with rule expressions. Lines 9 to 18 express the permissions of subjects who are assigned
to roles regardless of their groups. Lines 17 to 25 express a new rule of permissions for
subjects who are assigned to groups regardless of their roles. Lines 26 to 36 express the
permissions of subjects based on their roles and groups; in line 31, conditions are used to
check the users’ (subjects’) role and group to allow/deny them performing action(s).

Sensors 2021, 21, 6507 22 of 29

Figure 20. Extensibility: RBAC example.

Hence, having an advanced AC metamodel that is able to extend the existing models
is a substantial requirement with technology progressions and upgrades.

5.4. Hierarchy of Entities

Hierarchical authorization is the authorization determined based on the hierarchy.
Within this structure, access rights are specified by an entity’s place in the hierarchy. The
hierarchy defines the relationships between specific types of entities (e.g., roles). This fea-
ture can be employed to extend the derived AC models. As we can see in Section 2, several
models and metamodels in the literature are extended to support the feature of hierarchy
since it provides additional, granular access to resources for an organization and helps
reduce maintenance costs. For example, in complex scenarios (e.g., IoT), administrators
can start with creating several entities and then add their hierarchy. This would help in
managing access to data with less maintenance costs compared to creating a large number
of nonhierarchical entities. In this section, we show how HEAD metamodel grammar is
able to define a hierarchy for any type of entities. For example, we have the following:

- Creating a hierarchy of roles and objects in RBAC: assume that, after expressing an
RBAC policy, an organization needs to update/define new rules that support the
hierarchy of roles (two levels of hierarchy) and objects (three levels of hierarchy). In
Figure 21a, in lines 2 to 4, we define three levels of object hierarchy: objectL1, objectL2,
and objectL3. Note that L1, L2, and L3 are concatenated with the entity name to
indicate the level number. In lines 6 to 7, two levels of role are defined (roleL1, and
roleL2). In lines 14 to 28, the rule states the following:

A subject with name = name-value assigned to roleL1 = role-value has permission to
access an objectL1 = name-value and perform action act = act-value if condition is true,
an objectL2 = name-value and perform action act = act-value, and an objectL3 = name-
value and perform action act = act-value.

In lines 30 to 39, a subject assigned to a role in second level of hierarchy can access
an object(s) in a second level of hierarchy, and another object(s) in a third level of

Sensors 2021, 21, 6507 23 of 29

hierarchy. The rule states the following:
A subject with name = name-value assigned to roleL2 = role-value has permission
to access an objectL2 = name-value and perform action act = act-value, and an ob-
jectL3 = name-value and perform action act = act-value.

Figure 21b, shows the defined entities/attributes, and the hierarchy of roles and
objects. Note that if a subject is assigned to one or more roles, the expression could be
written as follows:

RBAC.subject(RBAC.subject.name)[
RBAC.roleL1(RBAC.roleL1.role)
RBAC.roleL1.roleL2(RBAC.roleL1.roleL2.role)
RBAC.roleL1.roleL2.roleL3(RBAC.roleL1.roleL2.roleL3.role) . . .]{. . .

Figure 21. RBAC: (a) definition of role/object hierarchy; (b) hierarchy of role/object entities.

6. Generating Policies: Examples and Illustrations

In the previous sections, we defined the grammar of the HEAD metamodel for spec-
ifying several AC models, then we defined a model language to describe AC security
policies. In this section, the models expressed in the DSL are transformed to Java code in
order to generate the AC policies. We provide examples of how the actual AC policies are
generated for a given model(s) instances. AC policies are expressed at the system layer,
where users interact.

• Example 1—RBAC policy: The doctors Mark and Joe in a hospital can read and write
patients’ prescriptions. The nurse Joyce is allowed to read these prescriptions.

In this example we have three rules:

1. Doctor Mark can read and write patients’ prescriptions.
2. Doctor Joe can read and write patients’ prescriptions.
3. The nurse Joyce can read patients’ prescriptions.

In Figure 22, we illustrate a concrete model instance for the RBAC policy example,
which is instantiated from the derived RBAC model based on the HEAD metamodel.
For the above policy, we have the following entities/classes:

Sensors 2021, 21, 6507 24 of 29

– Ex entities: subject (worker: name, dept, . . .), and object (prescription: details,
. . .)

– AU entities: role (rType, . . .)
– PU entities: action (aType, . . .), permission (permId, . . .)

worker

ID: 1001
Name: Mark
Dept: clinics
...

worker

ID: 1001
Name: Joe
Dept: clinics
...

worker

ID: 1001
Name: Joyce
Dept: clinics
...

role

rType: Doctor

role

rType: Nurse

prescription

pId:
details: ...
...

permission

permId: ...
....

action

aType: read
....

action

aType: write
....

Figure 22. A model instance based on RBAC.

The generated RBAC policy in Figure 23 is modeled based on RBAC model, explained
in Section 5.1.3. As shown in the Figure, the model includes several elements, and the
three rules are generated based on them.

1. Three subjects (with attribute name): Mark, Joe, and Joyce.
2. One object (with attribute name): Prescription.
3. Two roles (with attribute rType): Doctor, and Nurse.
4. Two permission assignments (with attribute perm): DoctorPermission, and

NursePermission.
5. Two actions (with attribute aType): Read, and Write.

RBAC Policy - organization:Clinic
--subject(s)--

subject.name: Mark Joe Joyce
Any associations? (y/n) y
Mark -> role.rType: Doctor
Joe -> role.rType: Doctor
Joyce -> role.rType: Nurse

--object(s)--

object.name: Prescription
Any associations? (y/n) n

--permission(s)--

permission.permId: DoctorPermission NursePermission
--action(s)--

DoctorPermission - action.aType: Read Write
NursePermission - action.aType: Read

subject(s): [Mark [Doctor], Joe [Doctor], Joyce [Nurse]]
object(s): [Prescription]
permission(s): [DoctorPermission, NursePermission]
action(s): [Read Write, Read]

*****RULES*****
Rule#1
Mark [Doctor]{

DoctorPermission{
Prescription{Read Write}

}}->Allow
Rule#2
Joe [Doctor]{

DoctorPermission{
Prescription{Read Write}

}}->Allow
Rule#3
Joyce [Nurse]{

NursePermission{
Prescription{Read}

}}->Allow

Figure 23. Example 1: generating RBAC policy.

Sensors 2021, 21, 6507 25 of 29

• Example 2—MAC/RBAC policy: In the clinics department of a hospital, the doctors
Mark and Joe have a clearance level of “Top Secret” that is equal to the classification
level of the object patient prescription. Hence, the doctors are allowed to read/write
prescriptions. The nurse Joyce has the clearance level of “Secret” and can read patients’
prescriptions.

In this example we have the following rules:

1. Doctor Mark, whose clearance level is “Top Secret”, can read and write prescrip-
tions that have a classification level equal to “Top Secret”.

2. Doctor Joe, whose clearance level is “Top Secret”, can read and write prescriptions
that have a classification level equal to “Top Secret”.

3. Nurse Joyce, whose clearance level is “Secret”, can only read patients’
prescriptions.

In Figure 24, we illustrate a concrete model of hybrid MAC/RBAC policy example.
Note that, in this example we use BIBA (developed by Kenneth J. Biba) as MAC
variant. In the defined policy, some subjects are assigned to doctor and nurse roles.
Subjects are permitted to read an object if their clearance level is 6 than the object’s
classification level, and to write if it is greater than or equal (>). Note that if, for
example, the clearance level for Doctor Joe is “secret”, then he is only allowed to read
patients’ prescriptions. Hence, we have the following entities/classes:

– Ex class(es): subject (worker: name, dept, . . .), and object (prescription: details)
– AU class(es): role (rType, . . .), security level (level, . . .)
– PU class(es): action (aType, . . .), permission (permId, . . .)

worker

ID: 1001
Name: Mark
Dept: clinics
...

worker

ID: 1001
Name: Joe
Dept: clinics
...

worker

ID: 1001
Name: Joyce
Dept: clinics
...

role

rType: Doctor

role

rType: Nurse

security level

level: top secret

security level

level: secret

prescription

pId:
details: ...
...

permission

permId: ...
....

action

aType: read
....

action

aType: write
....

Figure 24. A model instance based on hybrid MAC/RBAC.

The generated MAC/RBAC policy in Figure 25 is modeled based on the hybrid
MAC/RBAC model, explained in Section 5.1.5. As shown in the figure, the model
includes several elements, and the three rules are defined based on them.

1. Three subjects (with attribute name): Mark, Joe, and Joyce.
2. One object (with attribute name): Prescription.
3. Two roles (with attribute rType): Doctor, and Nurse.
4. Two security levels (with attribute level): Top secret, and Secret.
5. Two permission assignments (with attribute perm): DoctorPermission, and

NursePermission.
6. Two actions (with attribute aType): Read, and Write.

Sensors 2021, 21, 6507 26 of 29

MAC_RBAC Policy org:Hospital

--subject(s)--

subject.name: Mark Joe Joyce

subject-role associations? (y/n) y

Mark -> role.rtype: Doctor

Joe -> role.rtype: Doctor

Joyce -> role.rtype: Nurse

subject-seclevel associations? (y/n) y

Mark [Doctor] -> seclevel.level: TopSecret

Joe [Doctor] -> seclevel.level: TopSecret

Joyce [Nurse] -> seclevel.level: Secret

--object(s)--

object.name: Prescription

object-role associations? (y/n) n

object-seclevel associations? (y/n) y

Prescription -> seclevel.level: TopSecret

--permission(s)--

permission.perm: DoctorPermission NursePermission

--action(s)--

DoctorPermission - action.atype: Read Write

NursePermission - action.atype: Read

subject(s): [Mark [Doctor] [TopSecret], Joe [Doctor] [TopSecret], Joyce [Nurse] [Secret]]

object(s): [Prescription [TopSecret]]

permission(s): [DoctorPermission, NursePermission]

action(s): [Read Write, Read]

RULES

Rule#1

Mark [Doctor] [TopSecret]{

DoctorPermission{

Prescription [TopSecret]{Read Write}

}}->Allow

Rule#2

Joe [Doctor] [TopSecret]{

DoctorPermission{

Prescription [TopSecret]{Read Write}

}}->Allow

Rule#3

Joyce [Nurse] [Secret]{

NursePermission{

Prescription [TopSecret]{Read}

}}->Allow

Figure 25. Example 2: Generating MAC/RBAC policy.

7. Conclusions and Future Perspectives

The evolution of ubiquitous information systems has introduced significant challenges
related to security and access control. Information systems should allow users to fulfill
transparent access to resources at anytime, anywhere, and in any way, while protecting
integrity and confidentiality within the creation of robust security policies. To confront
the challenge of accessing resources, various research works were conducted, focusing on
developing and enhancing AC modeling in five main directions, starting from (1) traditional
access control models, (2) hybrid models, (3) extending AC models, (4) abstracting AC
models, reaching to (5) AC metamodels.

On this basis, the objective of this paper is to provide an efficient AC metamodel
that conforms to organizational (e.g., companies, industries and hospitals) AC security
policies, and adapts the decision making, according to technology progressions to meet
organizational and users’ needs. Hence, we propose the HEAD AC metamodel, which takes
into consideration the continuous technology changes and upgrades. Its meta-components
are constructed after unifying the heterogeneous concepts of AC components. The DSL
language of HEAD metamodel is defined for specifying any AC model; it is generic and able
to create any component and attribute related to the traditional AC model or any new model.
Furthermore, its structure is dynamic and able to define any new component (or attribute)
and the relationships between all components; also, any derived model can be extended
to follow any technological or organizational updates. Additionally, another powerful
feature that exists in the HEAD metamodel is the hierarchy of components (any type of
component) to meet hierarchical authorizations. We provide several scenarios to show its
generality, dynamism, extensibility, and hierarchy; also, some examples are illustrated to
show the generated rules of a policy. Despite providing many advantages, the metamodel
may suffer from a drawback, which could be reflected in the vast amount of code that
is needed to generate the required AC policies in large and complex systems where all

Sensors 2021, 21, 6507 27 of 29

features must be implemented. Nevertheless, several approaches can be implemented to
solve this issue.

The emergence of pervasive information systems and intelligent manufacturing has
had an extensive impact on different directions, such as the future of the industry. Industry
4.0 is the modernization of traditional manufacturing using modern smart technology. It is
based on smart industries where several physical and cyber technologies are merged with
the aim of improving productivity, quality, performance, and management in the epoch
of IoT. As progressions in technology in general, and IoT in particular, are taking place,
the need for security has changed. Hence, organizations and industry sectors have now to
rethink how to control access to resources through modern and enhanced AC methods. In
Industry 4.0, smart sensors are used to collect huge amounts of environmental data, and a
huge number of devices are connected to the internet, from sensors to factory machines,
home appliances, hospital tools and equipment, and others. In the field of security and
privacy, smart sensors are employed, for example, to send warning alarms to nearby areas
in case of fire detection, use facial recognition technologies to send images of a thief to
authorities within seconds of theft, and others. As a future perspective, we aim to explain
how the HEAD metamodel can be implemented to specify and enforce AC policies, using
a detailed case study for an industrial environment (non-IoT and IoT environments), with
real applications and results.

Author Contributions: Conceptualization, N.K. and M.A.; formal analysis, N.K. and M.A.; visualiza-
tion, N.K., M.A. and H.I.; software, N.K.; investigation, N.K., M.A. and H.I.; writing—original draft,
N.K.; writing—review and editing, M.A. and H.I. supervision, M.A. and H.I. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of
Canada (NSERC) grant number 06351.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The study did not report any data.

Acknowledgments: We acknowledge the support of Fonds Québécois de la Recherche sur la Nature
et les Technologies (FRQNT), and Centre d’Entrepreneuriat et de Valorisation des Innovations (CEVI).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AC Access Control
IoT Internet of Things
HEAD Hierarchical, Extensible, Advanced, and Dynamic
DAC Discretionary Access Control Model
MAC Mandatory Access Control Model
RBAC Role-based Access Control Model
ABAC Attribute-based Access Control Model
IS Information System
HGABAC Hierarchical Group and Attribute-based Access Control
HoBAC Higher-order Attribute-based Access Control
CBAC Category-based Access Control
CSPM Cloud Security and Privacy Metamodel
WCMS Web Content Management System
Ex Explicit
Im Implicit
AU Authorization Unit
PU Procedural Unit
St Setting

Sensors 2021, 21, 6507 28 of 29

References
1. Zhang, Y.; Nakanishi, R.; Sasabe, M.; Kasahara, S. Combining IOTA and Attribute-Based Encryption for Access Control in the

Internet of Things. Sensors 2021, 21, 5053.
2. Cruz-Piris, L.; Rivera, D.; Marsa-Maestre, I.; De La Hoz, E.; Velasco, J.R. Access control mechanism for IoT environments based

on modelling communication procedures as resources. Sensors 2018, 18, 917. [CrossRef] [PubMed]
3. Kalsoom, T.; Ramzan, N.; Ahmed, S.; Ur-Rehman, M. Advances in sensor technologies in the era of smart factory and industry

4.0. Sensors 2020, 20, 6783. [CrossRef] [PubMed]
4. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Access Control in Cybersecurity and Social Media. Cybersécurité et Médias Sociaux

2021, 69–105, ISBN 978-2-7637-5328-7.
5. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. A review of access control metamodels. Procedia Comput. Sci. 2021, 184, 445–452.

[CrossRef]
6. Kashmar, N.; Adda, M.; Atieh, M. From Access Control Models to Access Control Metamodels: A Survey. In Future of Information

and Communication Conference; Springer: Cham, Switzerland, 2019; pp. 892–911.
7. Rajpoot, Q.M.; Jensen, C.D.; Krishnan, R. Attributes enhanced role-based access control model. In International Conference on Trust

and Privacy in Digital Business; Springer: Cham, Switzerland, 2015; pp. 3–17.
8. Servos, D.; Osborn, S.L. HGABAC: Towards a formal model of hierarchical attribute-based access control. In International

Symposium on Foundations and Practice of Security; Springer: Cham, Switzerland, 2014; pp. 187–204.
9. Aliane, L.; Adda, M. HoBAC: Toward a higher-order attribute-based access control model. Procedia Comput. Sci. 2019, 155, 303–310.

[CrossRef]
10. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Access control metamodel for policy specification and enforcement: From

conception to formalization. Procedia Comput. Sci. 2021, 184, 887–892. [CrossRef]
11. Kashmar, N.; Adda, M.; Ibrahim, H. Access Control Metamodels: Review, Critical Analysis, and Research Issues. J. Ubiquitous

Syst. Pervasive Netw. 2021, 3, in press.
12. Jaïdi, F.; Labbene Ayachi, F.; Bouhoula, A. A methodology and toolkit for deploying reliable security policies in critical

infrastructures. Secur. Commun. Netw. 2018, 2018, 7142170. [CrossRef]
13. Myrbakken, H.; Colomo-Palacios, R. DevSecOps: A multivocal literature review. In International Conference on Software Process

Improvement and Capability Determination; Springer: Cham, Switzerland, 2017; pp. 17–29.
14. Mao, R.; Zhang, H.; Dai, Q.; Huang, H.; Rong, G.; Shen, H.; Chen, L.; Lu, K. Preliminary findings about devsecops from grey

literature. In Proceedings of the 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS),
Macau, China, 11–14 December 2020; pp. 450–457.

15. Hu, V.C.; Kuhn, D.R.; Ferraiolo, D.F.; Voas, J. Attribute-based access control. Computer 2015, 48, 85–88. [CrossRef]
16. Sandhu, R.; Coyne, E.; Feinstein, H.; Role-Based, C.Y. Access control models. IEEE Comput. 2013, 29, 38–47. [CrossRef]
17. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. A new dynamic smart-AC model methodology to enforce access control policy in

IoT layers. In Proceedings of the 2019 IEEE/ACM 1st International Workshop on Software Engineering Research & Practices for
the Internet of Things (SERP4IoT), Montreal, QC, Canada, 25–31 May 2019; pp. 21–24.

18. Sun, K.; Yin, L. Attribute-role-based hybrid access control in the internet of things. In Asia-Pacific Web Conference; Springer: Cham,
Switzerland, 2014; pp. 333–343.

19. Hasiba, B.A.; Kahloul, L.; Benharzallah, S. A new hybrid access control model for multi-domain systems. In Proceedings of the
2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), Barcelona, Spain, 5–7 April 2017;
pp. 0766–0771.

20. Kuhn, D.R.; Coyne, E.J.; Weil, T.R. Adding attributes to role-based access control. Computer 2010, 43, 79–81. [CrossRef]
21. Aftab, M.U.; Qin, Z.; Hundera, N.W.; Ariyo, O.; Son, N.T.; Dinh, T.V. Permission-based separation of duty in dynamic role-based

access control model. Symmetry 2019, 11, 669. [CrossRef]
22. Kim, S.; Kim, D.K.; Lu, L.; Song, E. Building hybrid access control by configuring RBAC and MAC features. Inf. Softw. Technol.

2014, 56, 763–792. [CrossRef]
23. Li, H.; Wang, S.; Tian, X.; Wei, W.; Sun, C. A survey of extended role-based access control in cloud computing. In Proceedings of

the 4th International Conference on Computer Engineering and Networks; Springer: Cham, Switzerland, 2015; pp. 821–831.
24. Nguyen, P.H.; Nain, G.; Klein, J.; Mouelhi, T.; Le Traon, Y. Model-driven adaptive delegation. In AOSD’13: Proceedings of the 12th

Annual International Conference on Aspect-Oriented Software Development; ACM: New York, NY, USA, 2013; pp. 61–72.
25. Adda, M.; Aliane, L. HoBAC: Fundamentals, principles, and policies. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 5927–5941.

[CrossRef]
26. Slimani, N.; Khambhammettu, H.; Adi, K.; Logrippo, L. UACML: Unified access control modeling language. In Proceedings

of the 2011 4th IFIP International Conference on New Technologies, Mobility and Security, Paris, France, 7–10 February 2011;
pp. 1–8.

27. Barker, S. The next 700 access control models or a unifying meta-model? In SACMAT’09: Proceedings of the 14th ACM symposium
on Access Control Models and Technologies; ACM: New York, NY, USA, 2009; pp. 187–196.

28. Bertolissi, C.; Fernández, M. A metamodel of access control for distributed environments: Applications and properties. Inf.
Comput. 2014, 238, 187–207. [CrossRef]

http://doi.org/10.3390/s18030917
http://www.ncbi.nlm.nih.gov/pubmed/29558406
http://dx.doi.org/10.3390/s20236783
http://www.ncbi.nlm.nih.gov/pubmed/33261021
http://dx.doi.org/10.1016/j.procs.2021.03.056
http://dx.doi.org/10.1016/j.procs.2019.08.044
http://dx.doi.org/10.1016/j.procs.2021.03.111
http://dx.doi.org/10.1155/2018/7142170
http://dx.doi.org/10.1109/MC.2015.33
http://dx.doi.org/10.1109/2.485845
http://dx.doi.org/10.1109/MC.2010.155
http://dx.doi.org/10.3390/sym11050669
http://dx.doi.org/10.1016/j.infsof.2014.02.003
http://dx.doi.org/10.1007/s12652-020-02102-y
http://dx.doi.org/10.1016/j.ic.2014.07.009

Sensors 2021, 21, 6507 29 of 29

29. Abd-Ali, J.; El Guemhioui, K.; Logrippo, L. A Metamodel for Hybrid Access Control Policies. J. Softw. 2015, 10, 784–797.
[CrossRef]

30. Alves, S.; Degtyarev, A.; Fernández, M. Access control and obligations in the category-based metamodel: A rewrite-based
semantics. In International Symposium on Logic-Based Program Synthesis and Transformation; Springer: Cham, Switzerland, 2014;
pp. 148–163.

31. Khamadja, S.; Adi, K.; Logrippo, L. Designing flexible access control models for the cloud. In Proceedings of the 6th International
Conference on Security of Information and Networks, Aksaray, Turkey, 26–28 November 2013; pp. 225–232.

32. Xia, T.; Washizaki, H.; Kato, T.; Kaiya, H.; Ogata, S.; Fernandez, E.B.; Kanuka, H.; Yoshino, M.; Yamamoto, D.; Okubo, T.; et al.
Cloud security and privacy metamodel. In Proceedings of the 6th International Conference on Model-Driven Engineering and
Software Development, Funchal, Portugal, 22–24 January 2018; pp. 379–386.

33. Martínez, S.; Garcia-Alfaro, J.; Cuppens, F.; Cuppens-Boulahia, N.; Cabot, J. Towards an access-control metamodel for web
content management systems. In International Conference on Web Engineering; Springer: Cham, Switzerland, 2013; pp. 148–155.

34. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Deriving access control models based on generic and dynamic metamodel
architecture: Industrial use case. Procedia Comput. Sci. 2020, 177, 162–169. [CrossRef]

35. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Smart-ac: A new framework concept for modeling access control policy. Procedia
Comput. Sci. 2019, 155, 417–424. [CrossRef]

http://dx.doi.org/10.17706//jsw.10.7.784-797
http://dx.doi.org/10.1016/j.procs.2020.10.024
http://dx.doi.org/10.1016/j.procs.2019.08.058

	Introduction
	Related Works
	Formalization of Access Control Policies
	Unifying Access Control Concepts of Heterogeneous Security Policies
	HEAD Metamodel
	Kernel Elements: HEAD Metamodel
	Hierarchies and Associations
	Meta-Policy and Policy

	Defining the Grammar of HEAD Metamodel
	Deriving Access Control Models
	Generality
	Discretionary Access Control Model (DAC)
	Mandatory Access Control Model (MAC)
	Role-Based Access Control Model (RBAC)
	Attribute-Based Access Control Model (ABAC)
	Hybrid Models

	Dynamism
	Extensibility
	Hierarchy of Entities

	Generating Policies: Examples and Illustrations
	Conclusions and Future Perspectives
	References

